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Dynamical Properties of Weather Regime
Transitions

Paul Platzer, Bertrand Chapron, and Pierre Tandeo

Abstract Large-scale weather can often be successfully described using a small
amount of patterns. A statistical description of reanalysed pressure fields identifies
these recurring patterns with clusters in state-space, also called “regimes”. Recently,
these weather regimes have been described through instantaneous, local indicators
of dimension and persistence, borrowed from dynamical systems theory and
extreme value theory. Using similar indicators and going further, we focus here
on weather regime transitions. We use 60 years of winter-time sea-level pressure
reanalysis data centered on the North-Atlantic ocean and western Europe. These
experiments reveal regime-dependent behaviours of dimension and persistence near
transitions, although in average one observes an increase of dimension and a
decrease of persistence near transitions. The effect of transition on persistence is
stronger and lasts longer than on dimension. These findings confirm the relevance
of such dynamical indicators for the study of large-scale weather regimes, and reveal
their potential to be used for both the understanding and detection of weather regime
transitions.

Keywords Weather · Regime · Transition · Shift · Dynamical systems ·
Dimension · Persistence

1 Introduction

The concept of weather regime was introduced in 1949 by [1]. Broadly speaking,
weather regimes are recurring, quasi-stationary states of the atmosphere, which
allow to describe most of the subseasonal variability of atmospheric states, the
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latter being defined through large-scale maps of either mean sea-level pressure
or geopotential height. The study of weather regimes has numerous potential
applications as a tool to understand subseasonal atmospheric dynamics [2]. The
understanding and correct representation of weather regimes is also paramount for
adequate climate projections [3].

Vautard [4] defines weather regimes through stationarity and searches for
geopotential fields with a quasi-vanishing time-derivative. Others (see e.g. [5])
use cluster analysis (i.e. k-means or Gaussian Mixture Models) to find recurring
patterns. To perform such analyses, one usually uses a low-order description of the
atmospheric state, through empirical orthogonal functions (EOFs). Some authors
simply rely on projection on a low number of EOFs (two in the case of [6]), and
on forecaster’s empirical knowledge of the recurrence of regimes defined through
positive and negative phases of dominant EOFs.

A natural concern is not only the definition of weather regime, but also the study
of their transition [5]. Statistical tools such as random forest can be used to perform
such a task [7]. The performance of physics-based weather forecasts can also be
assessed through their ability to predict weather regime transitions [6]. Our study of
weather regime transition is noticeably motivated by the relevance and difficulty of
their forecast.

We aim to focus on the time-evolution of two dynamical indicators (local
dimension and persistence) around transitions between winter-time, North-Atlantic
weather regimes. These indicators are relevant to the study of Atlantic-European
weather regimes, as each weather regime can be associated with specific values of
these indicators [8]. From this static study of weather regimes, we carry on with a
dynamic study of transitions.

Note, [9] already investigated the temporal behaviour of local dimension and
persistence at the mature stage of seven regimes, used to define round-year
sub-seasonal variability of weather over the North-Atlantic and western Europe.
These mature stages were identified as local minima of the weather regime index
defined by [10] as the projection of the instantaneous atmospheric state on the
atmospheric state associated with each regime. Hochman et al. [9] showed that the
so-defined mature stages of weather regimes coincided with locally low values of the
dimension and inverse persistence, and that these mature stages were both preceded
and followed by higher relative values of these indicators. The present paper is
concerned with weather regime transitions, which are located between weather
regime mature stages. We therefore expect to confirm the relatively higher values of
dimension and persistence observed by [9] before and after regime mature stages.
However, our study could reveal varying behaviours as we focus on transitions from
one specific regime to another, while the study of [9] does not specify which regime
precedes or follows a given mature stage.

Our analysis also bears similarity with the one of [11], in which the temporal
behaviour of local dimension and persistence during Eastern Mediterranean cold
spells was examined. The main difference with the present study is the nature of the
event of interest: we are interested in transitions between weather regimes, while
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cold spells could be viewed as a special type of weather regime (a particular case
of Cyprus Lows which is the dominant regime responsible for precipitation in the
Eastern Mediterranean region).

The next section is the core of our paper and reviews the results of our study,
describing salient features of the time-evolution of dimension and persistence
around transitions between four winter-time North-Atlantic weather regimes. The
following section draws perspectives and proposes potential applications to real-
world meteorological issues. Appendix sections provide details to the tools and data
used in the present study.

2 European-Atlantic Weather Regime Transitions

An EOF-decomposition is performed (see section “Empirical Orthogonal Func-
tions”) of winter-time, reanalysed sea-level pressure fields described in Appendix 1.
A weather-regime analysis follows using a Gaussian Mixture Model with four
modes, corresponding to four weather regimes, in a reduced-space spanned by the
three first EOFs (see section “Gaussian Mixture Model” for a discussion). The
resulting regimes are shown in Fig. 1 in EOF space and there centroids are shown in
Fig. 2 as SLP-anomaly maps.

Figure 1 illustrates that the four regimes are mostly defined through EOF1
and EOF2, as the centroids’ EOF3-coordinates are close to zero. Two regimes
are associated with positive-negative phases of the first EOF, corresponding to a
strong north-south pressure gradient (see Fig. 2), and we label these regimes NAO+
and NAO− to match previous works in the litterature. The two other regimes are

Fig. 1 Weather regimes as cluster distributions from the fit of a GaussianMixture Model to winter-
time sea-level-pressure anomaly (SLPa) from reanalysis data. The fit is performed in reduced
space through projection of SLPa maps on three leading empirical orthogonal functions (EOF).
Colored contours show the 0.75σ (thick lines) and 1.25σ (thin lines) ellipses of each distribution
around their centroids, with σ denoting standard deviation. Grey contours show the whole GMM
distribution through marginal distributions in two-dimenisonal EOF-subspaces. Regime names are
assigned from comparison with other scientific studies found in the litterature (see Fig. 2)
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Fig. 2 Weather regimes as sea-level-pressure anomalies in (longitude, latitude) coordinates
(coastlines are shown), defined by the distributions’ centroids from a Gaussian Mixture Model
(see Fig. 1 and section “Gaussian Mixture Model”). Regime names are assigned from comparison
with other scientific studies found in the literature

associated with a pressure system covering western Europe and extending far-off
Europe’s west-coast. The regime corresponding to an anticyclonic situation over
western Europe is termed BLO+, and its opposite phase is termed BLO−, in
accordance with previous studies on such regimes. Note that the small contribution
of EOF3 to the definition of BLO+ and BLO− induces a slight west-ward shift of
the BLO− pressure system compared to the one of BLO+.

Then, we follow [5] and assign each SLP-anomaly field to a weather regime if
it lies inside the 1.25σ ellipses, shown in Fig. 1 (in cases of points belonging to
two regimes, we assign the regime with highest probability), otherwise no regime
is assigned. Next, for any regimes “A” and “B”, a transition from regime “A”
to regime “B” is defined as either the consecutive passing from “A” to “B” or
the consecutive passing from “A” to “no regime” and then to “B” (note that this
allows transitions from a regime to itself). As we are interested in the behaviour of
dynamical indicators around transitions, we discard transitions of the type “A”→“no
regime”→“B” if the “no regime” phase exceeds 24 h.
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3 Dimensionality Around Transitions

The local dimension of sea-level pressure fields is used as an indicator of the state
of the atmosphere. Details on this indicator and how is it computed can be found in
section “Local Dimensions”.

In Fig. 3, one observes statistics of dimension-versus-time profiles centered on
transitions. The number of transitions on which the statistics were computed is also
mentioned, showing preferred transitions in agreement with [5]. Several behaviours
can be observed.

Fig. 3 Typical profiles of local dimension versus time, centered at transition point, for each
possible transitions. Light (resp. dark) greys fill between the 0.05 and 0.95 (resp. 0.25 and 0.75)
quantiles, while the dark lines show the average dimension profile around transition from regime
“A” to regime “B”. In red, statistics over each regime (with no restriction to transitions) are shown.
Red dotted (resp. dashed) lines show the 0.05 and 0.95 (resp. 0.25 and 0.75) quantiles, while the
full red lines show the average dimension of regime “A” and “B”
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Smooth transition The transition BLO+ → NAO− shows a smooth transition
from the dimension statistics of regime BLO+ to the statistics of regime NAO−
over a transition period of ∼1 day, starting after the transition, with no particular
behaviour at the transition itself.

Dimension overshoot Right before, after, or during transitions NAO− →
BLO−, BLO− → BLO+, BLO+ → BLO−, and BLO+ →NAO+, the local
dimension statistics exceed what is expected from statistics computed over each
regime. Transitions BLO− → BLO+ and BLO+ → BLO− show the highest
intensity of dimension overshoot (around +1 in dimension), with the average
dimension near transition (black, full) reaching the 0.75 quantile of the regime
distributions (dashed, red). For transition BLO− → BLO+, the overshoot occurs
∼1 day after the transition, while for BLO+ → BLO− it occurs 1 day before.
In both cases, transition-statistics (black, grey) are very similar to the BLO−
regime-statistics (red), while the overshoot occurs in the BLO+ phase, and is
preceded or followed by an undershoot.

Time-symmetry From the previous description, it appears that the dimension
statistics around transition BLO− →BLO+ are almost symmetric to
BLO+ →BLO−: the latter can be recovered from taking the former in reverse-
time. Similar types of symmetry can be observed in transitions BLO+ ↔NAO+,
BLO− ↔NAO+, and BLO+ ↔NAO−, although with less confidence.

Time-asymmetry On the other hand, the transition NAO− →BLO− shows a
slight overshoot of dimension statistics at the transition point while the transition
BLO− →NAO− shows an overshoot of dimension statistics away from the
transition point (∼2 days before and after).

Auto-transitions are harder to interpret than normal transitions. They correspond
to trajectories in phase-space where the system goes from a well-defined regime
to a mixed, undefined regime, and then comes back to the initial well-defined
regime. It is likely that these auto-transitions actually mix different types of
transient behaviours, with different properties. Auto-transition NAO+ →NAO+
seems to show an overshoot of dimension near the transition point, but the number
of transitions (57) is small and therefore only low confidence is attributed to
these statistics. Other auto-transition statistics are rather smooth and close to the
corresponding regime-statistics, which might be due to the fact that auto-transitions
mix different types of transient behaviours.

Figure 5b shows dimension statistics for all transitions, excluding auto-
transitions. It shows a slight dimension overshoot at the transition point ±1 day.
The fact that this overshoot is so small is an indicator of the variety of behaviours
near transition, depending on which regimes are involved.
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4 Persistence Around Transitions

We now use the inverse persistence θ (also called extremal index) of sea-level
pressure fields as an indicator of the state of the atmosphere. Details on this indicator
and how is it computed can be found in section “Inverse Persistence θ”.

In Fig. 4, we show the result of the same procedure followed in the previous
section, but replacing the local dimension by the inverse persistence. As these two
variables are correlated, the behaviour of inverse persistence resembles the one
of dimension around much of the observed transitions. However, the difference
between transition-statistics and regime-statistics appear to be more significant for
θ than for the dimension, with some special behaviours described below.

Fig. 4 Same as Fig. 3, but for the inverse persistence θ (also called extremal index). High values
indicate a rapidly changing dynamical system
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Transitions to/from BLO+ The BLO+ regime-statistics of θ are much higher
than the ones of other regimes, with most values concentrated between 0.17 and
0.19, and almost all values above 0.16. We therefore see high variations of θ

around transitions from or to BLO+. However, when one is in the regime BLO+,
either after or before a transition, we do not observe an overshoot as with the
dimension. Rather, we see that the transition-statistics match the BLO+ statistics
very near the transition point, while they are much lower 2–3 days away from the
transition. This means that, in the regime BLO+, the inverse persistence is much
lower either 2–3 days before or 2–3 days after any transition. Also, the values
of θ in regimes NAO± and BLO−, up to at least three days around a transition
from or to BLO+, are much higher than expected from intra-regime statistics.
We can interpret these fact using the results of [9] who observed a strong
decrease of θ when weather regimes are well-installed. Therefore, what we see in
Figs. 3d, h, l, m–p and 4d, h, l, m–p indicates that the systems rapidly exits/enters
regime BLO+, while it needs more time to exit/enter neighbouring regimes when
transitioning from or to BLO+.

BLO–↔NAO+ Although the NAO+ and BLO− intra-regime statistics of θ are
significantly different, BLO− ↔NAO+ transition-statistics of θ are relatively
smooth in time, showing very few variations, and closer to the NAO+ intra-
regime statistics. Again, this can be interpreted as a slow transition.

Low-quantiles overshoot From Fig. 5, one can see that, while all quantiles
of dimension seem to be affected equally around transitions (Fig. 5b), it is
mostly the low quantiles of inverse persistence which are affected by transitions
(Fig. 5a). That is, values of θ are not expected to be especially large near
transitions (compared to average statistics), but small values of θ are expected
to be extremely unlikely around transitions.

Fig. 5 In grey: statistics (0.05, 0.25, 0.75 and 0.95 quantiles, as well as mean) of inverse
persistence (a) and local dimension (b) over all transitions, discarding auto-transitions (from
regime “A” to “A”). In red: statistics (0.05, 0.25, 0.75 and 0.95 quantiles, as well as mean) over
all values from the dataset (winter-time from 1956 to 2015), without restriction to transitions
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Already mentioned earlier, we discard transitions “A→B” if the “no regime”
phase between regimes “A” and “B” exceeds 24 h. Raising the maximum length
of this “no regime” phase allows to find more transitions, and results in a slight
smoothing of the profiles of Figs. 3 and 5, but the observed tendencies remain.
Reducing the maximum length of the “no regime” phase between regimes “A” and
“B” results in slightly sharper, yet noisier profiles (not shown).

5 Conclusion and Perspectives

The analysis of reanalysed sea-level pressure maps covering a large part of
the North-Atlantic ocean and western Europe, demonstrates that local dynamical
indicators of dimension and persistence display great sensitivity to transitions
between weather regimes. In particular, we observe higher values of dimension and
lower values of persistence near transitions, which is in agreement both with the
early definition of weather regimes (as quasi-stationary, low-order recurring states)
and with recent studies of weather regimes through these same two dynamical
indicators. The study reveals non-homogeneous behaviour of these indicators near
transitions, meaning that different transition show different signatures in terms
of time-variation of dimension and persistence. Furthermore, we observe that the
fingerprint of transitions is more pronounced for persistence than for dimension,
and that it spreads over a larger duration (more than ±3 days for persistence but
around ±1.5 day for dimension).

This study, combined with recent studies on weather regimes and dynamical
indicators, confirm the relevance of these indicators for the understanding of weather
regimes, and even reveal the potential for these indicators to be used in the definition
of weather regimes. Present findings also indicate that each transition could be
identified through the time-behaviour of dimension and persistence. This has great
implications and shall motivate further investigations on how to use these indicators
for the purpose of detecting regime transitions. However, for each transition we
still observe a great variability of time-profiles of dimension and persistence. This
suggests to use a variety of related indicators, and not only these two. Recent studies
have used these indicators on separated scales, allowing to explore variations in
dimensionality and persistence of small-scale variables [23]. Our current analyses
also reveal a signature of large-scale weather regime transitions in the time-variation
of small-scale dimension and persistence, however with less intensity than for large-
scale dynamical indicators (not shown). We interpret this as a hint that small-scale
organization may be necessary to large-scale transitions. Other local indicators also
based on analogues such as the ones used by [24] and [25] shall also be considered
in an attempt to predict transitions.



232 P. Platzer et al.

Acknowledgments We thank Pierre Ailliot for fruitful discussions on Gaussian Mixture Models.
This work was financially supported by the ERC project 856408-STUOD. Support for the
Twentieth Century Reanalysis Project version 3 dataset is provided by the U.S. Department of
Energy, Office of Science Biological and Environmental Research (BER), by the National Oceanic
and Atmospheric Administration Climate Program Office, and by the NOAA Physical Sciences
Laboratory. We thank the anonymous reviewer for helpful comments and suggestions.

Appendix 1: Data Description: Twentieth Century Reanalysis

We use data from the 3rd version of the twentieth Century Reanalysis, which
combines surface observations of synoptic pressure and NOAA’s Global Forecast
System, and prescribes sea surface temperature and sea ice distribution [12].

From this reanalysis we extract the ensemble-mean, sea-Level pressure maps
from year 1956 to 2015, at 3h-intervals. We do not use preceding years in order to
avoid inconsistency between past, observation-scarce data, and more recent data,
better constrained by observations. We could also have selected only data from
the satellite era starting in 1979, but this would have diminished the statistical
significance of our work.

We focus on a 41×41 grid at 1◦-resolution covering longitudes 30W≤LON≤10E
and latitudes 30N≤LAT≤70N, including western Europe and the eastern part of the
North-Atlantic Ocean (see Fig. 2). We use only extended-winter data, from October
to March, as is typical in North-Atlantic weather-regime studies (see e.g., [9, 6, 8]).

Appendix 2: Statistical Descriptors

Empirical Orthogonal Functions

To study winter-time SLP fields, we use the empirical orthogonal function decom-
position, also called principal component analysis [13]. It allows to decompose
any spatial field (snapshot) of SLP-anomaly (SLPa) onto orthogonal maps (EOFs),
ordered by their respective contribution to the total variability in time of SLPa fields.
To compute SLPa, we remove a moving seasonal-average using data from±10 years
and ±5 calendar-days, with a Gaussian kernel to give more weight to neighbouring
years and calendar days.

In our case, EOFs n◦1–7 contribute respectively to 41%, 24%, 14%, 5.5%, 4.8%,
2.2% and 1.5% of the total signal variance. No that, for our analyses of weather
regimes, we use only EOFs n◦1–3, which contribute collectively to 79% of the total
variance.
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Gaussian Mixture Model

A Gaussian Mixture Model (GMM) assumes that the random variable it describes is
the result of pooling from a finite number of sub-populations (in our case, regimes)
whose distributions are Gaussian [14]. Expectation-maximization (EM) allows to
find optimal parameters (averages and covariances) of the Gaussian distributions,
once the number of regimes has been fixed.

We follow [5], and make a GMM EM-fit using a finite number of EOFs. As
we allow the covariances to have any possible shape, the number of parameters
to be optimized depends exponentially on the number of EOFs kept, we therefore
have not tried using more than 5 EOFs. Then, once the number of EOFs is fixed,
a trade-off between the number of parameters (dictated by the number of regimes)
and the model adequacy to the data can be found by computing either the Bayesian
Information Criterion or the average log-likelihood over an independent set [16].
However, as in the study by [5], we find a very low sensitivity of these indicators to
the number of regimes chosen (not shown). We also compute the Silhouette score
proposed by [15] to estimate the degree of overlapping between regimes, and find
that using more EOFs always leads to more overlapping, and so does using more
regimes but to a lesser extent (not shown).

In the end, we make the choice of keeping 3 EOFs and 4 regimes. The choice of 3
EOFs is motivated by the fact that each of the three first EOFs account for more than
10% of the total variance, while EOFs n◦4 and further only represent up to ∼5%.
This has the consequence that, even when we retain more than 3 EOFs, the regime
centroids found through GMM EM-fits are mostly defined by their projection on
the 3 first EOFs, as projections on EOFs 4 and 5 are always closer to 0 then one
of the other projections (not shown). The choice of 4 regimes is motivated by the
adequacy with other studies [6] and operational weather-forecasting services such
as ECMWFwho divide into 4 quadrants the reduced-space formed by the projection
of geopotential height fields onto their corresponding first-2 EOFs.

Appendix 3: Dynamical Indicators

Local Dimensions

We use the same estimator of local dimension as [8], borrowing the python code
from the Chaotic Dynamical Systems Kit (https://github.com/yrobink/CDSK). This
estimator is based on a definition of local dimension at any point z in state-space
through the extreme-value distribution of the observable gz : x → gz(x) =
− log dist(z, x) for any other state-space vector x (where “dist” is any distance in
the mathematical sense). Large values of this observable are found for points x

close to z: these points are called “analogues” of z in the atmospheric- and ocean-
sciences community. Then, the probability that g(x) exceeds a given threshold ρ is
exponential (see, for instance, [17]):


 16894 49804
a 16894 49804 a
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P (gz(x) > ρ) ∝ exp(−ρ d(z)) , (A.1)

where d(z) is the local-dimension that we estimate here. The geometric interpre-
tation of this dimension is that in a space of dimension d, the typical number of
points inside a sphere of radius r scales as rd . Although such an interpretation of
dimension has been connected to the distances to analogues for a long time (see
for instance [18] and the famous Grassberger-Proccacia algorithm [19]), only recent
works have used extreme-value theory to provide instantaneous, local estimators
of dimension [20]. These recent tools are particularly suited for the study of local
behaviours, while previous works focused on average, global indicators.

Recently, distances between analogues x and their target z have been shown
to follow distributions whose parameters are given by the length of the available
dataset, the analogue rank, and the local dimension as estimated in this paper [21].
This indicator is thus both relevant from a dynamical systems point of view and for
practical use of data-based methods.

Inverse Persistence θ

However, Eq. A.1 is not valid when the system passes close to a fixed point, as this
causes trajectories to slow down. In this case, another parameter called the extremal
index, or inverse persistence, comes into play:

P (gz(x) > ρ) ∝ exp(−ρ θ(z)d(z)) , (A.2)

with 0 < θ(z) ≤ 1. Low values of θ correspond to highly persistent areas of
state-space. It can be interpreted as the inverse mean residence time within a sphere
centered on z (if divided by the time-increment between two consecutive points in
the dataset, which is 3 h in our case). We estimate this parameter with the Süveges
likelihood estimator [22]. It is based on counting consecutive points inside a ball
centered on z (i.e., analogues of the same point z that are also consecutive points in
the time-ordered dataset).
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Open Access This chapter is licensed under the terms of the Creative Commons Attri-
bution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which per-
mits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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