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Summary:   The context of factory 4.0 leads more and more to decentralised solutions, as centralisation shows its limits. One of 
the research areas of Industry 4.0 is the use of autonomous guided vehicles (AGVs), autonomous industrial vehicles (AIVs). We 
want to show that cooperation is useful and necessary to increase their autonomy. We propose in this paper an agent model to test 
scenarios in Industry 4.0 environments with a fleet of AIVs. In addition, we are interested in the resolution of global obstacle 
avoidance by AIVs with a collective strategy. The results of the simulation will be evaluated by performance indicators such as 
distance and time in order to compare the different proposed approaches. 
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1. Introduction 

 
One of the fundamental axes of Industry 4.0 is the 

search for decentralised solutions in the decision-
making process because centralisation quickly shows 
its limits [1]. Indeed, if an industry is centrally 
controlled, then if a technical failure, e.g., a network 
failure occurs, everything will come to a standstill. 
Decentralised solutions allow for more flexible 
control, which is preferable.  

The use of autonomous guided vehicles (AGVs) or 
autonomous industrial vehicles (AIVs) is a strategic 
research area in the context of Factory 4.0 and Logistic 
4.0. Currently, vehicles have autonomy over their 
navigation linked to rails, physical or virtual markers 
that allow them to get to their goal. They follow 
predetermined trajectories and they are autonomous in 
their navigation after having received an order from a 
central, a supervisor. If they detect a problem, or an 
obstacle they can report the information to the central, 
but it is the control centre that will decide for the other 
vehicles. 

Our point of view to improve the autonomy of AIVs 
is to move towards decentralised solutions with 
collective strategies taken by the fleet of vehicles. To 
increase their intelligence and their individual and 
collective decision-making, they need to become more 
cooperative [2, 3, 4]. Thus, the AIVs will be more 
efficient in performing the five core tasks they have to 
control (task allocation, localisation, path planning, 
motion planning and vehicle management) [5].  

Thus, they could carry out their missions with a 
collective strategy. This translates for example into a 
fleet of AIVs that communicate and share information. 
In the first level of strategy, there is the shared 
perception of their vision of the environment. A higher 
level that would achieve a collective global strategy for 

the realisation of missions would be the allocation, 
scheduling and distribution of tasks between them in 
real-time. The aim is for robots to be more efficient, 
waste less time and use less energy to accomplish all 
their tasks. 

Our objective is to improve the AIV autonomy 
integrated into a fleet based on collective intelligent 
strategies. Among the problems to be solved to make 
AIVs more autonomous, we can particularly identify 1) 
the avoidance of collisions between vehicles or with 
static or dynamic obstacles [6, 7], and 2) the path 
planning or path finding when an obstacle hinders the 
passage of AIVs or obstructs a predefined path [8, 9, 
10]. 

The problem of avoidance is an individual problem 
that is addressed in a more global and collective way. 
There are three phases: perception of the obstacle 
(detection), rerouting or trajectory planification 
(avoidance) and the overall strategy. In the following, 
we will deal with avoidance through the choice of the 
route, the path but not the trajectory. This chosen path 
can be costly when an aisle is completely obstructed. 
This can be solved by enhanced cooperation [11, 12], 
i.e., the ability of autonomous industrial vehicles 
(AIVs) to exchange relevant information with each 
other on their traffic conditions. 

This is how we augmented the Bahnes’ algorithm 
[11], in a previous work [13], to take into account 
obstacle avoidance, in addition to communication for 
avoidance at intersections. 

Solutions are needed for the second problem, 
especially in the case where an obstacle completely 
obstructs a lane. This prevents a mission from not 
being completed because the main route defined by an 
AIV is compromised by an obstruction. Path planning 
or path-finding algorithms [9, 14] make it possible to 



4th International Conference on Advances in Signal Processing and Artificial Intelligence (ASPAI' 2022),  
19-21 October 2022, Corfu, Greece 

re-plan their route, depending on whether the target of 
the mission has been reached or not. 

In this paper, we will propose a global obstacle 
avoidance with shared perception. Indeed, we will not 
use a local avoidance solution to improve autonomy. 
But rather a collaboration between the different 
vehicles of the fleet to move towards the basis of a 
global collective strategy in our future work. The 
proposed approach is adaptable and flexible for 
centralised or decentralised solutions. In other words, 
we are dealing with a distributed system where each 
robot decide by itself, augmented with communication 
between vehicles to share information about the 
environment. The communication may also go through 
a central supervisor before being redistributed. 

The paper is organised as follows: section 2 
describes the implementation of a collective strategy 
consequent to the detection with agent modelling, the 
exchange of messages to cooperate and the different 
approaches we will compare. The description of the 
simulation environment, the implementation of the 

experiments and the results are analysed in section 3. 
A discussion on the cooperative infrastructure and how 
fuzzy logic can help to qualify the obstacles are also 
made in section 3. Finally, conclusions and future 
work are presented in section 8. 

 
2. Collective strategy consequent to the 
detection 

 
2.1. Modelling agent 
 

In order to validate the use of collective strategy 
algorithms to increase the autonomy of AIVs, we rely 
on a methodological framework consisting of 3 phases: 
(1) agent modelling, (2) verify in simulations the 
correct performance of the algorithm, and (3) 
experiment with TurtleBot3 Burger robots in 
perspective.  

We propose an agent model in Fig. 1 that adapts to 
different situations and scenarios that are tested in the 
context of Industry 4.0.

 

 
 

Fig. 1. Modelling agents adaptable to different scenarios for Industry 4.0 
 

Infrastructure is deployed in the environment and 
is composed of a traffic plan, and active elements such 
as beacons, tags and stations. Since they are active, 
these elements of infrastructure are modelled as 
software agents. These agents are defined as fuzzy 
agents because they can take fuzzy decisions from 
uncertain knowledge or perception, but these 
possibilities are not illustrated in this paper.  

Industrial vehicles, which are also modelled as 
autonomous agents, carry out missions defined by 
routes and sent by a supervisor of the environment. 
They are equipped with radar and thanks to their 
knowledge of the environment they can avoid 
collisions with static obstacles (goods in the aisles), or 
dynamic obstacles (other vehicles or operators). AIVs 
can also cooperate by communicating together. We  

choose to use different types of standardised 
messages transposed from ETSI for ITS. 

 

2.2. Exchanging messages to cooperate 
 

The solutions proposed in the literature make it 
possible to solve an avoidance problem locally. In 
order to be able to carry out all the missions assigned 
to the vehicles, it is necessary that they cooperate and 
share information on their perception of the 
environment. Indeed, if an obstacle is perceived by a 
vehicle, the sending of a Cooperation Perception 
Message (CPM) (ETSI TR 103 562 standard [15]) 
makes it possible to warn and help the other vehicles 
to make decisions about their route. This means that if 
an unavoidable obstacle is perceived on its route, it can 
recalculate and plan a new route to be able to complete 
its task. 
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2.3. Obstacle avoidance approaches 
 

We propose to study three approaches to obstacle 
avoidance by AIVs that will be tested in the simulation. 
Each robot has knowledge of the environment, i.e., the 
position of aisles, intersections, AIVs stations, and 
mission points. These various important traffic points 
of the circuit will be called nodes in the following, and 
are identified by respective numbers shown in Fig. 3. 

In the first approach, agents do not have the ability 
to re-plan a route and change their route when faced 
with an obstacle. 

In the second approach, vehicles are able to change 
routes and plan a new route when an obstacle is 
detected, but they do not cooperate with other vehicles. 
This means that vehicles will enter routes where 
obstacles are present and will have to change their 
route, even though another vehicle has already 
perceived this. They are able to calculate the path to 
their destination. 

The path planning algorithm chosen for these 
experiments is Dijkstra. The objective is not to 
optimise a path planning algorithm (each AIV agent 
having to execute this algorithm), but to use an 
efficient algorithm to measure the performance of a 
collective strategy compared to an individual approach 
in carrying out missions in an industrial environment. 

The last approach will be a collective strategy upon 
detection of an obstacle. This strategy is established 
according to two points of view:  

- The vehicle detects an obstacle, which 
determines the level of obstruction. Then, it 
communicates the description (position, level 
of obstruction, type – static or dynamic) of the 
obstacle to the other vehicles. It can react 
according to its static or dynamic type to avoid 
it if possible, or it can replan another path to 

reach its objective and accomplish its mission. 
This algorithm is described in Fig. 2: 
algorithm 1. 

- The vehicle receives information about an 
obstacle in the environment. It first tries to 
determine whether the obstacle is on its path to 
accomplishing its mission. If this is the case 
and the obstacle is obstructing its planned 
path, it can replan its route. If the obstacle can 
be avoided, it can act and anticipate this static 
or dynamic obstacle by arriving in the vicinity 
of the received position of the obstacle. This 
improves the safety of the area and prevents 
accidents. This algorithm is described in Fig. 
3: algorithm 2. 

 
3. Simulation results and discussion 
 
3.1. Environment simulation 
 

The environment chosen to test the different 
approaches is the warehouse presented by Bechtsis et 
al. [16]. The directions of circulation have been 
adapted for our experiments and are identified in Fig. 
3. We work with five AIVs corresponding to the five 
parking spaces available in the environment.  

AIVs must perform missions in the environment 
shown in Fig. 3. A mission consists of travelling from 
its car park to a storage point and back to its car park.  
Thus, the AIVs applying the collective intelligent 
strategy have two route calculations to perform with 
the Dijkstra algorithm. The first one is to calculate the 
shortest path to the storage point. The second one is to 
calculate the shortest route back to their assigned 
parking space. 

 

 
 

Fig. 2. Collective intelligent strategy algorithm 
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Fig. 3. Warehouse environment [16] with a) adapted direction of traffic, and b) it’s oriented graph with costs. 
 

The costs in distance between the different nodes 
of the circuit have been chosen and applied to favour 
certain directions of traffic. For example, vehicles 
should go from node 14 to node 6, which has a cost of 
10, rather than to node 5, which has a cost of 40. These 
costs between the different nodes are shown in the 
directed graph in Fig. 3. These costs are used by 
Dijkstra's algorithm to find the path that costs the least 
distance, and therefore the fastest. 

To simulate these different experiments, we 
implemented a graphical application with different 
functionalities. The different classes presented in Fig. 
1 have been implemented in Python from scratch. We 
use and develop this simulator for various experiments 
in the laboratory, and for teaching to engineering 
students. Its interface is shown in Fig. 4. In the central 
part, we have the representation of the warehouse 
presented by Bechtsis et al. [16], which we have 
adapted in Fig. 3. The different nodes present in Fig. 3 
and Fig. 4 are represented by white squares in the 
interface. The vehicles are visualised by small 
coloured circles, and the obstacles are coloured black 
with different sizes corresponding to the obstruction 
levels in the aisle.  

In the following, we will denominate the scenarios 
sc1, sc2 and sc3. The missions will be named mi and 
the nodes ni. 

The functionalities proposed by our application 
(Fig. 4) are to:  

- Stop the simulation. 
- Place obstacles randomly in terms of size T1 

to T4 (T4 corresponding to a size that obstructs 
an entire aisle – see Fig. 4) and position at the 
six possible nodes shown in yellow in Fig. 3. 

- Launch a scenario: the agents must then carry 
out missions given by the supervisor. That is, 
go from their parking place to one of the three 
green nodes in Fig. 3, before returning to their 
parking place. On the other hand, pressing the 
scenario 1, 2 or 3 button allows them to choose 
which strategy (sc1, sc2 or sc3) they can 
perform.  

For instance, in Fig. 4, an avoidable obstacle with 
a size T2 in n6 is present, and an obstacle obstructs 
the whole passage with a size t4 in n8. The size of the 
obstacle in the interface corresponds to its obstruction 
level. 

These different approaches were detailed in 
subsection 3.3. Sc1, therefore, does not allow the 
agents to use Dijkstra's algorithm. Sc2 does, and sc3 
allows agents to communicate with each other about 
the description of a perceived obstacle. 

 
3.2. Setting up the experiments 
 

The three approaches were tested in six different 
experiments. Each experiment corresponded to an 
obstacle completely obstructing an aisle on one of the 
six nodes: n4, n5, n6, n7, n8 and n9 shown in orange 
in Fig.3. During these six experiments, the agents had 
to perform 1 of 3 missions consisting in going from the 
car park to one of the nodes n13, n14 and n15 randomly 
chosen by the supervisor, and then returning to their 
parking place. They were equipped with one of the 
three approach capabilities described in subsection 3.3. 
That is, three experiments were performed with sc1, 
sc2 and sc3 with an obstruction at the same node ni to 
compare the approaches.  

 

 
 

Fig. 4. Application interface to simulate missions in the 
warehouse environment  
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The performance indicators that were used to 
define the efficiency and performance of these 
approaches are:  

- The validity of the set of missions performed 
by the five agents. 

- The distance travelled to carry out the different 
missions. 

- The overall time is taken to complete the 
various tasks. 

Distance and time are performance indicators that 
were chosen because they are strongly related to the 
energy used by a robot, an AIV. Thus, this indicates the 
energy impact of the different approaches. 

 
3.3. Experiments: comparisons with performance 
indicators 

 
Table 1 summarises the different results of the 

agents in the six experiments according to sc1, sc2 or 
sc3. Sc1 does not allow the agents to complete all the 
missions, which is explained by the fact that they are 
not able to recalculate their routes. Thus, if any agent 
was blocked by an obstruction on a node, it remained 
without the ability to react and the agents' overall 
mission failed. 

Conversely, sc2 and sc3 applied by the agents 
allowed in both cases to fulfil all the missions thanks 
to their ability to adapt and to plan a new route (with 
the Dijkstra algorithm) when encountering an obstacle 
obstructing a path.  

The distance and overall execution time to 
complete all the missions have therefore been 
quantified in Table 2 and Table 3 respectively.  

The analysis that emerges is that sc3 allows the 
agents to travel less distance in 4 out of 6 experiments 
and allows them to complete the missions more 
quickly in all six experiments.  

The cooperative perception allows the agents to not 
go directly to the obstacle if it is on their way, but to 
redefine with the help of Dijkstra another path to reach 
their goal. Thus, logically, this collaboration takes 
precedence over the individual strategy, and 
communication in a fleet of AIVs thus increases their 
autonomy and their ability to adapt to new situations. 
Over the six experiments, there is a 3% gain in overall 
distance and a 9% gain in time for the whole fleet of 
AIVs. This cooperative perception is an essential basis 
for a future collective global strategy for the sharing 
and organisation of distributed missions within a fleet. 

 
Table 1. Completed missions in relation to the strategy 

number of agents 

 

Table 2. Total distance travelled by agents in relation to the 
strategy number 

 

Table 3. Total execution time to carry out the missions in 
relation to the strategy number 

 

3.4. Cooperative infrastructure 
 
After, the different results mentioned in the 

previous section, we will discuss the possible 
cooperation of the infrastructure. Indeed, it could help 
the collective AIVs strategy with local information. 
This knowledge of the environment could be shared by 
active elements of the infrastructure such as cameras. 
This could help to qualify an obstacle or even detect an 
obstacle before a vehicle enters an area with an 
unavoidable obstacle.  

 
3.5. Fuzzy logic to qualify obstacles 
 

In perspective, the AIV agents of our model 
presented in Fig. 1 may become fuzzy. Indeed, the 
agents will have incomplete, fragmented, fuzzy and 
uncertain knowledge in certain situations. The fuzzy 
logic could allow the agents to be able to recalculate or 
not their itinerary according to whether an obstacle 
seems avoidable or not, depending on the qualification 
of the disturbance caused by the obstacle.  
 
4. Conclusions and perspectives 
 

In the context of Industry 4.0, mobile robots must 
become increasingly autonomous in order to avoid 
obstacles in an intelligent way. We are interested in the 
possible impact of cooperative perception between the 
vehicles of a fleet during a mission. Our aim is to move 
to a higher level of collaboration with the possibility of 
mission sharing and reorganisation in a distributed 
way.   

The comparison of the three approaches evaluated 
using distance, execution time and whether or not a 
mission has been successfully achieved, showed that it 
is essential that vehicles have the ability to re-plan their 
routes while necessary. In addition, the last approach, 
which allowed agents to communicate the description 
of perceived obstacles, allowed for gains in distance 
and execution time of overall missions. Indeed, it 
allows AIVs to avoid traffic around an area where a 
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static or dynamic obstacle (human operator, for 
instance) is present in an aisle. It also allows operators 
or other robots to be safe in that area: for example, to 
remove a static obstacle. 

This very preliminary study already shows the 
interest of collaboration to increase the collective and 
individual efficiency of the vehicles in a fleet. It opens 
the door to more advanced global collective strategies 
with the possibility of the allocation, scheduling and 
distribution of tasks between them in real-time after 
the perception of an obstacle. Furthermore, the 
tracking of obstacles by the robots, or assisted by the 
infrastructure, i.e. a cooperative perception, would also 
optimise the efficiency of the fleet in carrying out these 
missions. 

The perspectives that emerge from this work are to 
increase the work of the analysis with other 
performance indicators, but especially more 
experiments. Indeed, we can define several missions in 
a row by robots with several obstacles obstructing the 
lanes at different places. Another strong perspective to 
our work is to experiment the collective strategy with 
the TurtleBot3 Burger robots.  

In addition, the notions of cooperative 
infrastructure and the use of fuzzy logic to qualify 
obstacles are also planned to be further developed in 
future work. 
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