
HAL Id: hal-03932507
https://hal.science/hal-03932507

Submitted on 10 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Choco-solver
Charles Prud’homme, Jean-Guillaume Fages

To cite this version:
Charles Prud’homme, Jean-Guillaume Fages. Choco-solver: A Java library for constraint program-
ming. Journal of Open Source Software, 2022, 7 (78), pp.4708. �10.21105/joss.04708�. �hal-03932507�

https://hal.science/hal-03932507
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


DRAFT
Choco-solver: A Java library for constraint1

programming2

Charles Prud’homme 1¶ and Jean-Guillaume Fages23

1 TASC, IMT-Atlantique, LS2N-CNRS, Nantes, France 2 COSLING S.A.S., Nantes, France ¶4

Corresponding author5

DOI: 10.xxxxxx/draft

Software
• Review
• Repository
• Archive

Editor: Mehmet Hakan Satman

Reviewers:
• @skadio
• @ozgurakgun

Submitted: 13 July 2022
Published: unpublished

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary6

Constraint Programming (CP) is a powerful programming paradigm for solving combinatorial7

search problems (Rossi et al., 2006). CP is at the intersection of artificial intelligence, computer8

science, operations research, and many other fields. One of the strengths of the paradigm is9

the wide variety of constraints it offers. CP is both a rich declarative language for describing10

combinatorial problems and a set of algorithms and techniques for solving them automatically.11

Choco-solver is Java library for constraint programming which was created in the early 2000s.12

Since then, the library has evolved a great deal, but ease of use has always been a guiding13

principle in its development. The Choco-solver API is designed to reduce entry points to a14

minimum and thus simplifies modelling for users. The wide variety of constraints available15

allows the user to describe his problem as naturally as possible. The black-box approach16

to solving allows everyone to focus on modelling. However, Choco-solver is also open and17

modifiable. The implementation of new constraints (Ouellet & Quimper, 2022) or strategies for18

exploring the search space (Fages & Prud’Homme, 2017; Li et al., 2021) is therefore possible.19

As a result, Choco-solver is used by the academics for teaching and research, on the other20

hand it is used by the industry to solve real-world problems.21

CP in a nutshell22

Constraint programming provides not only a declarative way for users to describe discrete23

problems, but also techniques for solving them automatically. In that sense, it is very close24

to integer linear programming or Boolean satisfaction but is distinguished from them with25

its high-level modeling language and expressiveness. Actually, one of the richness’s of the26

paradigm lies in the wide variety of constraints it proposes, which are also central to the solving27

stage. Thus, the objective of CP is twofold: firstly to offer a rich declarative language to28

describe a combinatorial problem, and secondly to provide techniques for solving the problem29

automatically. In standard use, a user states a problem using variables, their domains (possible30

values for each variable), and constraints which are called predicates that must hold on the31

variables. The wide variety of constraints available allows the users to describe their problem32

as naturally as possible. Each constraint ensures that it holds, otherwise a propagator filters33

the values that prevent the satisfiability. It is the combination of the selected constraints34

that defines the problem. The problem is solved by alternating space reduction (usually by a35

depth-first search) and propagation, thus ensuring the completeness of the approach. This36

standard usage can be extended in different ways, for example, by hybridisation with local37

search, Boolean satisfiability, or linear programming techniques.38

Prud’homme, & Fages. (2022). Choco-solver: A Java library for constraint programming. Journal of Open Source Software, 0(0), 4708.
https://doi.org/10.xxxxxx/draft.

1

https://orcid.org/0000-0002-4546-9027
https://doi.org/10.xxxxxx/draft
https://github.com/openjournals/joss-reviews/issues/4708
https://github.com/chocoteam/choco-solver
https://doi.org/10.5281/zenodo.7185962
https://avesis.istanbul.edu.tr/mhsatman/topics
https://orcid.org/0000-0002-9402-1982
https://github.com/skadio
https://github.com/ozgurakgun
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.xxxxxx/draft


DRAFT
Statement of need39

For constraint programming to be used successfully, it is essential to have a library that40

incorporates the latest advances in the field, while ensuring reliability, performance, and41

responsiveness. This was also the motivation for the creation of Choco-solver: Providing42

state-of-the-art algorithms and high resolution performance while offering ease of use and43

development, all in a free and open-source library.44

Achievement45

With 20 years of development, Choco-solver is now a stable, flexible, extensible, powerful, and46

user-friendly library. There is a community of users and contributors who actively participate in47

improving the library. In addition, Choco-solver relies on software quality standards (unit and48

performance tests, continuous integration, code review, etc.) and frequent updates are made.49

Finally, the choice of Java as programming language makes the integration of the library simple50

into both academic and industrial projects.51

Features and Functionality52

Modeling53

Choco-solver comes with the commonly used types of variables: Integer variables, Boolean54

variables, set variables (Gervet, 1997), graph variables (Dooms et al., 2005; Fages, 2015), and55

real variables. Views (Justeau-Allaire & Prud’homme, 2022; Schulte & Tack, 2005) but also56

arithmetical, relational and logical expressions are supported.57

Up to 100 constraints are provided from classic ones, such as arithmetical constraints, to58

must-have global constraints such as AllDifferent (Régin, 1994) or Cumulative (Aggoun &59

Beldiceanu, 1993), and include less common even though useful ones such as Tree (Beldiceanu60

et al., 2005) or StableKeySort (Beldiceanu et al., 2015). In many cases, the Choco-solver61

API provides various options in addition to the default signature – corresponding to a robust62

implementation – of a constraint. This allows users to experiment alternative approaches and63

tune the model to its instance. The users may also pick some existing propagators to compose64

a new constraint or create their own one in a straightforward way by implementing a filtering65

algorithm and a satisfaction checker. Many models are available on the Choco-solver website66

as modelling tutorials.67

Solving68

Choco-solver has been carefully designed to offer wide range of resolution configurations69

and good solving performances. Backtrackable primitives and structures are based on trailing70

(Aggoun & Beldiceanu, 1990; Reischuk et al., 2009). The propagation engine deals with seven71

priority levels (Prud’homme, Lorca, Douence, et al., 2014; Schulte & Stuckey, 2008) and72

manages either fine or coarse grain events which enables to get efficient incremental constraint73

propagators.74

The search algorithm relies on three components Propagate, Learn, and Move (Jussien &75

Lhomme, 2002). Such a generic search algorithm is then instantiated to depth-first search,76

large neighbourhood search (Prud’homme, Lorca, & Jussien, 2014; Shaw, 1998), limited77

discrepancy search (Harvey & Ginsberg, 1995), depth-bounded discrepancy search (Walsh,78

1997) or hybrid breadth-first search (Allouche et al., 2015).79

The search process can also be greatly improved by various built-in search strategies such as80

dom/wdeg (Boussemart et al., 2004) and its ca-cd variant (Wattez et al., 2019), activity-based81

search (Michel & Van Hentenryck, 2012), failure-based searches (Li et al., 2021), bound-impact82

value selector (Fages & Prud’Homme, 2017), first-fail (Haralick & Elliott, 1979), and many83

Prud’homme, & Fages. (2022). Choco-solver: A Java library for constraint programming. Journal of Open Source Software, 0(0), 4708.
https://doi.org/10.xxxxxx/draft.

2

https://choco-solver.org/tutos/
https://doi.org/10.xxxxxx/draft


DRAFT
others. Standard restart policies are also available, to take full advantage of the learning84

strategies. Problem-adapted search strategies are also supported.85

One can solve a problem by86

• simply checking satisfaction87

• finding one or all solutions88

• optimizing one or more objectives89

• solving on one or more thread.90

The search process itself is observable and extensible.91

Community tools integration92

Several useful extra features are also available such as parsers to XCSP3 format and MiniZinc93

format. Choco-solver is also embedded in PyCSP3, a Python library for modeling and solving94

combinatorial constrained problems. In addition to offering alternatives to modelling in Java, it95

also allows participation in the two major constraint solver competitions : MiniZinc Challenge96

and XCSP3 Competition.97

Finally, although it is originally designed to solve discrete mathematical problems, Choco-98

solver also supports natively real variables and constraints, and relies on Ibex-lib to solve the99

continuous part of the problems (Fages et al., 2013). Equally, a Boolean satisfaction solver100

(based on MiniSat) is integrated to offer better performance on logical constraints.101

These aspects consolidate the place of Choco-solver as an important tool in the CP community.102

Note that there are a couple of other Java constraint solvers of equivalent maturity, like JaCoP103

and ACE. Although the performances of these tools are direclty comparable, they are mainly104

distinguished by the functionalities in terms of modelling and resolution. Among the most105

noteworthy, Choco-solver allows integrating constraints which are based on graph variables106

or real variables, or it can parse both MiniZinc and XCSP3 input files.107

Industrial use108

Choco-solver is used by the industry to solve many real-world problems, such as cryptanalysis109

(Delaune et al., 2021), construction planning (Cañizares et al., 2022), automated testing110

and debugging (Le et al., 2021), scheduling (Lorca et al., 2016), level design (Smith et al.,111

2011), placement service (Ait Salaht et al., 2019) and many others. In the Railway industry,112

Choco-solver is used to optimize the rail traffic of French train stations, on a daily basis. It113

is also used at a higher level to run simulations for capacity and maintenance planning. The114

underlying mathematical problems, involving multi-objective functions with millions of variables115

and constraints, are solved within seconds by the solver. In the defense sector, Choco-solver116

is used for various applications. One publicly known is the long-term maintenance planning of117

the Mirage 2000 fleet (Grazzini, 2019). This planning and scheduling problem includes various118

capacity constraints, load balancing, and mission covering in an over-constrained environment.119

A fleet of hundred aircraft can be planned by Choco-solver for the next fifteen years within120

a few minutes. Another type of industrial application of Choco-solver is Configuration121

(Charpentier et al., 2021) where the solver is used to solve dynamical constraint models. The122

underlying mathematical problems are generally simpler than the ones in planning applications123

and an optimal result is expected within milliseconds. This occurs in quotation systems for124

sales automation, but also design automation, and system configuration.125

In most of those cases, experts set advanced solution techniques, such as specific search126

strategies, Large Neighborhood Search or ad hoc global constraints, in order to improve127

their model. Choco-solver is flexible enough to allow such fine-tuning to tackle challenging128

problems. With the right approach, Choco-solver can come up with nearly optimal solutions129

in a very short time.130

Prud’homme, & Fages. (2022). Choco-solver: A Java library for constraint programming. Journal of Open Source Software, 0(0), 4708.
https://doi.org/10.xxxxxx/draft.

3

http://xcsp.org/
https://www.minizinc.org/resources.html
https://www.minizinc.org/resources.html
https://www.minizinc.org/resources.html
https://pypi.org/project/pycsp3/
https://www.minizinc.org/challenge.html
http://www.xcsp.org/competitions/
http://www.ibex-lib.org/
http://minisat.se/Main.html
https://github.com/radsz/jacop
https://github.com/xcsp3team/ace
https://doi.org/10.xxxxxx/draft


DRAFT
Acknowledgements131

We acknowledge contributions from (in alphabetical order) Hadrien Cambazard, Arthur Godet,132

Fabien Hermenier, Narendra Jussien, Dimitri Justeau-Allaire, Tanguy Lapègue, Alexandre133

Lebrun, Jimmy Liang, Xavier Lorca, Arnaud Malapert, Guillaume Rochart, João Pedro Schmitt134

and Mohamed Wahbi.135

References136

Aggoun, A., & Beldiceanu, N. (1990). Time stamps techniques for the trailed data in constraint137

logic programming systems. In S. Bourgault & M. Dincbas (Eds.), SPLT’90, 8ème séminaire138

programmation en logique, 16-18 mai 1990, trégastel, france (pp. 487–510).139

Aggoun, A., & Beldiceanu, N. (1993). Extending CHIP in order to Solve Complex Scheduling140

and Placement Problems. Mathl. Comput. Modelling, 17 (7), 57–73. https://doi.org/10.141

1016/0895-7177(93)90068-A142

Ait Salaht, F., Desprez, F., Lebre, A., Prud’homme, C., & Abderrahim, M. (2019). Service143

placement in fog computing using constraint programming. 2019 IEEE International144

Conference on Services Computing (SCC), 19–27. https://doi.org/10.1109/SCC.2019.145

00017146

Allouche, D., De Givry, S., Katsirelos, G., Schiex, T., & Zytnicki, M. (2015). Anytime hybrid147

best-first search with tree decomposition for weighted CSP. CP 2015 - 21st International148

Conference on Principles and Practice of Constraint Programming, 17 p. https://doi.org/149

10.1007/978-3-319-23219-5/_2150

Beldiceanu, N., Carlsson, M., Flener, P., Lorca, X., Pearson, J., Petit, T., & Prud’Homme, C.151

(2015, October). A Modelling Pearl with Sortedness Constraints. Global conference on152

artificial intelligence. https://doi.org/10.29007/b4dz153

Beldiceanu, N., Flener, P., & Lorca, X. (2005). The tree constraint. In R. Barták &154

M. Milano (Eds.), Integration of AI and OR techniques in constraint programming for155

combinatorial optimization problems, second international conference, CPAIOR 2005,156

prague, czech republic, may 30 - june 1, 2005, proceedings (Vol. 3524, pp. 64–78).157

Springer. https://doi.org/10.1007/11493853/_7158

Boussemart, F., Hemery, F., Lecoutre, C., & Sais, L. (2004). Boosting systematic search159

by weighting constraints. Proceedings of the 16th Eureopean Conference on Artificial160

Intelligence, ECAI’2004, Including Prestigious Applicants of Intelligent Systems, PAIS 2004,161

Valencia, Spain, August 22-27, 2004, 146–150.162

Cañizares, P. C., Estévez-Martín, S., & Núñez, M. (2022). SINPA: SupportINg the automation163

of construction PlAnning. Expert Systems with Applications, 190, 116149. https://doi.164

org/10.1016/j.eswa.2021.116149165

Charpentier, A., Fages, J.-G., & Lapègue, T. (2021). COSLING configurator. ConfWS.166

Delaune, S., Derbez, P., Huynh, P., Minier, M., Mollimard, V., & Prud’homme, C. (2021).167

Efficient methods to search for best differential characteristics on SKINNY. In K. Sako168

& N. O. Tippenhauer (Eds.), Applied cryptography and network security (pp. 184–207).169

Springer International Publishing. https://doi.org/10.1007/978-3-030-78375-4_8170

Dooms, G., Deville, Y., & Dupont, P. (2005). CP(Graph): Introducing a Graph Computation171

Domain in Constraint Programming. Principles and Practice of Constraint Programming -172

CP 2005, 211–225. https://doi.org/10.1007/11564751_18173

Fages, J.-G. (2015). On the use of graphs within constraint-programming. Constraints, 20(4),174

498–499. https://doi.org/10.1007/s10601-015-9223-9175

Prud’homme, & Fages. (2022). Choco-solver: A Java library for constraint programming. Journal of Open Source Software, 0(0), 4708.
https://doi.org/10.xxxxxx/draft.

4

https://doi.org/10.1016/0895-7177(93)90068-A
https://doi.org/10.1016/0895-7177(93)90068-A
https://doi.org/10.1016/0895-7177(93)90068-A
https://doi.org/10.1109/SCC.2019.00017
https://doi.org/10.1109/SCC.2019.00017
https://doi.org/10.1109/SCC.2019.00017
https://doi.org/10.1007/978-3-319-23219-5/_2
https://doi.org/10.1007/978-3-319-23219-5/_2
https://doi.org/10.1007/978-3-319-23219-5/_2
https://doi.org/10.29007/b4dz
https://doi.org/10.1007/11493853/_7
https://doi.org/10.1016/j.eswa.2021.116149
https://doi.org/10.1016/j.eswa.2021.116149
https://doi.org/10.1016/j.eswa.2021.116149
https://doi.org/10.1007/978-3-030-78375-4_8
https://doi.org/10.1007/11564751_18
https://doi.org/10.1007/s10601-015-9223-9
https://doi.org/10.xxxxxx/draft


DRAFT
Fages, J.-G., Chabert, G., & Prud’Homme, C. (2013). Combining finite and continuous solvers176

Towards a simpler solver maintenance. The 19th International Conference on Principles and177

Practice of Constraint Programming, TRICS’13 Workshop: Techniques foR Implementing178

Constraint programming Systems. https://hal.archives-ouvertes.fr/hal-00904069179

Fages, J.-G., & Prud’Homme, C. (2017, November). Making the first solution good! ICTAI180

2017 29th IEEE International Conference on Tools with Artificial Intelligence. https:181

//doi.org/10.1109/ictai.2017.00164182

Gervet, C. (1997). Interval propagation to reason about sets: Definition and implementation183

of a practical language. Constraints, 1(3), 191–244. https://doi.org/10.1007/BF00137870184

Grazzini, F. (2019). Airbus and COSLING provide software solution optaforce for185

mirage 2000 maintenance. https://www.airbus.com/en/newsroom/press-releases/186

2019-06-airbus-and-cosling-provide-software-solution-optaforce-for-mirage187

Haralick, R. M., & Elliott, G. L. (1979). Increasing tree search efficiency for constraint188

satisfaction problems. Proceedings of the 6th International Joint Conference on Artificial189

Intelligence - Volume 1, 356–364. https://doi.org/10.1016/0004-3702(80)90051-X190

Harvey, W. D., & Ginsberg, M. L. (1995). Limited discrepancy search. Proceedings of191

the 14th International Joint Conference on Artificial Intelligence - Volume 1, 607–613.192

ISBN: 978-1-558-60363-9193

Jussien, N., & Lhomme, O. (2002). Unifying search algorithms for CSP (Research Report No.194

RR0203). EMN.195

Justeau-Allaire, D., & Prud’homme, C. (2022). Global domain views for expressive and196

cross-domain constraint programming. Constraints An Int. J., 27(1), 1–7. https://doi.197

org/10.1007/s10601-021-09324-7198

Le, V.-M., Felfernig, A., Tran, T. N. T., Atas, M., Uta, M., Benavides, D., & Galindo, J. (2021).199

DirectDebug: A software package for the automated testing and debugging of feature200

models. Software Impacts, 9, 100085. https://doi.org/10.1016/j.simpa.2021.100085201

Li, H., Yin, M., & Li, Z. (2021). Failure based variable ordering heuristics for solving CSPs202

(short paper). In L. D. Michel (Ed.), 27th international conference on principles and203

practice of constraint programming, CP 2021, montpellier, france (virtual conference),204

october 25-29, 2021 (Vol. 210, pp. 9:1–9:10). Schloss Dagstuhl - Leibniz-Zentrum für205

Informatik. https://doi.org/10.4230/LIPIcs.CP.2021.9206

Lorca, X., Prud’homme, C., Questel, A., & Rottembourg, B. (2016). Using constraint207

programming for the urban transit crew rescheduling problem. In M. Rueher (Ed.),208

Principles and practice of constraint programming (pp. 636–649). Springer International209

Publishing. https://doi.org/10.1007/978-3-319-44953-1_40210

Michel, L., & Van Hentenryck, P. (2012). Activity-based search for black-box constraint211

programming solvers. In N. Beldiceanu, N. Jussien, & É. Pinson (Eds.), Integration of AI212

and OR techniques in contraint programming for combinatorial optimzation problems (pp.213

228–243). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-29828-8_15214

Ouellet, Y., & Quimper, C.-G. (2022). A MinCumulative resource constraint. In P. Schaus (Ed.),215

Integration of constraint programming, artificial intelligence, and operations research (pp.216

318–334). Springer International Publishing. https://doi.org/10.1007/978-3-031-08011-1_217

21218

Prud’homme, C., Lorca, X., Douence, R., & Jussien, N. (2014). Propagation engine prototyping219

with a domain specific language. Constraints An Int. J., 19(1), 57–76. https://doi.org/10.220

1007/s10601-013-9151-5221

Prud’homme, C., Lorca, X., & Jussien, N. (2014). Explanation-based large neighborhood222

search. Constraints, 19(4), 339–379. https://doi.org/10.1007/s10601-014-9166-6223

Prud’homme, & Fages. (2022). Choco-solver: A Java library for constraint programming. Journal of Open Source Software, 0(0), 4708.
https://doi.org/10.xxxxxx/draft.

5

https://hal.archives-ouvertes.fr/hal-00904069
https://doi.org/10.1109/ictai.2017.00164
https://doi.org/10.1109/ictai.2017.00164
https://doi.org/10.1109/ictai.2017.00164
https://doi.org/10.1007/BF00137870
https://www.airbus.com/en/newsroom/press-releases/2019-06-airbus-and-cosling-provide-software-solution-optaforce-for-mirage
https://www.airbus.com/en/newsroom/press-releases/2019-06-airbus-and-cosling-provide-software-solution-optaforce-for-mirage
https://www.airbus.com/en/newsroom/press-releases/2019-06-airbus-and-cosling-provide-software-solution-optaforce-for-mirage
https://doi.org/10.1016/0004-3702(80)90051-X
http://dl.acm.org/citation.cfm?id=1625855.1625935
https://doi.org/10.1007/s10601-021-09324-7
https://doi.org/10.1007/s10601-021-09324-7
https://doi.org/10.1007/s10601-021-09324-7
https://doi.org/10.1016/j.simpa.2021.100085
https://doi.org/10.4230/LIPIcs.CP.2021.9
https://doi.org/10.1007/978-3-319-44953-1_40
https://doi.org/10.1007/978-3-642-29828-8_15
https://doi.org/10.1007/978-3-031-08011-1_21
https://doi.org/10.1007/978-3-031-08011-1_21
https://doi.org/10.1007/978-3-031-08011-1_21
https://doi.org/10.1007/s10601-013-9151-5
https://doi.org/10.1007/s10601-013-9151-5
https://doi.org/10.1007/s10601-013-9151-5
https://doi.org/10.1007/s10601-014-9166-6
https://doi.org/10.xxxxxx/draft


DRAFT
Régin, J.-C. (1994). A filtering algorithm for constraints of difference in CSPs. Proceed-224

ings of the Twelfth National Conference on Artificial Intelligence (Vol. 1), 362–367.225

ISBN: 0262611023226

Reischuk, R. M., Schulte, C., Stuckey, P. J., & Tack, G. (2009). Maintaining state in227

propagation solvers. In I. P. Gent (Ed.), Principles and practice of constraint programming228

- CP 2009, 15th international conference, CP 2009, lisbon, portugal, september 20-229

24, 2009, proceedings (Vol. 5732, pp. 692–706). Springer. https://doi.org/10.1007/230

978-3-642-04244-7/_54231

Rossi, F., Beek, P. van, & Walsh, T. (Eds.). (2006). Handbook of constraint programming232

(Vol. 2). Elsevier. ISBN: 978-0-444-52726-4233

Schulte, C., & Stuckey, P. J. (2008). Efficient constraint propagation engines. ACM Trans.234

Program. Lang. Syst., 31(1), 2:1–2:43. https://doi.org/10.1145/1452044.1452046235

Schulte, C., & Tack, G. (2005). Views and iterators for generic constraint implementations.236

In P. van Beek (Ed.), Principles and practice of constraint programming - CP 2005, 11th237

international conference, CP 2005, sitges, spain, october 1-5, 2005, proceedings (Vol. 3709,238

pp. 817–821). Springer. https://doi.org/10.1007/11564751/_71239

Shaw, P. (1998). Using constraint programming and local search methods to solve vehicle240

routing problems. In M. J. Maher & J.-F. Puget (Eds.), Principles and practice of241

constraint programming - CP98, 4th international conference, pisa, italy, october 26-242

30, 1998, proceedings (Vol. 1520, pp. 417–431). Springer. https://doi.org/10.1007/243

3-540-49481-2/_30244

Smith, G., Whitehead, J., & Mateas, M. (2011). Tanagra: Reactive planning and constraint245

solving for mixed-initiative level design. IEEE Transactions on Computational Intelligence246

and AI in Games, 3(3), 201–215. https://doi.org/10.1109/TCIAIG.2011.2159716247

Walsh, T. (1997). Depth-bounded discrepancy search. In Proceedings of IJCAI-97, 1388–1393.248

Wattez, H., Lecoutre, C., Paparrizou, A., & Tabary, S. (2019). Refining constraint weighting.249

31st IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2019,250

Portland, OR, USA, November 4-6, 2019, 71–77. https://doi.org/10.1109/ICTAI.2019.251

00019252

Prud’homme, & Fages. (2022). Choco-solver: A Java library for constraint programming. Journal of Open Source Software, 0(0), 4708.
https://doi.org/10.xxxxxx/draft.

6

https://doi.org/10.1007/978-3-642-04244-7/_54
https://doi.org/10.1007/978-3-642-04244-7/_54
https://doi.org/10.1007/978-3-642-04244-7/_54
https://www.sciencedirect.com/science/bookseries/15746526/2
https://doi.org/10.1145/1452044.1452046
https://doi.org/10.1007/11564751/_71
https://doi.org/10.1007/3-540-49481-2/_30
https://doi.org/10.1007/3-540-49481-2/_30
https://doi.org/10.1007/3-540-49481-2/_30
https://doi.org/10.1109/TCIAIG.2011.2159716
https://doi.org/10.1109/ICTAI.2019.00019
https://doi.org/10.1109/ICTAI.2019.00019
https://doi.org/10.1109/ICTAI.2019.00019
https://doi.org/10.xxxxxx/draft

	Summary
	CP in a nutshell

	Statement of need
	Achievement

	Features and Functionality
	Modeling
	Solving
	Community tools integration

	Industrial use
	Acknowledgements
	References

