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Summary6

Constraint Programming (CP) is a powerful programming paradigm for solving combinatorial7

search problems (Rossi et al., 2006). CP is at the intersection of artificial intelligence, computer8

science, operations research, and many other fields. One of the strengths of the paradigm is9

the wide variety of constraints it offers. CP is both a rich declarative language for describing10

combinatorial problems and a set of algorithms and techniques for solving them automatically.11

Choco-solver is Java library for constraint programming which was created in the early 2000s.12

Since then, the library has evolved a great deal, but ease of use has always been a guiding13

principle in its development. The Choco-solver API is designed to reduce entry points to a14

minimum and thus simplifies modelling for users. The wide variety of constraints available15

allows the user to describe his problem as naturally as possible. The black-box approach16

to solving allows everyone to focus on modelling. However, Choco-solver is also open and17

modifiable. The implementation of new constraints (Ouellet & Quimper, 2022) or strategies for18

exploring the search space (Fages & Prud’Homme, 2017; Li et al., 2021) is therefore possible.19

As a result, Choco-solver is used by the academics for teaching and research, on the other20

hand it is used by the industry to solve real-world problems.21

CP in a nutshell22

Constraint programming provides not only a declarative way for users to describe discrete23

problems, but also techniques for solving them automatically. In that sense, it is very close24

to integer linear programming or Boolean satisfaction but is distinguished from them with25

its high-level modeling language and expressiveness. Actually, one of the richness’s of the26

paradigm lies in the wide variety of constraints it proposes, which are also central to the solving27

stage. Thus, the objective of CP is twofold: firstly to offer a rich declarative language to28

describe a combinatorial problem, and secondly to provide techniques for solving the problem29

automatically. In standard use, a user states a problem using variables, their domains (possible30

values for each variable), and constraints which are called predicates that must hold on the31

variables. The wide variety of constraints available allows the users to describe their problem32

as naturally as possible. Each constraint ensures that it holds, otherwise a propagator filters33

the values that prevent the satisfiability. It is the combination of the selected constraints34

that defines the problem. The problem is solved by alternating space reduction (usually by a35

depth-first search) and propagation, thus ensuring the completeness of the approach. This36

standard usage can be extended in different ways, for example, by hybridisation with local37

search, Boolean satisfiability, or linear programming techniques.38
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Statement of need39

For constraint programming to be used successfully, it is essential to have a library that40

incorporates the latest advances in the field, while ensuring reliability, performance, and41

responsiveness. This was also the motivation for the creation of Choco-solver: Providing42

state-of-the-art algorithms and high resolution performance while offering ease of use and43

development, all in a free and open-source library.44

Achievement45

With 20 years of development, Choco-solver is now a stable, flexible, extensible, powerful, and46

user-friendly library. There is a community of users and contributors who actively participate in47

improving the library. In addition, Choco-solver relies on software quality standards (unit and48

performance tests, continuous integration, code review, etc.) and frequent updates are made.49

Finally, the choice of Java as programming language makes the integration of the library simple50

into both academic and industrial projects.51

Features and Functionality52

Modeling53

Choco-solver comes with the commonly used types of variables: Integer variables, Boolean54

variables, set variables (Gervet, 1997), graph variables (Dooms et al., 2005; Fages, 2015), and55

real variables. Views (Justeau-Allaire & Prud’homme, 2022; Schulte & Tack, 2005) but also56

arithmetical, relational and logical expressions are supported.57

Up to 100 constraints are provided from classic ones, such as arithmetical constraints, to58

must-have global constraints such as AllDifferent (Régin, 1994) or Cumulative (Aggoun &59

Beldiceanu, 1993), and include less common even though useful ones such as Tree (Beldiceanu60

et al., 2005) or StableKeySort (Beldiceanu et al., 2015). In many cases, the Choco-solver61

API provides various options in addition to the default signature – corresponding to a robust62

implementation – of a constraint. This allows users to experiment alternative approaches and63

tune the model to its instance. The users may also pick some existing propagators to compose64

a new constraint or create their own one in a straightforward way by implementing a filtering65

algorithm and a satisfaction checker. Many models are available on the Choco-solver website66

as modelling tutorials.67

Solving68

Choco-solver has been carefully designed to offer wide range of resolution configurations69

and good solving performances. Backtrackable primitives and structures are based on trailing70

(Aggoun & Beldiceanu, 1990; Reischuk et al., 2009). The propagation engine deals with seven71

priority levels (Prud’homme, Lorca, Douence, et al., 2014; Schulte & Stuckey, 2008) and72

manages either fine or coarse grain events which enables to get efficient incremental constraint73

propagators.74

The search algorithm relies on three components Propagate, Learn, and Move (Jussien &75

Lhomme, 2002). Such a generic search algorithm is then instantiated to depth-first search,76

large neighbourhood search (Prud’homme, Lorca, & Jussien, 2014; Shaw, 1998), limited77

discrepancy search (Harvey & Ginsberg, 1995), depth-bounded discrepancy search (Walsh,78

1997) or hybrid breadth-first search (Allouche et al., 2015).79

The search process can also be greatly improved by various built-in search strategies such as80

dom/wdeg (Boussemart et al., 2004) and its ca-cd variant (Wattez et al., 2019), activity-based81

search (Michel & Van Hentenryck, 2012), failure-based searches (Li et al., 2021), bound-impact82

value selector (Fages & Prud’Homme, 2017), first-fail (Haralick & Elliott, 1979), and many83
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others. Standard restart policies are also available, to take full advantage of the learning84

strategies. Problem-adapted search strategies are also supported.85

One can solve a problem by86

• simply checking satisfaction87

• finding one or all solutions88

• optimizing one or more objectives89

• solving on one or more thread.90

The search process itself is observable and extensible.91

Community tools integration92

Several useful extra features are also available such as parsers to XCSP3 format and MiniZinc93

format. Choco-solver is also embedded in PyCSP3, a Python library for modeling and solving94

combinatorial constrained problems. In addition to offering alternatives to modelling in Java, it95

also allows participation in the two major constraint solver competitions : MiniZinc Challenge96

and XCSP3 Competition.97

Finally, although it is originally designed to solve discrete mathematical problems, Choco-98

solver also supports natively real variables and constraints, and relies on Ibex-lib to solve the99

continuous part of the problems (Fages et al., 2013). Equally, a Boolean satisfaction solver100

(based on MiniSat) is integrated to offer better performance on logical constraints.101

These aspects consolidate the place of Choco-solver as an important tool in the CP community.102

Note that there are a couple of other Java constraint solvers of equivalent maturity, like JaCoP103

and ACE. Although the performances of these tools are direclty comparable, they are mainly104

distinguished by the functionalities in terms of modelling and resolution. Among the most105

noteworthy, Choco-solver allows integrating constraints which are based on graph variables106

or real variables, or it can parse both MiniZinc and XCSP3 input files.107

Industrial use108

Choco-solver is used by the industry to solve many real-world problems, such as cryptanalysis109

(Delaune et al., 2021), construction planning (Cañizares et al., 2022), automated testing110

and debugging (Le et al., 2021), scheduling (Lorca et al., 2016), level design (Smith et al.,111

2011), placement service (Ait Salaht et al., 2019) and many others. In the Railway industry,112

Choco-solver is used to optimize the rail traffic of French train stations, on a daily basis. It113

is also used at a higher level to run simulations for capacity and maintenance planning. The114

underlying mathematical problems, involving multi-objective functions with millions of variables115

and constraints, are solved within seconds by the solver. In the defense sector, Choco-solver116

is used for various applications. One publicly known is the long-term maintenance planning of117

the Mirage 2000 fleet (Grazzini, 2019). This planning and scheduling problem includes various118

capacity constraints, load balancing, and mission covering in an over-constrained environment.119

A fleet of hundred aircraft can be planned by Choco-solver for the next fifteen years within120

a few minutes. Another type of industrial application of Choco-solver is Configuration121

(Charpentier et al., 2021) where the solver is used to solve dynamical constraint models. The122

underlying mathematical problems are generally simpler than the ones in planning applications123

and an optimal result is expected within milliseconds. This occurs in quotation systems for124

sales automation, but also design automation, and system configuration.125

In most of those cases, experts set advanced solution techniques, such as specific search126

strategies, Large Neighborhood Search or ad hoc global constraints, in order to improve127

their model. Choco-solver is flexible enough to allow such fine-tuning to tackle challenging128

problems. With the right approach, Choco-solver can come up with nearly optimal solutions129

in a very short time.130
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