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Abstract: Complex systems represented by multivariate time series are ubiquitous in many applications, especially in
industry. Understanding a complex system, its states and their evolution over time is a challenging task. This
is due to the permanent change of contextual events internal and external to the system. We are interested in
representing the evolution of a complex system in an intelligible and explainable way based on knowledge
extraction. We propose XR-CSB (eXplainable Representation of Complex System Behavior) based on three
steps: (i) a time series vertical clustering to detect system states, (ii) an explainable visual representation using
unfolded finite-state automata and (iii) an explainable pre-modeling based on an enrichment via exploratory
metrics. Four representations adapted to the expertise level of domain experts for acceptability issues are
proposed. Experiments show that XR-CSB is scalable. Qualitative evaluation by experts of different expertise
levels shows that XR-CSB meets their expectations in terms of explainability, intelligibility and acceptability.

1 INTRODUCTION

A complex system is described by a set of a
large number of entities, i.e., variables, interacting
over time, which integration achieves a common
goal (Harel, 1987). It is thus used in many sectors
such as energy, medicine, urban traffic, etc. (Carlos-
Sandberg and Clack, 2021). A complex system is
characterized by its structure, i.e., the nature of its
variables, their interactions, or by their non-trivial
collective behaviors (multistationarity, chaos, bifurca-
tions, self-organization, emergence, feedback loops,
etc.) (Guespin-Michel, 2016). Although there is no
consensus on its definition, a complex system can
be represented by multivariate time series, where
each series represents a variable of the system (Has-
sanibesheli et al., 2020). Very often, in complex sys-
tems we can describe the values of time series by re-
ferring to states, which correspond to intervals of val-
ues. Thus, to understand the system is to understand
the semantics and the interaction of these states.

Explaining the behavior of a complex system is
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a challenging task. Actually, domain experts can
understand a complex system thought the acquisi-
tion of “implicit knowledge,” i.e., working habits, ex-
pertise, their interaction with the system and their
growing experience, that is still difficult to verbalize.
The expert’s implicit knowledge is important for the
cognitive process of inference of non-conscious op-
erating rules. However, extracting and formalizing
such knowledge is a complex task, requiring a deep
analysis of the system and thorough interaction with
it (Chraibi Kaadoud et al., 2022).

Data visualization techniques have been proposed
in order to monitor the behavior of a complex sys-
tem (Harel, 1987; Theissler, 2013; Pham et al., 2019),
such as parallel coordinates techniques, scatter plot
matrices, etc. However, for an even more complex
system, in which the states, the internal (i.e., techni-
cians’ interventions) and external context (i.e., regu-
lation), are themselves changing, it is difficult to de-
termine the relevant characteristics that contribute to
a change of state. Existing techniques do not allow to
visualize these changes in an intelligible way to a hu-
man expert. We thus address the following challenge:
how to understand the states of the complex system’s
multivariate time series? How to detect and under-
stand the evolution of the system’s states over time?
How to represent this evolution in an intelligible and
explainable way?



Explainability and intelligibility in AI are an
important aspect in crafting acceptable AI sys-
tems (Weld and Bansal, 2019), and have been ac-
knowledged as much more important than sheer per-
formance in AI systems (Gunning, 2019; Barredo Ar-
rieta et al., 2020). Several reasons can be given: facil-
itating user control and acceptance, improving human
insight, as well as legal issues1. One of the challenges
of designing intelligible and eXplainable AI (XAI) is
communicating a complex computational process to a
human which requires interdisciplinary skills (Lenca,
2002; Le Saux et al., 2002).

Complex systems in form of multivariate time se-
ries can be represented as a finite-state automaton
(FSA), which is considered as a low-dimensional rep-
resentation i.e., that results from a dimensional data
reduction process that contains as much information
as possible as the original data. Recently, automata-
based approaches have been proposed that involve
discretization of the time series (Zhang et al., 2017;
Soto et al., 2021). These techniques reduce the al-
gorithmic complexity and offer a high level of ex-
plainability. We thus draw inspiration from these ap-
proaches to propose a representation that explains the
system’s behavior, commonly called an explainable
representation. Such a representation captures the
states of all or part of a complex system (from now
on, by “system” we will mean “complex system”).

Our main hypotheses are the following: (i) The
values of the time series at a timestamp t represent
the state of the system at t. Their analysis allows to
detect states, and in particular “rare” states. (ii) The
states of the system can be characterized by differ-
ent exploratory metrics related to the evolution of the
time series. (iii) The states of the system, as well as
their exploratory metrics can be considered as being
parts of a FSA, for which there are efficient visual rep-
resentations. (iv) The FSA is a synthetic, intelligible
and comprehensible representation of the behavior of
a system over time and therefore a decision making
aid. (v) The level of expertise in an application do-
main has an impact on the acceptability and the per-
ception of explainable representations.

Basing on these hypotheses, we propose an EX-
plainable Representation of Complex System Behav-
ior (XR-CSB) method using FSA for multivariate
times series, with three main originalities:
• Knowledge extraction: XR-CSB uses a clustering
based approach that we call vertical clustering of time
series in order to detect states of the system. This
approach is original as it is independent of the size

1The European Union’s General Data Protection Regula-
tion (GDPR) legislation acknowledges the citizens’ right to
explanation—other nations may follow this initiative.

of time series and can be applied to uni- or to multi-
variate series, contrary to traditional clustering. This
leads to complexity control.
• Explainable knowledge representation: XR-CSB
uses FSA to represent system’s behavior. Automata
provide a visual explanation likely to be intelligible
for human experts. The acceptability of this represen-
tation is evaluated via qualitative experiments.
• Pre-modeling explainability: XR-CSB uses ex-
ploratory metrics to enrich automata like in pre-
modeling explainability domain-specific explainable
feature-engineering (Moshkovitz et al., 2020).

The paper is organized as follows. Section 2
presents related works about XAI and representation
of complex systems. Related definitions are presented
in Section 3 and the proposed method in Section 4.
Experimental results are presented in Section 5, and a
conclusion is given in Section 6.

2 RELATED WORKS

We here present some state-of-the-art works related
to the understanding and representation of a complex
system. Having labeled data is often very costly and
is simply not possible for several domains. This is the
case of our application. Thus, non-supervised meth-
ods must be applied (Braud et al., 2021).
• Clustering for multivariate time series: Clus-
tering for multivariate time series have already been
proposed in order to analyze the behavior of time
series (Desmarais and Lemieux, 2013; Aghabozorgi
et al., 2015; Zhang et al., 2017). In such approaches,
time series are clustered, i.e., entire series are grouped
in clusters, according to the similarity of their same-
position values. These approaches require that the
whole series are available and have the same size for
proper functioning of the clustering and reliability of
results. They allow the detection of common behav-
ior between time series in order to automatically la-
bel the series thereafter, to detect frequent patterns,
etc. However, they do not allow representation of the
behavior across time series, i.e., the behavior charac-
terized by values from different time series at a given
time. Such approaches are thus not suitable for our
objective as they do not allow a discretization or a
simplification of the entire system.
• EXplainable Artificial Intelligence (XAI): XAI
has become a very challenging domain2 facing the
high development of “black-box models” that are
very efficient in modeling systems (Guidotti et al.,

2Recall that models with explanation and transparency goals
have been proposed a long time ago (Shortliffe, 1974). However,
the term XAI has been introduced only recently.



2019). XAI makes models more intelligible, trans-
parent, and accessible or directly designs explainable
ones (Guidotti et al., 2019; Barredo Arrieta et al.,
2020). XAI can provide an explanation of the internal
mechanisms and the reasons behind the behavior of a
system. An explanation can be considered as an infor-
mation that is self-sufficient and addressed to the tar-
get audience considering its knowledge and its expec-
tations of the system’s behavior, and the context (van
Fraassen, 1988). An explanation is thus an interface
between the complex system to explain and the tar-
get audience, which are the domain experts in our
case (Gunning, 2019; Chraibi Kaadoud et al., 2021).
Note that a clear distinction has been made between
models that are transparent by design and those that
can be explained by means of external methods, i.e.,
post-hoc methods (Bennetot et al., 2021).

Recently, it has been proved that visual represen-
tations highly impact human trust. Moreover, vi-
sual representations combined with human knowl-
edge yield much better comprehension of a system
and thus lead to much better decisions (Yang et al.,
2020). Such studies confirm our choice of visual rep-
resentation of a system. However, most of recent
visualization techniques deal with black box visual-
ization through sensitivity analysis (Cortez and Em-
brechts, 2013; Weitz et al., 2021), and ignores aspects
related to the multidimensionality of data. It is impor-
tant to note that our objective is to exploit visualiza-
tion techniques as a way to represent the results of a
transparent model (clustering) on a system.

Our work is motivated by state-of-the-art
works (Higgs and Abbas, 2014; Zhang et al., 2017)
in which time series are segmented by means of
change point detection: simple clustering is applied
on explanatory variables and time windows. The
main disadvantage of such an approach is that it loses
sight of dynamic and time information and misses the
interaction and dependency between time series.
• Representation of multivariate time series using
automata: Using FSA for representing, monitoring,
estimating or even predicting the states of systems is
of great importance for interaction with the system
and for decision taking. Research works on FSA gen-
eration based on clustering have been proposed (Des-
marais and Lemieux, 2013; Higgs and Abbas, 2014;
Zhang et al., 2017). In such works, exploratory vari-
ables are extracted from each time series—they con-
stitute the states of the system and the succession of
these variables represents a sequence of states, a kind
of discretization of each time series. A clustering is
then performed to detect similar patterns (successions
of states) between the time series. This allows to ex-
tract a common behavior shared between the time se-

ries, but is not applicable in case of a very small num-
ber of series and, in any case, does not allow extrac-
tion of the global behavior of the system because it ig-
nores the interaction and the dependence (or not) be-
tween the time series. It is important to note that such
works are not adapted to complex systems as they do
not provide an intelligible simplification of the global
behavior of the system.
• Clustering and automata extraction during dy-
namic knowledge construction of neural networks:
We use the automata generation algorithm proposed
by (Chraibi Kaadoud et al., 2022) and adapted
from (Omlin and Giles, 1996). Note that these algo-
rithms have been used in the interpretability field for
the study of recurrent neural network latent represen-
tations that are built in the multidimensional space of
the hidden layer. See (Chraibi Kaadoud et al., 2021)
for a set of definitions about the concepts of latent
representations and latent layers.

3 DEFINITIONS

This section is dedicated to the definition of sev-
eral concepts related to complex systems, multivari-
ate time series and automata. Several are inspired
from (Pham et al., 2019; Soto et al., 2021).

Definition 3.1. We denote a complex system as a set
of variables represented by multivariate time series.
A state, at timestamp t, is represented by the values at
t of the system’s variables (i.e., time series). A state
can last in time (making a cycle) and thus can be ob-
served within a time period, i.e., a window. We repre-
sent the evolution of states over time via finite-state
automata (FSA), the transitions of which represent
the evolution of the system. All states are final, since
we consider a continuous flow of states rather than
given finite-length words of a formal language. These
concepts are defined below illustrated in Figure 1.

Definition 3.2. A multivariate time series is an or-
dered sequence of m vectors: X = [X1 . . . ,Xm] ∈
Rd×m. For a timestamp t, Xt = [xt,1, . . . .xt,d ] is a d-
dimensional vector containing the values recorded at
t: t = 1, . . . , .m, i.e., the values of all time series at t.
The dimension d of the multivariate time series repre-
sents the number of series. A vector of d dimensions
recorded at t0 is noted as Xt0,d .

Definition 3.3. Given a multivariate time series X =
[X1, . . . ,Xm], a contiguous segment of X is called a
(sliding3) window and denoted by W . The length w
of W is less than or equal to the length of X : w ≤ |m|.

3A sliding window is the most common type of windows.



Figure 1: A general scheme of our model XR-CSB: Multivariate time series, clustering and automata.

Definition 3.4. A finite-state automaton (FSA) A is a
tuple A = (S,T ) where S is a finite set of states and
T is a transition relation (a metric or a reason of this
transition). An automaton is represented as a directed
graph with states as nodes and transitions as edges.

Definition 3.5. We denote by S(tstart,tend) the state of
the automaton A of the system represented by the mul-
tivariate time series X . A state starts at timestamp tstart
and ends at tend (tstart and tend included).

Definition 3.6. In an automaton A, a path p of length
k is a sequence of states S1, ...,Sk such that (Si,Si+1)∈
T (the transition relation) for each 1≤ i< k. Note that
a path p is extracted from a window W . Note also
that no relation can be observed between k and w, e.g.
for a window of length w = 50, an automaton path of
length k = 2 can be obtained.

Definition 3.7. Explainable and intelligible repre-
sentation: Given a representation as the model out-
put. We say that this representation is intelligible ac-
cording to the degree that a human expert can predict
how a change to a feature, (e.g., an increase of the
value of a time series) will change the model’s output
(i.e., the system state). Note that if one can simu-
late the model, i.e., predicting its output such as the
next system’s state according to the general tendency
of time series, then one can predict the effect of a
change, but not vice versa. In our work, the degree
of explainability and intelligibility will be measured
via a qualitative questionnaire for human experts and
also via explicitly reported events.

4 XR-CSB METHOD

We present now the details of XR-CSB. Recall that
our work focuses on (i) studying the behavioral

changes of a system represented by multivariate time
series, (ii) detecting and understanding the evolution
of its states to other states, and (iii) representing its
evolution in an intelligible and explainable way.

To achieve these objectives, we propose XR-CSB,
a 3-step model that (i) performs a vertical cluster-
ing of multivariate time series related to the system,
(ii) generates an automaton representing the behavior
of this system over time, (iii) enriches the automa-
ton with explanatory metrics and semantic informa-
tion for explainability purposes. A general scheme is
presented in Figure 1. Next, we detail XR-CSB steps.

4.1 Step 1: Vertical clustering

In order to perform what we call a vertical clustering
for time series, we use the k-means algorithm (Zeng
et al., 1993) but not in a traditional way. Our entry
point is the multivariate time series X represented by
a set of vectors X = [X1, . . . ,Xm] and a fixed tempo-
ral window W of length w (measured in minutes in
our application). We apply k-means in a way that it
partitions the first w vectors into k clusters. For ex-
ample, in Figure 1, when w = 3, we cluster the first
three vectors. Here, k-means minimizes the distance
between samples within each partition using the eu-
clidean distance. We thus obtain k clusters that group
vectors according to their values and independently of
the associated timestamp. The application of such a
vertical clustering allows to extract clusters that rep-
resent system’s states (see definition 3.5). These clus-
ters emerge from the values of the different time series
grouped together. Also, by conception, this vertical
clustering groups correlated time series in the same
cluster, regardless of the distance measure.

By this step, each vector Xt of the window W
belongs to a cluster Ci which represents a state Si



of the system. Our method can automatically fix
the optimal number of cluster k using the silhouette
score (Rousseeuw, 1987). However, for explainabil-
ity and acceptability issues, k is finally determined in
close coordination with domain experts.

Let us go back to the clustering and chosen dis-
tance. Clustering multivariate time series is a chal-
lenging task and is intrinsically associated to the no-
tion of distance. However, in order to define a dis-
tance between arbitrary multivariate time series, no
obvious or standard way exists in the state-of-the-
art (Ghassempour et al., 2014). For multivariate time
series containing only continuous variables, some
well-defined distances are usually employed, such as
Euclidean distance (Yang and Shahabi, 2004). Eu-
clidean distance has shown a high performance for
a high number of variables with complex correlation
structure (Giorgino, 2009). For these reasons, after
normalizing data (to have the same scale), we use Eu-
clidean distance for vertical clustering using k-means.

4.2 Step 2: Explainable representation
via automata

Automata generation process (figure 2.(a) ) : Given
the clusters extracted in step 1, we generate an au-
tomaton that represents the states of the system.

As each vector Xt belongs now to a cluster Ci,
we start generating the automaton by verifying, for
each vector Xt , whether its associated cluster is al-
ready represented as a state in the automaton. If it
is not the case, a new node is added to the automaton.
Each state is numbered with the corresponding clus-
ter’s number. A direct edge is created with a weight
of 1 between the previous state and this new state.
In case the state already exists in the automaton, the
weight of the edge is incremented by 1, otherwise a
new edge with a weight of 1 is created. In the case
where two consecutive vectors Xt and Xt+1 belong to
the same cluster, a loop (a cycle) is added to the state
representing the cluster. This process results in the
generation of an automaton with weighted transitions
explaining the configuration of the clusters (states).
Figure 2.(a) represents an example of the resulting au-
tomaton. The weight of the transitions is indicated by
a color, it represents how long the system stays in a
state: the darker it is, the more important is the weight
of the transition. This automaton generation process
is inspired from (Chraibi Kaadoud et al., 2022).

Path generation process: unfolded automaton (fig-
ures 2.(b, d)): As represented in figures 2.(a), such
an automaton is not always intelligible nor explain-
able for domain experts. In order to make this repre-
sentation more explainable, we generate an unfolded

automaton, which is a temporal path that moves along
states of the system (i.e. a word in the formal lan-
guage of the system’s behavior). We propose two vi-
sual representations of such a path and of the evolu-
tion of the states over time (Figures 2.(b) and (d)):
Figure 2.(b) represents the duration of each state via
numerical information (time in minutes and date UTC
and UTC+2 explained). To keep track of similar states
at different timestamps, the state number is explicitly
displayed inside each state symbol. Figure 2.(d) rep-
resents each state by a rectangle, and the state’s dura-
tion is proportional to the rectangle’s size. The longer
the system remains in a state, the larger is the associ-
ated rectangle. Same states have the same color code.

4.3 Step 3: Pre-modeling explainability
process: explanatory metrics

In order to enrich the unfolded automaton with more
intelligible and useful information, a pre-modeling
explainability process is applied. To do so, each state
S(tstart,tend)i is characterized by extracting the values of
three metrics out of the set of vectors associated to
window W ∈ [tstart, tend]:
• Average speed Sp that represents the mean of the
speeds of change of values between time t and t −1.
• Average velocity Vl that represents the mean of the
velocities calculated for each speed. This metric also
shows the dynamics of the evolution of the values for
the considered state Si.
• Average acceleration Ac that represents the rapid-
ity of change of speed Sp of the states’ values in evo-
lution on a given window W .

Note that if a state Si occurs twice in a window W ,
then the explanatory metrics will be computed twice.
Figure 2.(c) represents an unfolded automaton with
the various metrics.

5 EXPERIMENTS

We now present experiments performed in order to
evaluate our XR-CSB. We first describe the dataset
and then evaluate the scalability of XR-CSB and the
explainability power of the representations. The re-
sults are discussed at the end of the section 4.

4Experiments have been run on a Max OSX BigSur v 12.2.1,
Processor Apple M1 8 cores, 16 GB memory. Python scientific
stack is used, namely Numpy, Scipy, Matplotlib, Networkx, Scikit-
learn and Pandas.



Figure 2: XR-CSB Step 3: The four representations evaluated for the qualitative study obtained from the analysis of a single
sensor with monotonic behavior (i.e., no significant variation in values) that has been clustered with k = 2. (a) an automaton:
the −1 node designates the beginning of the analysis and is not part of the data group. Transitions are given a color that
indicates their weight: the darker the color, the higher the weight of the transition; (b) an unfolded automaton with a visual
representation of time for each state through numerical values; (c) an unfolded automaton with explanatory metrics; (d) an
unfolded automaton with a visual representation of time for each state.

5.1 Description of the industrial dataset

Our dataset is related to energy generation: a thermal
power station that burns coal and gas to produce steam
in order to generate electricity. This power station has
five boilers and other equipment. Each equipment is
monitored through a multitude of sensors. Our dataset
contains 377 times series representing the recordings
of 377 sensors every 10 minutes during three years.
In the current work we present the results on 92 time
series of a specific boiler B. For each window W ,
we consider the related PDF reports (written every 8
hours by technicians that maintain the power station )
for post-hoc validation. For confidentiality issues, the
dataset cannot be published online. Practically, at the
pre-processing level, given a time window W and a
number of times series to analyze, the considered data
can be represented as a matrix of dimension (m× d)
where m ∈ {1, . . . ,w} and dimension d is the num-
ber of time series (see Figure 1). Data processing can
be incremental and dynamic: in real-time processing,
for each new timestamp, a new column is added to the
matrix with the values of the corresponding variables,
which is a real advantage. As time series represent
sensors with different units, all values are normalized
(through mean and standard deviation). When d > 1,
an average is calculated from the normalized values.

5.2 Scalability evaluation

Figure 3 represents the execution time w.r.t. the num-
ber of clusters k, for a fixed window. We study 92
time series over w = 144 timestamps (i.e. 24 hours).
k varies between 3 and 100. Figure 4 represents the
execution time w.r.t. the window length w, for k = 7
clusters. w is varied in such a way that we can evalu-
ate the necessary computation time over days, months
and years. For both analyses, the execution time in-
creases nearly linearly and the algorithm presents a
good scalability. For k < 40, the execution time is
reasonable: 1.25 seconds. For k = 100, the execu-
tion time is of 1.997 seconds. To analyze more than
2 years of data, our method requires about 20 min-
utes. This time remains relatively reasonable given
the industrial context and the fact that the technicians
themselves generate reports every 8 hours.

5.3 Qualitative evaluation of
explainability

The results of XR-CSB are intended to domain ex-
perts of our industrial partners. Thus, a subjective
analysis was done via a questionnaire on the represen-
tations quality and the explainability of the thermal



Figure 3: Execution time w.r.t. the number of clusters k:
Analysis of 92 sensors over 24 hours, i.e., 144 records, for
k in {3, . . . ,100}.

Figure 4: Execution time w.r.t the window length w: Anal-
ysis of 92 sensors, for k = 7 and hours h in {8,16,24,48,
96,192,384,768,1.536,3.072,6.144,12.288,24.576} .

power station’s behavior. The questionnaire contains
four parts. The first three ones deal with case studies
and the last one deals with the domain expert’s profile.

5.3.1 Use cases

We evaluate several representations aiming at explain-
ing the system’s behavior over time according to dif-
ferent use cases: (i) Use case (A.1): analysis of
a sensor C1 whose physical unit is “tons per hour”
(t/h) when it presents a monotonous behavior i.e. flat
curve, (ii) Use case (A.2): when C1 presents a dy-
namic behavior as the curve varies; (iii) Use case (B):
analysis of 92 sensors of boiler B. For each use case,
4 representations, presented in Figure 2, are proposed.

5.3.2 Profile of sampled respondents

The employees of two IT companies answered the
questionnaire: Company 1 works with data from the
thermal power station and therefore has a precise
knowledge about the industrial context. Company 2
works on the development of websites and interfaces
of tools dedicated to data management.
Concerning Company 1, among the 6 respondents: 4
data scientists, 1 machine learning engineer and 1 op-
erations manager. All of them have been working on

complex systems: 3 for less than a year, 1 for 1 to 2
years and 2 for more than 5 years. They all use visual
representations in their daily work to explain or trans-
mit information. Regarding Company 2, among the 7
respondents: 4 developers/engineers, 1 project man-
ager, 1 product manager, 1 R&D engineer. None of
them have experience in complex systems, few have
experience in AI tools, but 6 of them have more than
1 year experience in interface design and user expe-
rience issues (human-machine interaction and human
factors): 2 have an experience between 1 and 2 years,
2 have an experience between 2 and 5 years and two
have an experience of more than 5 years. Finally, con-
cerning the use of visual representations in their daily
work: 4 use them only when necessary, 2 use them
regularly and only 1 daily.
• Trust and explanations in AI system behavior:
For Company 1: 4 respondents prefer multi-modal ex-
planations (combining several forms), 1 prefers visual
representations and 1 answered that only results mat-
ter (especially in supervised machine learning). Re-
garding Company 2: 6 prefer multi-modal explana-
tions and only 1 prefers visual explanations. Let us
underline two important points: (i) on both companies
no respondent prefers uni-modal explanations (textual
or tabular), and (ii) all have trust in AI systems results
only according issues at stake.
• Professional experience related to the behavior of
complex systems: Regarding the problem of repre-
senting the behavior of complex systems over time, at
the level of Company 1, 2 encounter it “occasionally”
(50% of their projects), 3 encounter it “sometimes”
(60% of their projects) and 1 encounters this prob-
lem “regularly” (70% of his/her projects). In Com-
pany 2, 1 encountered this problem “occasionally”, 1
“rarely”, and 5 never worked on this type of problem.

5.3.3 Evaluation of acceptability and
explainability power of representations

In this section, we evaluate the acceptability of the
representations for each of the 3 use cases for both
companies. Figure 5 and 6 present respectively the
results of the evaluation by the industrial experts of
Company 1 and those of Company 2.

Globally, for Company 1, representations (b), (c)
and (d) are considered as “Little representative” or
“Totally representative”. Representation (a) did not
convince the experts. Of the 3 use cases, representa-
tion (d) proved to be the most interesting for the ex-
perts. Finally, the free comments of the experts show
a recommendation to merge the representations (b)
and (d) described as intuitive and interesting as the
states are identifiable as well as the temporal distribu-
tions.



Figure 5: Company 1: Explainability evaluation of representations a, b, c, d for each use case. Values designate number of
respondents

Figure 6: Company 2: Explainability evaluation of representation a, b, c, d for each use case. Values designate number of
respondents

For Company 2, representations (c) and (d) were posi-
tively perceived regardless of the use case considered.
Representation (a) evolved from a globally positive
perception (“clear representation” according to one
respondent) to a more negative perception as the com-
plexity of the use cases and the number of nodes in
the automaton increased. The perception of the rep-
resentation (b) is mostly neutral in the 3 use cases.
Finally, the comments added by the experts show that
the representation (c) is to be preferred as it is more
informative due to the added explainable metrics. It
was designated as the most useful on the three case
studies to understand the behavior of a system during
a time range. Finally, representation (d) is described
as the most explicit in terms of time representation.

5.3.4 Acceptability of representations: the role
of exploratory metrics

According to Figure 7, regardless of the case studies
and the respondents’ Company, the unfolded repre-
sentations (b) and (c) received a good evaluation on its
ability to represent the behavior of a system over time.
Representation (d) was particularly convincing due to
the color systems, simplicity of the color schemes and
simplicity of visualization.

Representations (a) and (c) were perceived differ-
ently by respondents from Company 1 and Company
2: Respondents from Company 1 considered repre-

sentation (c) interesting but limited in terms of ex-
plainability of behavior. There was no rejection of
it but no major adoption either. Several factors can
explain this result: the choice of metrics and the cre-
ation of the representations were done (i) by a data-
oriented approach (data science approach), (ii) with-
out a strong involvement of the experts (our target
audience), (iii) without an explicit need for explain-
ability on their part, and (iv) without a context on the
objective of the present work. Finally, representation
(a) did not find support at Company 1.
Respondents from Company 2, on the other hand, per-
ceived representations (a) and (c) as informative, with
a better evaluation of representation (c). The combi-
nation of visual and numerical information, i.e. multi-
modal explanations, made it possible to evaluate the
representation as informative and to be favored for the
understanding of the behavior of complex systems.
Thus, our multi-modal representation (c) has proven
to be aligned with the preferences of the respondents
who mostly prefer multi-modal explanations.

Finally, the experts’ feedback on the intelligibility
thresholds of the automata is sensibly the same be-
tween the two companies: between 5 and 10 nodes
maximum for a graph. The number of sensors beyond
which the analysis of the system becomes complex
varies between the respondents of both companies:
For Company 1, the threshold is between 10 and 15



(a) Company 1 (b) Company 2
Figure 7: Experts answers to the question “To understand the system which of these representations is most useful to you?”.

(confirmed by a senior expert of Company 15) and for
Company 2, between 5 and 50 (the respondent who
marked 50 sensors underlined his lack of knowledge
of the domain). Finally, a respondent from Company
2 considered that the proposed graphs allowed to free
oneself from the thresholds of intelligibility in terms
of sensors number.

To conclude, the results of the questionnaire show
a difference in perception of the acceptability of a
representation according to the profile of the com-
pany’s experts, the apriori knowledge of the domain,
and the technical experience with the subject: the
neophyte profiles of a domain prefer more informa-
tion on the considered complex system (Company 2),
whereas those familiar with the subject seem not to
need this information there (Company 1). The aver-
age comments of the experts leads to the following
conclusion: the visual representation seems essential
for the information transmission aspect, but it must,
of course, be relevant and easily understandable. This
highlights an important trade-off between the perfor-
mance of AI approaches, the relevance of the visual
explanations and its intelligibility for the target audi-
ence. Note that in our study, the representations and
the clustering have been validated by the domain ex-
perts. Finally, all the results confirm that the XR-CSB
method allows generating an explainable and intelli-
gible visual representation of the behavior of a com-
plex system that interfaces with experts as well as
neophytes.

6 CONCLUSION

We proposed XR-CSB: an original method to repre-
sent and explain complex system’s behavior based on
vertical clustering and (unfolded) automata through

5The respondent with a technical profile who has the most ex-
perience (more than 5 years) in the given industrial domain recom-
mends 6 nodes for an unfolded graph and an analysis between 10
and 15 sensors.

four original representations (Figure 2). Our exper-
imental study shows that representations are inter-
esting for experts with different profiles and levels
of expertise because they give multi-modal explana-
tions i.e. information about the behavior of the sys-
tem whether it is simple (one time series) or complex
(in our case, almost a hundred time series). Experts
with different expertise levels have evaluated and vali-
dated specific proposed representations showing a dif-
ference the acceptability of a representation according
to their profile.

In future works, we aim to include the technical
PDF reports (that have comments with explicit tempo-
ral information about actions undertaken) to make an
automatic post-hoc validation process of the extracted
unfolded automata. It is thus possible to link states
of the unfolded automaton to specific comments and
hence to label those states, which can be done easily
as our method is flexible. In addition, we would like
to integrate additional time series represented by cat-
egorical variables (e.g. PDF reports). However, this
makes it impossible to extend traditional clustering
techniques because of the traditional distance mea-
sure. Therefore, it is important to propose an adapted
distance measure, that can be inspired from (Ghas-
sempour et al., 2014) in order to handle the data het-
erogeneity. Finally, we aim to focus on the detection
and explainability of relevant sensors that play a dis-
criminatory role in the state of the system. This can
help managers to identify boilers that are most impor-
tant for the power station management, and globally
contributes to explainability issues related to time se-
ries clustering.
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