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Abstract
Literature shows that trust typically relies on knowledge about the communication partner. Federated
learning is an approach for collaboratively improving machine learning models. It allows collaborators
to share Machine Learning models without revealing secrets, as only the abstract models and not the
data used for their creation is shared. Federated learning thereby provides a mechanism to create trust
without revealing secrets, such as specificities of local industrial systems.

A fundamental challenge, however, is determining how much trust is justified for each contributor
to collaboratively optimize the joint models. By assigning equal trust to each contribution, divergence of
a model from its optimum can easily happen—caused by errors, bad observations, or cyberattacks. Trust
also depends on how much an aggregated model contributes to the objectives of a party. For example, a
model trained for an OT system is typically useless for monitoring IT systems.

This paper shows first directions how heterogeneous distributed data sources could be integrated
using federated learning methods. With an extended abstract, it shows current research directions and
open issues from a cyber-analyst’s perspective.
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1. Introduction

A common cybersecurity goal is thwarting attackers through detection of their actions, un-
derstanding of their methodologies, and increasing the resilience before their next attempts.
However, the considerable variety, thus complexity, of the tools and techniques used by at-
tackers drown their traces in the high volume of legitimate network traffic and endpoints logs.
One way used by defenders (often called “Blue teams”) to act against threat actors is sharing
knowledge about their abuses. However, knowledge gathered during security monitoring or
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incident response is often coupled with private data which cannot be shared for confidentiality
reasons (GDPR, NDA, etc.).

Machine Learning (ML) approaches can help here, as they result in abstract models that are
typically not reversible to their input data [1]. A fundamental problem for observation-based
security is the amount of data needed for having a trustable and reliable impression. Typically,
more data allows for better behavior characterization, thus improving either anomaly detection,
or event classification. Collecting data requires either a long observation time or many data
sources, as comprehensiveness is difficult to reach.

Federated Learning (FL) has been introduced to enable the sharing of local models and to
federate them towards better joint models. Each participant computes on its own an ML-model
using its own data. The resulting model is aggregated with the ones of other participants,
typically by a trusted party, then the new model is shared between each of them.

Consequently, all parties benefit from each other while no one have access to their private
data and algorithms. Sharing models however still faces issues as models can be modified with
backdoors [2], poisoned with adversarial approaches [3] or simply suffers from bad quality
training dataset.

This paper discusses FL sharing approaches through aggregation issues. Section 2 introduces
the concept of Machine Learning (ML) based intrusion detection, and Federated Learning (FL)
as a collaboration enabler. In Section 3, we summarize the literature around federated intrusion
detection, with an extended abstract of a survey. Section 4 outlines an experimental use-case
for Federated Intrusion Detection System (FIDS) application. Section 5 discusses open issues
and the envisioned solutions. Section 6 concludes our proposition.

2. Background: ML for collaboratively defend cyberattacks

One prominent application of FL in the cybersecurity field is for security monitoring and
collaborative intrusion detection. This section defines the basis for the remainder of the paper.

Security monitoring systems frequently use signature-based Intrusion Detection Systems
(IDSs) to detect known attacks to safeguard companies [4]. However, this strategy suffers from
serious limitations against zero-day and one-day attacks, as well as Advanced Persistent Threats
(APTs), such as Stuxnet [5]. Furthermore, the IoT’s heterogeneity and irregular traffic cause
IDSs to be less effective or inadequate [6]. As a result, researchers began to look into anomaly
detection as a way to improve detection systems.

Here, multiple approaches coexist, depending on objectives and available data. On the one
hand, anomaly-based detection systems compare monitored events to a baseline profile trained
on nominal traffic to assess whether they are malicious or not [7]. On the other hand, pattern-
based classification, aims at extracting patterns from known attacks that have been previously
labelled as such, and then characterize input data according to the extracted patterns. Therefore,
anomaly-based approaches are particularly relevant to detect unknown behaviors, whereas
supervised ones are more equipped for threat characterization.

The source of data will also influence the available features for detection. For example,
endpoint-oriented sensors such as Sysmon monitor processes, use of windows’ registry key
or system calls while network-oriented sensors provides a lot of information about protocols,



packet length, or IP addresses. Preprocessing can be used to extract additional features from
the raw data, to provide more information. The literature distinguishes three key non-exclusive
approaches: feature extraction, feature embedding, and feature selection [8].

In the context of knowledge sharing, the choice of the input feature is critical to transfer
knowledge between participants. For instance, IP addresses are specific to the local layout of the
network, and might have another meaning in another environment, if they even exist. On the
other hand, given one class of devices, inter-arrival time (IAT) should not vary much between
networks, thus making potentially making it a good choice for transferring knowledge.

With a designated set of features and an input dataset, one can establish a model of the data.
A model is an abstraction that can be used afterward for other tasks, such as characterization.
Algorithmically speaking, a model is a set of mathematical parameters that are inferred from
input data by an algorithm. It can be the statistical parameters of a distribution function, the
condition nodes in a decision tree, or the weights and biases of a neural network. The ability of
a model to be shared partly depends on how easily these parameters can be aggregated.

Over the years, ML have been applied to intrusion detection with substantial results. Three
approaches coexist:

(1) Anomaly detection becomes a binary classification problem with supervised learning. For
effective training, a balanced labeled dataset is required. However, because local training
data is infrequently labeled and models can be affected by unbalanced class distribution,
supervised learning is more difficult to apply in real-world scenarios [9].

(2) For unlabeled data, unsupervised learning is more appropriate. In the case of IDS, we as-
sume that (i) benign traffic is substantially more common in the testing set than anomalies
[10]; and (ii) abnormal packets are statistically different from normal packets.

(3) Semi-supervised learning is a hybrid method that labels only a portion of the training
data. It can be used to bootstrap a detection model with a publicly labeled dataset before
training it on locally collected data afterward.

However, ML algorithms also require a lot of training data to avoid learning biased model,
from the lack of exhaustively or from an overrepresentation of a class in the training set.

To cope with the limitations of ML, especially when training data is locally collected, col-
laborative IDSs have emerged in the literature. However, they are almost always built in a
centralized manner, which induces its own set of issues: (i) centralizing a system typically
introduce a single point-of-failure (SPoF) [11]; (ii) centralized IDSs imply sending local data for
training or detection, increasing the risk of information disclosure [12]; (iii) communicating
data over networks also increase bandwidth consumption and latency, which are critical for
intrusion detection [13].

Introduced in 2016 by Google [14], FL promises to cope with these issues. In FL, model
learning is distributed among the participants of the federation. Therefore, local data stay in the
participant’s system, and collaboration is achieved by sharing and aggregating the generated
models. Aggregation can be done by a server [6], [15]–[17], but it might lead to concerns with
trust and privacy. Due to challenges in terms of traceability, integrity, privacy, and trust, recent
research has favored the usage of trusted distributed ledgers [18], [19], multi-party computation
(MPC) [20], and privacy-preserving mechanisms like Differential Privacy (DP) [21].



3. The example of collaborative intrusion detection

Since its introduction, FL has been applied to multiple domains, such as intrusion detection,
whose presence is increasing in the literature. In this context, FL allows local detection of
attacks—thus offering low latency and bandwidth—while jointly enriching participant’s models
and preserving data privacy.

This section is an extended abstract of the study published in IEEE Transactions on Network
and Service Management (TNSM) [8]. Contributions of the study are as follows: (1) it examines
the application of FL to the detection and mitigation of attacks; (2) it proposes a reference
architecture that generalizes the selected work and can serve as a starting point for the design of
future FIDSs; (3) it establishes a taxonomy of FIDSs, which provides a framework for comparing
the selected works in this study; and (4) it highlights open questions regarding FIDSs and
identifies associated research directions. The findings presented in this study can easily be
extrapolated to other cybersecurity applications of FL, such as automated forensic analysis, or
malware detection and classification.

Section 3.1 presents the results of the study and the established taxonomy, whereas Section 3.2
reviews identified research directions.

3.1. Literature review

The study performs two analyses of the literature. The quantitative analysis is based on objective
metrics that can be extracted from the literature, such as publication date and venue. Figures 1a
and 1b show the evolution of the literature on FL and IDS over time, both being building blocks
of FIDSs.
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Figure 1: Evolution of related domains until 08/10/2021, data from Microsoft Academic [22]
—Figures from Lavaur et al. [8] © 2022 IEEE

The qualitative analysis is based on the comparison of existing approaches, using the proposed
taxonomy. They can be grouped into four categories: data, local operation, federation, and
aggregation. A fifth meta-category is dedicated to the implementation and evaluation of the
approach.



The taxonomy (Figure 2) provides twelve characteristics on which all approaches can be
compared:

1. Data source and type: what data is collected and how; heavily depends on the use case.

2. Preprocessing: strategies for data curation, such as normalization and feature selection.

3. ML location: where the ML model is trained and executed.

4. Local algorithms: how the ML model is trained, and its impact on performance.

5. Defense capabilities: the ability of the approach to mitigate attacks.

6. Federation strategy: how the federation is organized; e.g. client selection, architecture.

7. Communication: how data (i.e. models) is exchanged between participants, including
protection mechanisms.

8. FL type: type of FL strategy, depending on the objectives and available data.

9. Aggregation strategy: how models are aggregated, especially with heterogeneous clients.

10. Model target: i.e. the balance between specialization and generalization.

11. Analyzed dataset: the dataset used to evaluate the approach; often Information Technology
(IT)-focused, and not always available.

12. Costs and metrics: how the approach is evaluated, depending on the use case and objectives.

The structure provided by the taxonomy also allows comparing the selected works. Table 1
summaries the results of the comparison. It shows that most approaches focus on IT network
traffic, using a gateway to collect data and host both learning and detection processes. Most
also use Deep Learnings (DLs) to perform supervised learning and classify traffic. A majority
use unmodified FedAvg for the aggregation, which is the initial FL algorithm that was proposed
by Google [14].

3.2. Open issues and research directions

As the FL topic gets more mature, research tends to focus on secondary aspects, such as security
and privacy, or on the application of FL to other use cases. This subsection summaries the open
issues and research directions; more details are available in [8].

(i) Performance — Like any detection system, FIDSs are looking for an absolute performance:
a system with a perfect classification score, producing no false positives or negatives.
To this end, several avenues have been identified in the literature, such as the use of
Generative Adversarial Networkss (GANs) or the improvement of feature selection as
input to the model. Moreover, the link between the performance of the system and its
hyper- and meta-parameters is not yet established.



Taxonomy of FIDS

Experimentation

12. Costs and metrics

Execution
Performance (e.g. accuracy)

Latency

Federation
Communication

Aggregation

Training
Resources (e.g. hardware)

Time (e.g. convergence)

11. Analyzed dataset

Public / Known

Published but custom

Unpublished (as of now)

Aggregation

10. Model target

By-device

Personalized model
By-class

By performance
Generic model

9. Aggregation strategy

Parameter aggregation (e.g. FedAvg)

Weighted algorithms

MPC-based aggregation

8. FL type

Horizontal Federated Learning

Vertical Federated Learning

Federated Transfer Learning

Federation

7. Communication
Encryption

Overhead reduction

6. Federation strategy

Client selection

Reputation

Architecture (e.g. P2P)

Local operation

5. Defense capabilities
Network reconfiguration (e.g. SDN)

On-device counter-measures

4. Local algorithms

Supervised ML
Classification

Regression

Unsupervised ML

Clustering

Dimensionality reduction

Outlier detection

3. ML location

On device

On gateway

Dedicated device

On server

Data

2. Preprocessing

Feature selection

Feature extraction

Dimensionality reduction

1. Data source and type

Source
Communication

Usage

Distribution
IID

Non-IID

Figure 2: Proposed taxonomy for FIDS—Figure from Lavaur et al. [8] © IEEE

(ii) Adaptability and scalability — Distributed systems such as FL are often used to cope
with resource limitations, especially in terms of computation and bandwidth. However, as
pointed out by several selected works, FL faces limitations when dealing with numerous
clients. Therefore, further research is needed on FIDSs client selection: dynamic fusion
based on score or time, reputation, number of detected attacks, etc.

(iii) Knowledge transfer — Current solutions focus on federating training and detection for
devices and resources that belong in the same domain. Therefore, open issues include the



Table 1
Comparative table of selected works—Data from Lavaur et al. [8] © 2022 IEEE
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2018 Pahl et al. [23]  # # # #  # # # #  # #    # Device
Abstracted network
traffic (middleware)

BIRCH
K-means

Parameter addition Generated
relatively lightweight,
online, no labels

2019 Rathore et al. [11] #  # # #  # # # # #  # #   #
Edge-controller
(SDN)

Network traffic (SDN) ANN Vector concatenation NSL-KDD
offers mitigation,
decentralized

2019 Nguyen, Marchal, et al. [6]  # # # #  # # # #  # #    # Gateway
IoT network
traffic (TCPdump)

MLP Weight and biases average MIMIC
online, offers per-class
models, no labels

2019 Zhao et al. [24] #  # # # # # #  # #  # #   # Gateway
Encrypted network
traffic (CICFlowMeter)

GRU FedAvg Generated versatile (multi-task)

2019 Schneble et al. [25] # #  # #  # # # #  # #  # #  Gateway Healthcare sensor values FC (shared layers) → FC Weight and biases average
CICIDS2017
ISCXVPN2016
ISCXTor2016

high adaptability, no labels

2019 Cetin et al. [26] #  # # #  # # # # #  # # #  # Gateway Network traffic (WIFI) SAE FedAvg AWID –

2020 Zhang et al. [18]  # # # #  # # # # #  # # # #  Gateway
Air conditioner
sensor values

CNN-GRU → MLP Homomorphic parameter addition CPS dataset offers traceability (blockchain)

2020 Li, Wu, et al. [15] # #  # #  # # # # #  # # #  # Gateway MODBUS traffic DAGMM Parameter addition KDD 99 confidentiality (encryption)

2020 Rahman et al. [27] #  # # #  # # # # #  # # #  # Device
IoT network
traffic (TCPdump)

ANN CDW_FedAvg Generated –

2020 Chen, Zhang, et al. [28] #  # # #  # # # # # # #  #  # Gateway
IoT network
traffic (TCPdump)

CNN Parameter aggregation
CICIDS2017
NSL-KDD
Generated

no labels

2020 Sun, Ochiai, et al. [29] #  # # #  # # # # #  # #   # Gateway
Network traffic
(PCAP)

ANN FedAvg NSL-KDD
segmented (performance-
based models)

2020 Fan et al. [30]  # # # # # #  # # #  # #   #
Gateway
(MEC)

IoT network traffic
(TCPdump, CICFlowMeter)

CNN Parameter aggregation
LAN-Security
Monitoring Project

knowledge transfer between
public and private datasets

2020 Al-Marri et al. [31] #  # # # # # # #  #  # # #  # Gateway
Network traffic
(TCPdump)

ANN FedAvg NSL-KDD
enhanced privacy
(mimic learning)

2020 Kim, Cai, et al. [32] #  # # #  # # # # #  # # #  # Gateway
Network traffic
(TCPdump)

MLP FedAvg NSL-KDD –

2020 Qin, Poularakis, et al. [33] #  # # #  # # # # #  # #   #
Gateway
(SDN)

Network traffic (SDN) BNN SignSGD
CICIDS2017
ISCX Botnet 2014

very lightweight,
line-speed classification,
P4 language compatible

2020 Chen, Lv, et al. [34] #  # # #  # # # # #  # # #  # Gateway
Network traffic
(CICFlowMeter)

GRU-SVM FedAGRU
CICIDS2017
KDD 99
WSN-DS

robust to poisoning,
scalable

2020 Hei et al. [35] #  # # #  # # # #  #  # #  # Device
Network traffic
(TCPdump)

MLP FedAvg DARPA 1999
online, offers traceability
(blockchain)

2020 Li, Zhou, et al. [36] #  # #   # # # # #  # # #  # Gateway
Network traffic (PCAP,
CICFlowMeter, Argus)

CNN Homomorphic parameter addition Generated
relatively lightweight,
confidentiality (encryption)

2021 Popoola et al. [37]  # # # #  # # # # #  # # #  # Gateway
IoT network
traffic (TCPdump, Argus)

MLP Parameter aggregation KDD 99 zero-days detection

2021 Qin and Kondo [38] #  # # #  # # # # #  # #   # Device
Network traffic
(TCPdump)

ANN FedAvg
Bot-IoT
N-BaIoT

relatively lightweight

2021 Liu et al. [39] # # #  #  # # # # #  # # #  # Device
Network traffic
(TCPdump)

ELM + AE FedAvg NSL-KDD decentralized

2021 Sun, Esaki, et al. [40] #  # # #  # # # # #  # #   # Gateway
Network traffic
(PCAP)

CNN Parameter aggregation
LAN-Security
Monitoring Project

segmented (performance-
based models)

Use case FL type Training Approach

ability to federate clients across different domains. In addition, current methods often
consider that all local models share the same architecture and hyper-parameters. This
limitation makes current FIDSs less versatile and transferable.

(iv) Security and trust — Using ML or FL to detect intrusions can introduce new threats
to the system, such as poisoning. Several works have examined the vulnerabilities of
FL systems and proposed countermeasures. With FL, poisoning becomes easier, as any
participant can theoretically impact everyone else’s model. Structure of models depends
on the architecture of the underlying algorithm, models trained cannot be aggregated
easily [41]. Furthermore, as ML, and especially DL, lacks explainability, the content of a
model is difficult to infer. Its aggregation with others is therefore made more risky. Future
works are required in this direction to properly assess the content of a model before
aggregation with others. Current solutions require an increase in the trust attributable to
clients for model aggregation, inspired by the state of the art in collaboration systems
and information sharing platforms.

(v) Self-defense and self-healing — Current research on FIDSs focuses on intrusion detec-
tion and attack classification. Defense is barely represented in the literature. However,



technologies such as Software-defined networking (SDN) offer rapid resiliency capa-
bilities; and recent work studies the effectiveness of such defense mechanisms. New
emerging applications such as self-defense and self-healing systems could benefit from
FIDSs and other FL-based technologies.

(vi) Model convergence — Models can differ from one client to another, especially in het-
erogeneous contexts like intrusion detection. Consequently, model convergence is made
more difficult. Current research focus on optimizing parameters by considering aggre-
gation as an optimization problem. For instance, Charles et al. [42] use meta-learning
to infer the right parameters, thus optimizing the aggregation afterward. Weighting
mechanisms are also present in the literature to improve the convergence [43].

(vii) Dataset representativity — Existing public datasets are not representative of FIDSs
potential deployment environments. Indeed, they are often datasets produced for tradi-
tional machine learning algorithms but split for federated purposes, like NSL-KDD [44],
UNSW-NB15 [45], or CIC-IDS2017 [46]. However, this approach introduces biases, as
features or times series are all related to the same original event. Similar approaches
using adversarial examples for malware analysis which modify features instead of original
binaries faces the inverse feature-mapping problem [47], [48].

Some of these issues depend on works from other related fields, such as ML for performance
or FL for scalability. However, specificities of the FIDSs use case require more concrete research
questions. Especially, the topics of security, trust, and resilience, are critical for a collaborative
security use case.

4. Ensuring trust and personalization in FL-based intrusion
detection

As introduced in Section 2, FL can be used in multiple cybersecurity settings and use cases, from
distributed statistic inference [49] to authentication [50]. Even in the more specific context of
intrusion detection (i.e. FIDS), numerous use cases are studied, e.g. IT networks [29], Industrial
Internet of Things (IIoT) [15], or smart healthcare [51]. This variety in use cases comes with
various data types, architectures, and constraints. Making knowledge transferable among
heterogeneous use cases and data is a long-term goal for FIDSs (see Section 3.2).

However, heterogeneity is currently a major challenge for FL [52]. Therefore, we focus on a
specific use case, namely FIDS in IT networks. We study the impact of heterogeneity on FL in
this setting, and research solutions to mitigate it.

4.1. Use case definition

We consider a typical use case inspired from the industry, where actors invested in collaboration
are organizations aiming at improving their local detection. We assume that each organization
has interests in sharing information, but has highly sensitive data that cannot be shared.
For example, Security Operation Centers (SOCs) perform security monitoring through the



processing of customer data (which can contain personal identifiable information) that cannot
be shared. On the opposite, with the rise of cyber-criminal services [53], attackers tend to lead
similar attacks against different information systems. Two SOCs in such situation would share
their Indicators of Compromise (IoCs) or corresponding ML-models to detect all attacks after
the first that succeed. In this context, FL can be used to train a FIDS model on a distributed
dataset, while preserving the privacy of each organization. For instance, existing structures
such as Information Sharing and Analysis Centers (ISACs) or inter-SOCs could benefit from
such a system, which enables collaboration while protecting company secrets.

This setting is called cross-silo [52], as opposed to cross-device. It is worth noting that FIDSs
do not exclude cross-device settings, for instance in endpoint detection [5]. However, cross-silo
is more relevant for our use case, as it is more relatable for the industry, and it is easier to
implement in a testing infrastructure. In cross-silo, fewer clients (10–1000) operate with more
data each, as well as more powerful computation capabilities. Participants are also deemed
more reliable in terms of availability, as the local learning process is performed on a dedicated
device. Hence, it is not dependent on whether the hosting device (e.g. an employee computer) is
turned on or off. Finally, organizations often operate with higher-stake privacy requirements,
as they process data from their customers, their employees, and themselves.

We firstly also focus on horizontal federated learning (HFL), where participants have the
same features, but different samples. In HFL, participants have similar objectives (i.e. ML tasks)
and want to improve their models, but cannot build a centralized dataset due to privacy or legal
concerns. This is the most common setting in FIDSs, as it serves the goal of improving behavior
characterization, and having access to knowledge that cannot be inferred with only local data.
We also start with unsupervised learning algorithms, as the presence of labels not guaranteed
in real-world settings.

Figure 3 depicts an example topology, inspired by IT networks from the industry. We assume
that each organization has a dedicated IT network, that might vary in terms of architecture,
probe location, or services (see Section 4.2).

4.2. Experiment presentation

The chosen use case inherently highlights two of the seven open issues identified in the literature:
heterogeneity and trust. Furthermore, as mentioned in Section 3.2, the lack of a dataset that
is representative of this use case undermines existing works on the topic. Therefore, we first
focus on two complementary tasks: (1) the creation of a representative, distributed dataset; and
(2) the development of solutions to mitigate heterogeneity and provide trust between distributed
participants.

To cope with the lack of appropriated dataset in the literature, we propose to build a new
dataset generation platform with federation and distributed systems in mind. The platform
relies on virtualization topologies to generate normal traffic [54], and defined attack scenarios
to evaluate the detection performance. These topologies will be notably used to generate benign
traffic and train local unsupervised learning algorithms—literature typically use autoencoders
for this task [28], [38], [55]. The traffic generated at this step must be representative of a real
IT-focused network with users, internal resources (such as file sharing and web applications),
administration and supervision services, and access to the Internet.



We then aim to evaluate existing approaches on this more realistic and demanding use case.
We expect most of them to yield less promising results, even when they claim to be able to
deal with heterogeneity. On the other hand, FL literature abounds of works on heterogeneous
data, and aggregation algorithms, such as FedProx [56] or Fed+ [57], might provide good
results. In this case, proving empirically that such approaches are able to cope with the realistic
heterogeneity of our use case remains a major contribution.

At the same time, we develop a new FL approach that deal with heterogeneity and trust.
Section 5 presents strategies envisioned to achieve this goal. When considered as a collaboration
system, FL is highly connected to research on trust and reputation systems. Hence, we plan to
leverage existing works on the topic, such as [58], to provide a reputation-aware FL system.
This approach will be evaluated on the new dataset, and compared to existing strategies.

4.2.1. Parameters

To measure the ways in which heterogeneity can manifest itself, we define varying parameters
that are used to generate the topologies. This can be used to generate a worst-case scenario,
where all the parameters are set differently in each topology.

In regard to the use case presented in Section 4.1, we consider the following parameters:

(i) architecture — the network architecture of the topology defines how services are in-
terconnected, how the traffic is captured, and where data collection is performed. For
example, a topology with a single main gateway which captures traffic, and several
services on the same network, will produce a different dataset when compared with
a star-shaped topology with multiple subnets. Appropriated metrics are required to
characterize the impact of these differences, e.g. size (number of hosts, of subnets), mean
number of hops between a service and the last gateway, and so on.

(ii) services — different services can rely on different protocols, and therefore generate
different kind of data, with different behaviors. For example, a service using TCP will
induce connection establishment, and therefore a lot of traffic back-and-forth, whereas
something based on UDP will produce a more continuous stream of data. Therefore,
different services (and protocols) might have different normal behaviors, causing hetero-
geneity among participants. The list of considered services must be adapted depending
on the considered attack scenarios.

(iii) maturity — security practices vary between organizations, depending on their threat
model, previous expertise, and budget. For example, a company might have a dedicated
security team, and therefore be able to implement a more mature security policy, whereas
a small company might not have the resources to do so. This parameter is important to
consider, as it can impact the quality of the dataset, e.g. by having unseen attacks in the
training data, supposed to be benign traffic.

(iv) probe location — while we assume that all participants extract the same features (due to
HFL settings, see Section 4.1), the location of the probes can vary. In the same architecture,
one collection point at the gateway, or distributed probes in each subnet, will produce
different datasets.
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Figure 3: Example topology of a IT network

Furthermore, some services are required to build working topologies, such as NTP, DHCP, or
DNS. We use a typical SME topology as a starting point for the experiments, which is presented
in Figure 3. This topology is composed of a dozen of machines, divided between employee
workstations, servers, etc. Variations of this topology will be also generated, and will be used as
other participants.

4.2.2. Evaluation

To evaluate approaches on any dateset, we measure their ability to detect relevant attack
scenarios. Typical attacks targeting such infrastructures are automated, like ransomware and
botnets. A lone attacker doing recognition and enumeration in the network is also to be
considered, but more advanced attacks such as APTs are out of the scope of this use case.

To make a rigorous evaluation, we rely on the state of the art to select attacks, such as the
MITRE ATT&CK framework [59], or the most used attacks in dataset literature. The list of
attacks that are considered on a given topology is deeply correlated to the services available in
this topology. For instance, cache poisoning requires cache-based service in the topology, such
as a DNS relay-server. On the other hand, organizations establish threat models depending on
the services they host or use. Considered attacks may include: Distributed Denial of Service
(DDoS) on the internet-facing web services, host and port scan,or web vulnerability exploitation
(injections, ...).

Experiments are conducted on a private infrastructure. The test bed consist of three servers,
two for the virtualization, and one for computation that will be dedicated to executing the
required ML algorithms. While in real-world settings, the computation is performed on the
participants’ devices, we offload the computation to a dedicated server. This allows us to
focus on the aggregation and trust aspects of the problem, and to avoid the complexity of the
distributed computation. To enable sound experiments [60], we plan to provide access to all
produced artifacts, including the dataset, the code, and the topology specifications, as well as to
the testbed itself.



5. Discussion

As the literature shows, FIDSs falter at aggregating heterogeneous models. Therefore, the
experiments detailed in section 4 provide means to measure and quantify the issue. While
literature on FL contains works on dealing with heterogeneous clients, this is still an issue in
the context of intrusion detection. Hence, we expect state-of-the-art approaches to perform
rather poorly, when compared to the results obtained on a homogeneous dataset. We consider
several approaches to cope with these issues.

First, metric-based model weighting could be used to give less importance to models that
deviate too much from the others. Zhang et al. [18] use a centroid-distance weighting algorithm
that cope with the heterogeneity in IIoT. More generally, weighting algorithms can help to
merge only relevant models, depending on a set of defined metrics. Other metrics could be used
to further tune the model aggregation, like a numerical estimation of how much information
the model can bring.

Another related topic is the measurement of the training data’s quality. In fact, as the learned
model is an abstraction of the data upon which it was trained, low-quality data would lead to a
low-quality model. Bringing a low-quality model in a federation could undermine every one’s
security. However, we must define what makes training data of quality, and how this quality
can be measured. Furthermore, weighting models according to their quality means the system
needs to be able to compare them, thus having access to the other’s data.

Moreover, existing works on federated learning rely on participant clustering [58], [61] to
improve model specialization. Often, these approaches aim at either reducing heterogeneity
between clients, or detecting and excluding malicious participants. Part of the challenge here
reside in the metrics to chose to build clusters. Aforementioned metrics such as data quality, or
information estimation, could be also used in clustering. In the context of intrusion detection,
the formation of clusters can have an indirect impact on participants’ security.

Finally, the lack of information inherent to the abstract nature of the model is a major hurdle
to estimate its value for aggregation. Therefore, we also consider adding metadata around
models, describing what the model contains without giving out too much information about
local data and configurations Such metadata would allow choosing which models one client is
interested in, depending on its use case. We believe an à-la-carte model aggregation would help
to cope with heterogeneity issues.

6. Conclusion

In this paper, we focused on the application of federated learning to the cybersecurity field.
Federated learning increases trust among partners as they do not need to share data, contrarily to
traditional ML-approaches. However, federated learning faces some limitations when federating
models built on heterogeneous data. We therefore offer to address this issue within experiments
conducted on a platform with appropriate generated datasets. This platform displays several
use-cases with different partners in order to study aggregation-models parameters. We then
outline envisioned solutions which will be subjects of future work.

These contributions can have a significant impact on increasing the security of organizations.



In fact, while existing research has addressed the privacy aspects of collaboration through fed-
erated learning and other privacy-preserving mechanisms, maintaining trust in heterogeneous
collaboration is still a challenge. We showed that federated learning can help with the creation
of a common trusted security model for systems that are inherently distributed. Our approach
enables non-trusting parties to collaborate for the joint goal of increasing their cybersecurity
without revealing critical internals.
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