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ABSTRACT

Precipitation measurement is an important prior for sev-
eral operational and scientific applications, including weather
forecasting, hazard prevention, agriculture, etc. Weather
radars, such as NEXRAD, observe the air volume reflectivity
and infer precipitation intensity at high resolution. However,
their capabilities are limited over the ocean. C-band SAR
imagery, which is sensitive to ocean surface roughness, is
known to be sensitive to the effect of rain. In this study, we
improve existing NEXRAD/Sentinel-1 collocations and train
a U-Net deep learning model to estimate NEXRAD radar
reflectivity from Sentinel-1 observations. Precipitation fore-
casts are returned as segmentations with thresholds at 1, 3
and 10 mm/hr. The results indicate high performance over a
wide range of wind speeds and thus can provide an accurate
estimate of precipitation in the absence of weather radar.

Index Terms— SAR, Sentinel-1, NEXRAD, ocean

1. INTRODUCTION

Remote sensing of precipitation is of interest for a wide range
of applications, from weather forecasting to agriculture. It
can be measured by space satellites (GPM, TRMM, ...) or by
ground-based weather radars. Weather radars are particularly
interesting because their fixed position simplifies co-location
with other instruments, but they have a short range and are
affected by topography.

Synthetic aperture radars (SARs) are space-based imag-
ing systems capable of measuring sea surface roughness at
high resolution. Of these instruments, Sentinel-1 A and B,
operated by the European Space Agency, have been acquiring
data regularly since 2014 and 2016, respectively. [1] recently
demonstrated that it is possible to apply Koch filters, usually
used to detect heterogeneous areas in SAR observations, to
detect the presence of rain, based on a collocated Sentinel-
1/NEXRAD dataset.

In this study, we improve the dataset proposed in [1],
adapt Koch filters to multiclass segmentation, and train a
deep learning model. The resulting model is able to accu-
rately detect different rainfall patterns, outperforming the
Koch filters, although being sensitive to wind speed.

2. DATA

The dataset is composed of both SAR observations and
weather radar measurements, acting as the input and out-
put groundtruths respectively. The SAR observations were
acquired as part of the Sentinel-1 mission, consisting of two
satellites, Sentinel-1A and Sentinel-1B, whose instruments
routinely acquire C-band (5.4 GHz) observations. Specif-
ically, we use Interferometric Wide Swath (IW) Ground
Range Detected High Resolution products (GRD-HR). These
observations, with a spatial resolution of 20x22 m, span about
250 km in range and a few hundred in azimuth. The weather
radar measurements are obtained from NEXRAD, a network
of Doppler weather radars with a bandwidth between 2.7 and
3 GHz. The resolution is 1 km in range and 1° in azimuth.
The initial collocations were performed by [1].

The collocated IWs are divided into 256x256 pixel
patches and scaled to 100 m/px. Patches are removed if the
collocated NEXRAD measurement does not indicate precip-
itation greater than 1 mm/h in any part of the area. This step
prevents occlusions by topography or overestimation of the
NEXRAD range from introducing undetected rain patches.
Once extracted, the patches are inspected to manually ensure
overlap between the rain signature on the SAR observation
and the NEXRAD measurement. The manual correction of
the collocations shows that the alignment error increases with
the distance to the radar (R2 = 0.404). On the other hand,
neither the direction of the NEXRAD ground stations, nor the
wind speed, nor its direction (obtained from the ECMWF)
are correlated with the realignment vector.

After the manual realignment, the data are divided into
training (79.5% of the patches), validation (9.6%) and test
(10.9%) subsets. The dataset is divided at the IW level to
eliminate all data leakage and balanced at the pixel level to
have the same distribution of precipitation and wind speed in
each subset. The number of IWs for the training, validation,
and test subsets are 39, 7, and 7, respectively. The total num-
ber of patches in the data set is 1570.

Finally, the output ground truths are thresholded to pro-
vide precipitation segmentations for the intervals [1, +∞], [3,
+∞] and [10, +∞] mm/h.

A secondary dataset containing Sentinel-1 observations
collocated with the Geostationnary Lightning Mapper (GLM)



boarded on GOES-16 is also built. Although it does not
contain precipitation information, lightning is known to be
closely related to precipitation: [2, 3]. Furthermore, because
GLM covers the entire Western Hemisphere with continuous
observations, a large number of collocations can be obtained
(189 IWs while only 7 were present in the test subset). These
collocations are used to evaluate the impact of wind speed
and incidence angle.

3. METHODS

Koch filters [4] are a standard filtering method used in SAR
imaging. They consist of four different high-pass sub-filters
that detect heterogeneous areas and indicate non-wind related
phenomena. Koch filter has been shown to specifically detect
rain by optimizing its thresholds on a NEXRAD/Sentinel-1
dataset [1]. To be able to compare the Koch filter in the con-
text of multiclass segmentation, we tine-tune the Koch fil-
ter parameters on the improved NEXRAD/Sentinel-1 collo-
cations, training new filters for each rain regime.

The deep learning model uses the U-Net architecture [5].
It has been successfully applied for semantic segmentation [6]
and sea ice concentration estimation [7]. Our model contains
three convolution blocks (each containing three convolutional
layers activated by ReLUs) of 32, 64, and 128 3x3 kernels, re-
spectively. Each block is followed by 2x2 max pooling layers.
The central part is similarly composed of convolution layers
with 256 3x3 kernels. The upsample part of the network is the
symmetric of the downsample, as is the case with U-Net ar-
chitectures. The output layer is a convolution layer with three
1x1 kernels, activated by a sigmoid function.

To compare the binary Koch filters, originally designed
for binary segmentation, each rain rate threshold is consid-
ered as a threshold for binary segmentation to compute an F1
score. The F1 score is also given in the multiclass framework
to compare the fine-tuned Koch filter with the deep learning
model. In both cases, the F1 score is defined as the harmonic
mean of precision and recall. Precision (resp. recall) is the
average diagonal value of the column (resp. row) normalized
confusion matrix.

4. RESULTS

The results are compiled in Table 1. They are given with the
standard deviation over five trainings. The table shows that
the U-Net architecture outperforms both the binary Koch filter
and the fine-tuned filter. The best results were obtained at 400
m/px.

The figure 1 indicates the result of the segmentation on
whole IW. To obtain this segmentation, the IW is divided in
overlapping tiles of 20x20 km, segmented by the model, and
fused to retrieve the whole IW. This process takes approxi-
mately 15 seconds per IW on a GTX 1050 Ti. The figure

shows agreement between the NEXRAD measurement and
the prediction.

Fig. 1. From top to bottom: Sentinel-1 SAR observations,
NEXRAD emulation result, and NEXRAD thresholded colo-
cated reflectivity (c). The first and second columns were ac-
quired on 2018-04-24 11:10:12 and 2018-08-19 23:19:09, re-
spectively.

The colocalizations with GLM allow to evaluate the F1-
score of the deep learning method with the binary lightning
map, acting as a proxy for precipitation. Figure 2 indicates
that the model performs better at higher incidence angle. The
influence of incidence appears to be more important for heav-
ier precipitation, especially for rain rates above 10 mm/h. The
threshold at 1 mm/h, on the contrary, is not affected by the in-
cidence angle.

Higher wind speeds also decrease the performance of the
model. This is due to the lack of data at high wind intervals
(81.4% of the pixels in the training subset are below 8 m/s,
98.4% are below 12 m/s). The decrease in performance can
also be explained by the direct effect of wind. Since wind
and rain increase the roughness of the sea surface, they have
a negative impact on the SAR signature of the co-occurring
phenomenon. It can be noted that the deep learning model
performs particularly well at low wind speeds. On the con-
trary, the Koch binary filter performs less well when the wind
speed is lower than 5 m/s.

5. CONCLUSIONS AND PERSPECTIVES

The deep learning model trained on the enhanced version of
the Sentinel-1/NEXRAD dataset is able to segment entire In-
terferometric Wide Swath and retrieve precipitation in four



Model Input resolution Binary F1-score (1
mm/h)

Binary F1-score (3
mm/h)

Binary F1-score
(10 mm/h)

Multiclass
F1-score

Binary
Koch’s filter

(co-pol.)

200 m/px 44.3% 34.7% 22.8% N/A
400 m/px 37.3% 26.5% 15.1% N/A
800 m/px 32.9% 22.2% 11.1% N/A

Fine-tuned
Koch’s filter

(co-pol.)

200 m/px 45.9% (0.04%) 41.6%( 0.06%) 38.7% (2.09%) 34.8% (0.2%)
400 m/px 43.2% (0.15%) 40.9% (0.14%) 37.9% (0.58%) 35.9% (0.3%)
800 m/px 38.3% (0.05%) 37.2% (0.18%) 32.3% (1.65%) 35.2% (0%)

U-Net
(co-pol.)

100 m/px 53.7% (2.36%) 52.5% (2.03%) 55.6% (2.30%) 47.2% (1.9%)
200 m/px 50.5% (1.69%) 47.5% (1.72%) 48.0% (1.87%) 46.0% (3.0%)
400 m/px 51.2% (1.72%) 46.8% (1.75%) 47.2% (2.14%) 50.5% (2.8%)
800 m/px 45.4%(0.93%) 40.4%(1.26%) 40.2%(1.56%) 47.1% (0.9%)

Table 1. Evaluation of the binary Koch’s filter, the fine-tuned filters and the U-Net model on the patches of the test subset.

Fig. 2. F1-score of the rainfall segmentation for different in-
cidence angles and wind speeds, using GLM as a proxy for
the rainfall groundtruth.

different regimes: [0, 1[, [1, 3[, [3, 10[ and [10, +∞] mm/hr.
It outperforms existing methods even when the state of the
art is adapted to this multiclass segmentation problem and re-
fined on this dataset. It outperforms existing methods even
when the state of the art is adapted to the multiclass segmen-
tation problem and fine-tuned on this dataset. The qualitative
evaluation of IW segmentations highlights its importance in
areas where weather radar is absent or too remote to provide
accurate measurements.

In particular, the deep learning model performs best at
low wind speeds, unlike the Koch filters. The influence of
wind speed, and the weaker detection of rain events greater
than 10 mm/h for low incidence angles, indicates that future
work should focus on incorporating these parameters as priors
in the network. Additional collocations, especially at higher
wind speeds, could further improve segmentation.
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