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Abstract—In 2016, Google introduced the concept of Federated
Learning (FL), enabling collaborative Machine Learning (ML).
FL does not share local data but ML models, offering applications
in diverse domains. This paper focuses on the application of FL
to Intrusion Detection Systems (IDSs). There, common criteria to
compare existing solutions are missing. In particular, this survey
shows: (i) how FL-based IDSs are used in different domains;
(ii) what differences exist between architectures; (iii) the state of
the art of FL-based IDS.

With a structured literature survey, this work identifies the
relevant state of the art in FL–based intrusion detection from its
creation in 2016 until 2021. It provides a reference architecture
and a taxonomy to serve as guidelines to compare and design FL-
based IDSs. Both are validated with the existing works. Finally, it
identifies research directions for the application of FL to intrusion
detection systems.

Index Terms—federated learning, machine learning, intrusion
detection systems, collaborative sharing, network security man-
agement, attack mitigation

I. INTRODUCTION

Modern information security has become complex. It faces
the interconnection of heterogeneous networks, device types,
protocols, and objectives [1]. This complexity threatens both
Information Technology (IT) and Operational Technology
(OT) infrastructures. Collaboration can help to cope with
cyberattacks. For instance, technical and contextual Threat
Intelligence (TI) sharing enables raising cyber-awareness [2].
Moreover, regulations evolve to promote and encourage coor-
dination and collaboration in security [3]–[5]. To feed alerting
and sharing mechanisms, Intrusion Detection Systems (IDSs)
monitor networks and systems to detect attacks. These pro-
cesses are slow and complex, while actionable intelligence
requires timeliness [6]. Furthermore, information-sharing can
lead to privacy and confidentiality issues [2].

The introduction of Federated Learning (FL) in 2016 by
Google [7] enabled its application in multiple domains, such
as intrusion detection. Since then, the popularity of the IDS use
case has increased in the literature. Using FL enables local de-
tection and mitigation with low latency, while collaboratively
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learning from others [8], [9] while preserving privacy [10],
[11]. FL also promises to solve other drawbacks of state-of-
the-art Machine Learning (ML)–based IDS, e.g. local bias
due to a lack of heterogeneity in the training dataset [12].
Compared with Collaborative IDS (CIDS) approaches, FL
reduces latency and bandwidth issues [13]. But federating local
models also introduces new challenges, such as reputation and
trust, computing resources availability, or data distribution.

Several existing works propose FL-based intrusion detection
approaches [9], [12]–[32]. Intrusion detection is a critical as-
pect of modern security with specific constraints. For instance,
detection systems need to provide alerts fast enough to be able
to react [25]. They also must deal with heterogeneous network
settings and devices [13], and cope with unknown attacks [21].
Therefore, it is necessary to identify the influence that have
different federation settings on detection performance. Recent
surveys propose to approach FL and intrusion detection as a
joint topic [33], [34], highlighting the relevance of FL-based
IDSs for the community. The term Federated Intrusion Detec-
tion System (FIDS) will be used throughout the document for
FL-based IDS, with or without the mitigation aspect.

Related surveys [33]–[35] give an overview of FIDSs and
existing approaches. However, the topic of FIDS still lacks
structure and completeness. Consequently, this work sheds
light on the topic of FIDS by performing a structured literature
review. This includes qualitative and quantitative analyses,
and establishes a taxonomy and a reference architecture for
Federated Intrusion Detection Systems. First, this work ex-
tracts relevant classes from existing taxonomies on related
topics: ML–based anomaly detection [36], CIDS [37] and FL
[38]. Second, the comparison of the selected works enables
the definition of comparison criteria that are added to the
taxonomy. The selection of the reviewed works is validated by
multiple steps: intuitive search, structured search, snowballing,
venues and groups analysis.

The survey answers the following questions:
• How are FIDSs used in different domains?
• What are the differences between FIDS architectures?
• What is the state of the art of FIDSs?
The contributions of this paper are fourfold. (1) It reviews
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the application of FL to attack detection and mitigation.
To do so, it reviews literature in the associated subtopics,
using quantitative and qualitative approaches. (2) It proposes
a reference architecture that generalizes selected works, and
can serve as a starting point for designing future FIDS. (3) It
establishes a taxonomy of federated detection and mitigation
systems, which provides a framework for the comparison of
the selected works in this survey. (4) It highlights open issues
concerning FIDS, and identifies relevant research directions.

The paper is structured as follows. Section II presents
the related works. Section III details the methodology, and
states the research questions (RQs). Section IV introduces the
domain and details the challenges FIDSs help to cope with.
In Section V provides an analysis of the selected works quan-
titatively and qualitatively. Finally, Section VI discusses the
outcomes and limitations of existing works, before proposing
relevant research directions.

II. RELATED WORK
Numerous surveys exist in literature on the topics of collab-

oration and intrusion detection [2], [33]–[35], [37]–[50]. How-
ever, only three of them address both, the collaborative aspects
of FL and its application to intrusion detection and mitigation.
The subject of FIDSs still lacks structure and completeness.
Apart from FIDSs, reviewed related works can be categorized
in three subtopics (see Section IV): (a) information sharing,
(b) intrusion detection, (c) collaborative ML.

Table I summaries the selected papers, sorted according
to their focus. The comparison criteria have been chosen to
differentiate this work with related surveys. Criteria include
focus and objectives of related works, sharing characteristics,
and contributions. The topic coverage of a paper in the table
is defined as follows:

• a topic is considered covered ( ) when several refer-
ences around the topic are cited and their outcomes are
discussed;

• a topic is considered partly covered (G#) if at least one
reference is cited, and its outcomes are explained;

• a topic is considered not covered (#) if the topic is either
only referred to or not mentioned at all.

In the contributions, qualitative literature review refers to
studying the content of selected works, possibly with a struc-
tured comparison, while a quantitative review extract objective
numeric information such as years, or number of papers
per domain, and draws conclusions. Performance evaluation
relates to reimplementing all or part of selected works to
compare their performances. Some surveys have been chosen
for their number of citations on Google Scholar, the others
because they represent the only related survey in their domain.
Finally, in some domains such as Cyber Threat Intelligence
(CTI) or Artificial Intelligence (AI) security, multiple surveys
have been selected for the sake of completeness.

Common issues of collaborative sharing systems, such as
trust and reputation, also apply to FL-based collaboration
systems. Therefore, four surveys [2], [39]–[41] are included in
this work to provide perspectives on the collaborative aspects

of FL. The authors discuss the advantages and limitations of
information-sharing (a), especially CTI. They highlight a need
for standardization, automation, and incentives, in order to
achieve efficient collaboration. The present survey differs by
focusing on the technical aspects of automated collaboration.

As the topic of intrusion detection (b) is a critical part of
FIDSs, this work reviews three related surveys on intrusion de-
tection [43]–[45], especially relying on ML algorithms. They
also discuss the usage of distributed ledgers, blockchain-based
in particular, to support collaborative IDS. The blockchain is
also one of the considered solutions to enable decentralized
FIDSs, as shown in Section V-C6.

FL is the second critical aspect of FIDSs. Consequently,
related works include surveys on the collaborative aspects of
ML (c) and FL [47], [50]. They discuss FL approaches to
work with distributed architectures. The security of FL is
also heavily reviewed by Mothukuri et al. [38], Lyu et al.
[48], and Shen et al. [49]. They identify security threats like
communication bottleneck, poisoning, and Distributed Denial
of Service (DDoS) attacks, that could endanger FL-based
systems. While the IDS use case can be seen as an application
of FL, we show it raises specific concerns in terms of privacy,
latency, and adaptability.

Vasilomanolakis et al. [37] and Zhou et al. [46] survey the
evolution of CIDS—at the merge of intrusion detection (b)
and collaborative ML (c). Their works are however older and
thus, cannot offer a comprehensive view of CIDS, as FL–
based approaches did not exist at the time of their writing.
Hence, the authors focus on collaboration in the sense of
detection+correlation, whereas the following analysis (Sec-
tion V-C) surveys the use of FL in IDSs.

Finally, recent work have reviewed the use of FL for intru-
sion detection [33]–[35]. Alazab et al. [35] address the wider
topic of FL for cybersecurity, which only includes intrusion
detection as an application. Their paper is explanatory and
provides an overview of FL applications in information secu-
rity. Like this work, Agrawal et al. [33] focus on FIDSs, but
have different methodology. The authors list existing FIDSs
and detail their approaches, and identify open issues. On the
other hand, Campos et al. [34] review a subset of FIDSs by
focusing on Internet of Things (IoT) use case, and the impact
of non-IID (Independent and Identically Distributed) data
on performance. While all identify challenges and research
directions, this work also performs quantitative (Section V-B)
and qualitative (Section V-C) analyses of existing FIDSs, and
extracts reference architecture and taxonomy. The existence
of these papers emphasizes the importance and relevance of
FIDSs for the research community.

III. METHODOLOGY
This section details the methodology deployed to review

the state of the art of FIDSs. This article follows the Sys-
tematic Literature Review (SLR) methodology [51]. SLR uses
analytical methods to answer research questions about the
literature on a specific topic. Existing SLR–based articles help
to structure and to format this work, like [52] or [50].



TABLE I: Related works, their topics, contributions, and number of citations according to Google Scholar – Oct. 2021

Domain Year Reference

Security
Privacy

Trust
Detection

Defense/M
itigation

Cyber-awareness

Data
M

odels
Events

Indicators

Defensive measures

Qualitative literature review

Quantitative literature review
Taxonomy

Reference architecture

Performance evaluation

Research directions   Cited

Sharing—(a)

2016 Skopik et al. [39] # # # # #  # #   #  # # # #  170
2018 Tounsi et al. [40] # # G# # #  # # #  #   # # #  181
2019 Wagner et al. [2]    # #  # # #  #   # # #  45
2019 Pala et al. [41]  #  # #  # # #     #  #  13

Detection—(b)

2016 Buczak et al. [42] # # #  # # # # # # #  # # # # G# 1749
2018 Meng et al. [43] # # #  # #  #  # #  # # # #  338
2019 Chaabouni et al. [44] # # #   # # # # # #  # G# # #  246
2019 da Costa et al. [45] # # #  # # # # # # #  # # # #  152

Collaborative
detection—(b) and (c)

2010 Zhou et al. [46] G#  G#  # #  #  # #  # # # #  474
2015 Vasilomanolakis et al. [37] G#  G#  # #  #  # #  #  # #  270

FL—(c)

2020 Aledhari et al. [47]   G# # # # #  # # #  # # # # # 83
2020 Lyu et al. [48]   # # # # #  # # #  # # # #  101
2020 Shen et al. [49]   G# # # # #  # # #  # # # #  4
2021 Mothukuri et al. [38]   # # # # #  # # #  #  # #  81
2021 Lo et al. [50]   # # # # #  # # #   # # #  18

FIDS

2021 Agrawal et al. [33]   G#  # # #  # # #  # # # #  1
2021 Alazab et al. [35]    G# G# G# #  # # #  # # # #  0
2021 Campos et al. [34]   G#  # # #  # # #  # # #   0
2022 Lavaur et al.   G#  G# # #  # # #     #  -

Focus Objective Sharing Contributions
 covers topic; G# partly addresses topic; # does not cover topic;

A. Research questions (RQs)
The SLR methodology recommends defining explicit re-

search questions to structure the review and the selection of
papers. This survey aims at evaluating FIDS and their maturity,
as well as their core components, and relevant variations.
Therefore, using related and selected works, we identify the
following RQs that cover the topic of FIDSs:
(1) What are FIDS?

RQ 1.1. What challenges do FIDS help to cope with?
RQ 1.2. Which techniques exist to federate ML–based
detection and mitigation mechanisms?

(2) What are the differences between of FIDS?
RQ 2.1. What are the key components of FIDS? How
do they influence the system’s performance?
RQ 2.2. Which metrics are used to measure and compare
FIDS?

(3) What is the state of the art of FIDS?
RQ 3.1. What are the topics covered by the academic
literature since 2016?
RQ 3.2. Where was the literatures published? Which
research groups and communities are active in this area?
RQ 3.3. What are open questions according to existing
works?

The RQs are organized in three categories. First comes the
nature of FIDSs, and the existing approaches in Sections IV
and V-C. Then, the survey analyzes what differentiates one
system from another, and how the differences can be measured,
in Section V-C. Finally, this work reviews the status of the
literature on FIDS in Section V-B and Section VI.

B. Search and selection processes

Figure 1 presents the methodology and its search, selec-
tion, and synthesis processes. In yellow are represented the
sources of papers, in green the final selection, and in gray
the processing steps of the methodology. The tools used in
the Structured search are represented with search engines in
purple, and online databases in blue.

The searching of relevant literature involves four sources:
recommendations, intuitive search, structured search, and
snowballing.
(1) Recommendations were given by supervisors and cowork-

ers throughout the realization of this work. This initial set
of relevant papers is also used as a source of snowballing
for further searching. Moreover, we included references
from an aborted survey on Collaborative security ap-
proaches, which already yielded a substantial amount of
literature by using the same methods.

(2) Intuitive search has been performed at the beginning of
the survey to get a first grasp on the topic, and to learn
about the functioning of FIDSs. At first, mostly Google
Scholar has been used.

(3) Structured search has been adopted afterward, following
the principles of SLR [51]. Different search engines and
online databases are used for the sake of completeness, as
illustrated in Figure 1. Databases can provide different re-
sults depending on their ownership. Search engine results
differ according to the way requests are parsed, and the
papers they have indexed. Thus, multiple sources provide
more exhaustive results. The results can be reproduced
by using the two search strings that were used in the
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Fig. 1: Search and selection processes

structured search process: (a) application of FL to IDSs,
and (b) literature addressing the topic of FIDS with
unusual keywords.

(a) ("federated learning" OR "fl" OR "federated")
AND ("intrusion detection systems" OR "ids")

(b) ("federated" OR "collaborative") AND
("detection" OR "defense" OR "mitigation")

(4) Snowballing identifies relevant works that would have
been missed otherwise, such as publications cited by ar-
ticles of our selected corpus, or papers that refer to them.
The related surveys identified in this work (Section II)
contain a lot of references to technical articles, making
them relevant for snowballing. Furthermore, as this survey
proceeds with quantitative analysis of the venues and
groups (Section V-B), it provides extended snowballing
opportunities by looking at other publications in the most
represented venues or research groups in the selected
corpus.

Approximately two hundred papers have been identified.
Duplicate removal is performed with Zotero which allows
identifying and merging redundant items. The selection then
happens in two phases. Firstly, the title and abstract are used
to discriminate out-of-scope papers in Phase I, along with
their number of citations given the search engines, and age.
However, a paper with few citations, but interesting abstract,
probably only lacks visibility. Thus, it is moved to Phase II,
which consists of a more thorough analysis of the selected
works, using the three-pass approach defined by Keshav [53].

After the two selection phases, 22 papers were selected,
excluding the 18 initial surveys seen in Section II. All present
technical solution for FIDS. The challenges identified in Sec-
tion IV were also used to either search or select papers, mostly
through the intuitive search part.

C. Taxonomy and reference architecture
The qualitative analysis performed in this work section

(V-C) provides a comparison of the selected works. We pro-

pose a taxonomy to identify the relevant criteria to differentiate
the solutions. The synthesis is structured around the twelve
classes of the taxonomy.

The taxonomy is built upon different existing taxonomies
regarding CIDS [37], [46], ML–based intrusion detection [45],
and FL [38], [47], [48]. First, we extract classes relevant to the
domain of FIDS. In order to filter out irrelevant classes, the
taxonomy is validated against the reference architecture (Fig-
ure 3). The proposed architecture displays both the operation
and the design of the system. By confronting the taxonomy and
the architecture, we ensure that each item of the taxonomy is
related to a component of the architecture, and vice versa.

Then, the commonalities between the selected works that
are not already represented in the previous taxonomies are
added. This identifies new criteria on which to compare the
selected works. Validation of both propositions is provided
by the literature review, if each selected work can be studied
through taxonomy items.

D. Metric selection

To review performance, we select common metrics for ML-
based detection systems according to related surveys [36], [42],
[44] (Section II), as well as other works on the topic [54], [55].
While these metrics are good indicators of the effectiveness
of the selected systems, they cannot be used to compare them.
As pointed out in Section V-C, differences in terms of datasets
and architectures make comparison irrelevant.

In the selection, some works also consider other kinds of
metrics, like CPU usage or network latency. However, they
cannot be used to compare works either as they heavily rely on
hardware choices. Actual comparison of selected works would
require a complete reimplementation on common hardware
and software stacks (Section VI-C).

Finally, selected metrics are sometimes used to compare
FIDS with an ideal scenario, where models are trained on
all data at once [9], [22]. Comparison with CIDS approach
allows focusing on the federation and aggregation aspects of
FIDSs (Section IV-C). The selected metrics are presented and
explained in Section IV-D.



IV. BACKGROUND

This section defines the concept of collaborative security
and overviews its limitations. It first details the subtopics
for intrusion detection (Section IV-A) and collaborative ML
(Section IV-B). Then, it identifies the corresponding challenges
that FIDSs cope with, answering the corresponding RQ (1.1).
Section IV-C introduces FL, and motivates its use for intrusion
detection. Finally, selected performance metrics are presented
(Section IV-D).

A. Machine Learning for Intrusion Detection
To protect organizations, security systems often rely on

signature-based IDSs to detect known attacks [44]. This ap-
proach is however inefficient against novel or zero-day attacks
and Advanced Persistent Threats (APTs), like Stuxnet [44].
Furthermore, the heterogeneity and sporadic traffic of the IoT
make IDSs less efficient or inadequate [12], [44]. Hence, the
research community started to explore anomaly detection as a
solution to improve detection systems [44].

Anomaly-based detection systems compare a normal pro-
file, trained upon nominal traffic, with observed events to
determine if they are malicious [56]. To that end, researchers
started to study ML to identify the abnormal behavior using
unsupervised learning. The other main approach is supervised
classification. But supervised ML algorithms need labeled data
to train upon. Table II sums up the most frequent datasets used
to train ML-based IDSs.

For real-world use, algorithms must be trained on relevant
data to perform well. This is a problem in IT, but especially
in OT. IoT devices generate less traffic, producing more ho-
mogeneous training data in smaller quantities [12]. This issue
is aggravated in siloed configurations, i.e. in which models
are executed locally. Local architectures induce two obstacles.
First, fewer data to train the models means that the collected
dataset is less exhaustive, missing unseen samples [11]. This
may cause models to yield more false positives or negatives.

Challenge 1. ML models trained on local data are less well-
equipped against unknown behaviors.

Second, local data in real-world are likely to be collected on
devices with little variance, e.g. same brand, same protocols,
or use cases. Thus, there is a risk of generating a biased model,
which would misclassify data, and eventually raise too many
alerts [55].

Challenge 2. ML models trained on local data increase the
risk of introducing bias.

Consequently, the siloed architecture of detection systems
is an obstacle to their effectiveness [47] and IDSs can benefit
from data-sharing through federation.

B. Collaborative ML
ML in the context of cybersecurity spans over multiple

approaches and domains, from pattern recognition [64] to
anomaly detection [12].

Prior to the advent of FL, most collaborative ML solutions
had a centralized analysis, which induces its own set of
issues. Centralized systems represent a single point-of-failure
(SPoF) in the architecture [9]. This also applies to centralized
iterations of CIDS before the introduction of FL. With FIDS
however, analysis is done locally. Thus, even a failure on a
federation server would not impede local detection.

Challenge 3. Typical CIDSs are centralized, and therefore
represent a SPoF.

Moreover, centralized analysis means that all the data
collected by the probes (Figure 3) must be assembled in a
central location, and thus transferred. Data transfer implies
increased latency and bandwidth. However, TI and alerts must
also be actionable to be of use in an operational context.
The ENISA, the European Union Agency for Cybersecurity,
defines in [6] the actionability of TI as the fulfillment of
five criteria: relevance, timeliness, accuracy, completeness,
and ingestibility. Relevancy depends on the context of the
recipient. Accuracy and completeness depend on the emitter,
which is assumed to be exemplary in this context. Timeliness
and ingestibility however are mostly provided by the sup-
porting architecture. Hence, an analysis closer to the capture
location would participate in decreasing latency and bandwidth
consumption [11].

Challenge 4. Centralized CIDSs increase latency and band-
width when compared to local detection.

Furthermore, data transfer can represent a privacy risk for a
company, as the data relevant for intrusion detection is likely to
contain sensitive information [46]. Exposed information might
reveal relevant insights for an attacker.

Challenge 5. Centralized CIDSs can expose sensitive infor-
mation.

Collaboration might imply unverified participants—i.e.
whom trustworthiness cannot be asserted. Stakeholders might
then be reluctant to involve their organization in sharing
processes [2]. While FIDSs do not overcome this issue by
design, research is required in this direction, as noted in
Section VI-C4.

C. Federated Learning
Konečný, McMahan, Yu, et al. [65] introduced FL in 2016,

originally to reduce the communication overhead induced by
data sharing; the technology has since then been studied
intensely (Section V-B1). FL works by aggregating the models
generated by on-device training to benefit from the experience
of other participants without sharing local data. Aggregation
can be performed by a server [12], [18], [66], [67] which can
induce trust and privacy issues. Recent research tends toward
the use of trusted distributed ledgers such as blockchain to
improve availability, traceability, and integrity [20], [68].

FL can also vary depending on the objectives on the
federation. Cross-device Federated Learning (CD-FL) is a
federated setting where on-devices models are trained, and



TABLE II: Common datasets according to [44], [45], and selected works

Dataset Type Records (#) Attacks (%) Balanced Labeled Classes (#) Features (#) Reference

KDD Cup 99 TCPdump data 4,898,431 80.14 7 3 5 41 [57]
NSL-KDD Improved version of KDD99 148,517 53.46 3 3 5 41 [58]
AWID Captured 802.11 packets 37,817,835 2.87 7 3 16 / 4 156 [59]
CIDDS-001 NetFlow data 31,287,934 10.34 7 3 5 12 [60]
CIDDS-002 NetFlow data 16,161,183 3.48 7 3 5 12 [61]
UNSW-NB15 TCPdump data 2,540,044 12.65 7 3 10 49 [62]
CICIDS2017 CICFlowMeter 2,830,743 19.70 7 3 15 80 [63]

then aggregated to be used by the server. It is especially useful
to learn from user data (e.g. from smartphones or wearables)
while respecting privacy and trust issues [11]. When clients
are organizations, in use cases like network security or fraud
detection, we use the term Cross-silo Federated Learning (CS-
FL) [11].

Most applications are using horizontal federated learning
(HFL) [10], which is close to distributed learning. In the case
of HFL, the different clients share the same features, but not
the same samples. Thus, HFL particularly copes with ground-
truth issues (Challenge 1) by providing more data for the
model to be trained on.
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Fig. 2: Example of FIDS

Figure 2 shows an example application of HFL for a
collaborative IDS in the context of a smart factory. A network-
based gateway captures traffic originated by IoT devices and
performs training and detection locally. The federation entity
provides an initial model for training and detection. Each
model is trained locally, before it is transmitted back to the
federation entity. The latter then proceeds with an aggregation
of every participant’s models. The operation is cyclic as the
new aggregated model is disseminated among participants.
The process can be repeated until convergence of client
models, or until an accuracy threshold is reached. An iteration
of this process is called a round. More complex aggregation
strategies can be used, such as selecting a subset of client
for each round, or training specialized models. Section V-C9

details and compares the approaches used by selected works.
The other variants of FL, namely vertical federated learning

(VFL) and federated transfer learning (FTL) [10], are less
represented in the literature of FIDS. The choice of a FL
approach depends on the part of samples and features that is
shared by clients. A sample is an individual entry in a dataset.
Features are measurable characteristics of this entry [69].
When storing a dataset as a matrix for processing, each row
represents a sample, and each column a feature [10].

HFL is applicable when clients share features but not
samples, which is the case in most reviewed works, as denoted
in Section V-C8. VFL is the opposite: clients share samples but
have access to different feature spaces. An identifier is shared
among the samples, so a correlation can be done between the
samples of different clients. In FTL, only a subset of both,
features and samples, is shared. FTL is often used to transfer
the knowledge of a well-trained model to a slightly different
use case or context, e.g. different networks configurations or
device types.

D. Performance metrics
Section V-C12 compares the selected works in terms of

evaluation strategies. Therefore, performance metrics and their
formula are detailed here. Table III contains definitions for the
notations used in the following equations.

TABLE III: Symbols for performance metrics

Symbol Meaning

TP True positives
TN True negatives
FP False positives
FN False positives
P Positive cases
N Negative cases

ML-based IDSs in the literature are evaluated using com-
mon performance metrics [36], [42], [44]. As intrusion de-
tection tasks are a binary classification problem, metrics are
obtained by testing the algorithm against a labeled testing
dataset, and comparing the output of the model with expected
results. Then, the following metrics can be computed:
(1) Accuracy represents the proportion of correctly classified

items. It is the ability for the system to correctly distin-
guish abnormal traffic from legitimate one.

Accuracy =
TP + TN

P +N



(2) Precision, or positive predictive value (PPV), is the
proportion of correct positive cases among all the cases
that have been categorized as positive.

Precision =
TP

TP + FP

(3) Recall, or true positives rate (TPR) represents the pro-
portion of true positive cases that have been correctly
categorized.

Recall =
TP

P
=

TP

TP + FN

(4) Specificity, or true negative rate (TNR), is the proportion
of negative cases that has been correctly categorized.

Specificity =
TN

P
=

TN

TN + FP

(5) Fallout, or false positives rate (FPR), represents the
proportion of the positive cases that should have been
categorized as negative. A high FPR often requires human
intervention after the classification task to filter out the
false positive.

Fallout =
FP

N
=

FP

FP + TN

(6) Miss rate, or false negative rate (FNR), relates to the pro-
portion of positive cases that have not been categorized
as such. In the context of IDSs, it represents an attack
that has been missed by the system. Thus, it is a critical
metric for this use case.

Miss rate =
FN

P
=

FN

FN + TP

(7) F1-Score is the harmonic mean of precision and recall.
It is often used to measure ML algorithm, but is also
criticized because of the equal importance it gives to both
precision and recall [70].

F1 = 2× Precision×Recall

Precision+Recall

(8) Mathew Correlation Coefficient (MCC) is an adaptation
of the Phi (ϕ) coefficient to confusion matrices. While
being mathematically identical, the term is often preferred
by the ML community. MMC has significant advantages
over the other metrics, as it covers all four categories of
the confusion matrix (see [71]). Thus, a high score can
only be obtained with high TP and TN , and low FP
and FN .

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

The mentioned formulas can be adapted to multi-class
classification problems, e.g. attack classification [42]. Other
metrics can also be considered, such as algorithm complex-
ity, training and execution costs, or communication overhead
(Section V-C12).

V. SURVEY

This section contains the results of our literature review.
First, it synthesizes the analyses into a reference architecture
and a taxonomy for FIDSs. Then, it reviews the quantitative
analysis used to answer our research questions related to
literature (RQs 3.1 and 3.2). Then, it goes over the comparison
of selected works to answer RQ 2.1 on the components of
FIDSs and their impact on performance.

A. Data synthesis
The quantitative (Section V-B) and qualitative (Section V-C)

analyses provide results that are synthesized in a reference ar-
chitecture, and a taxonomy. The reference architecture presents
the components of FIDSs and their interactions, while the
taxonomy provides comparison criteria for the selected works.

1) Reference architecture: This section presents the ref-
erence architecture synthesized from the selected works, as
depicted in Figure 3. It can be divided in three parts:

• The Managed system represents the monitored system,
e.g. IT network, industrial devices, or health-monitoring
wearables. As noticed in Section V-C1, collected data
can either concern system or environment behavior. The
former relates to information generated by the systems,
e.g. network traces or resource consumption. The latter
refers to what the monitored system operates on, e.g.
health metrics for medical devices of temperature and
atmospheric pressure for building management systems.

• The Security subsystem is the core of the architecture. It
contains all the system’s activities, from model training to
detection and counter-measures deployment. Depending
on the objectives and constraints, this subsystem can
either be run locally like [14] or [27], on a dedicated
edge-device as in [18], or in the cloud for centralized
learning. The subsystem is assumed to run a device that
embeds enough computing power to perform real-time
anomaly detection against ML models. It is also capable
of training its own model based on collected data.

• The Collaboration subsystem provides the sharing fea-
tures of the system, essentially the model aggregation
(Section V-C9). It also provides optional training from
other sources, like online datasets.

This architecture has similarities with the principles of
autonomic systems, as defined by IBM in 2001 [72]. Their
architecture is referred to as Monitor-Analyze-Plan-Execute
plus Knowledge (MAPE-K). Classic autonomic systems are
local, and therefore use a database to provide knowledge. In
FIDS, FL fills this role in the reference architecture, as the
knowledge is being shared among all agents through model
aggregation.

2) Taxonomy for FIDS: The taxonomy depicted in Figure 4
summaries the core components and specificities of FIDSs, as
extracted from the selected works and existing related tax-
onomies (Section III-C). Correlations between the taxonomy
items and the system’s components can be seen in the refer-
ence architecture (Figure 3). It also serves as a framework for
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Fig. 3: The reference architecture

the comparisons of the selected works. Each class represents a
building block, for which multiple approaches exist depending
on use case and constraints.

The proposed taxonomy contains 12 classes describing the
selected works that span over five main aspects:

• Two classes cover the topic of data: Data source &
type and Preprocessing. It defines what type of data
is considered, how it is collected, and the preprocessing
strategies that are used.

• Local operation is represented by 3 classes: ML location,
Local algorithms, and Defense capabilities. It describes
the detection and mitigation strategies, how models are
built and trained, and where the computing resources are
located.

• The Federation aspect is covered by 2 classes: Federa-
tion strategy, and Communication. They relate to the
communication between the agents and the server, and
how data sharing is organized.

• Aggregation is also covered by 3 classes: FL type,
Aggregation strategy, and Model target. It describes the
type of FL used, how the models are fused, in accordance
with the objectives of the system.

• Finally, 2 classes define the Experimentation topic: Ana-
lyzed dataset and Costs and metrics. This meta-category

does not relate to the proposed solution, but to how the
experiments are performed.

B. Quantitative analysis

This section analyses several indicators of the representation
of FIDSs in the academic literature: the evolution of the topic,
the active groups, and the venues in which the contributions
are made. With the study of active research groups and
relevant venues, this section provides new sources of papers
for snowballing (see Section III).

1) Evolution of the topic: The topic of IDS started to gain
interest in the early 2000’ as depicted in Figure 5a. After a few
years, the topic regained interest in 2015, with an increase of
research on IoT and Industrial Internet of Things (IIoT) [44],
[74], and other specific use cases. With the introduction of
FL by McMahan et al. [7], the community started to apply FL
approaches to IDS around the years 2018–2019 (Section V-C).
Figures 5a and 5b have been generated using Topics feature of
Microsoft Academic, which allow to quickly gather statistics
and research papers about a given topic. The following topic
queries have been used, matching Topics (b) and (c) defined
in Section IV:

(a) intrusion detection system;
(b) federated learning.
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Fig. 5: Evolution of the topics using Queries (a) and (b), according to Microsoft Academic [73], until 2021-10-08

Recent works on FL focus on its security and privacy-
preserving aspects [8], [38], [48]. Techniques like homomor-
phic encryption has been introduced as early as 2017 [75],
and have been extensively reviewed since. More recently,
other privacy-preserving techniques have been applied to FL,
such as multi-party computation (MPC) in FLGUARD [76] or
differential privacy in [77]. This tendency towards algorithm
security is also represented in FIDSs. For instance, Li, Wu,
et al. [18] use homomorphic encryption to provide a secure
and privacy-preserving aggregation of models. Aside from
security, variations of HFL started to appear in 2021, such
as segmented FL in [23], as standard HFL has significantly
been studied for FIDS.

Finally, literature reviews published in 2021 [33]–[35] show
the interest of the community for the study of FIDSs. These
also show the need for synthesis and structuring of research
in this area.

2) Relevant venues: Venues are very diverse in the selected
works. Different IEEE conferences (ranked B and higher
[79]) are represented, such as IEEE International Confer-
ence on Distributed Computing Systems (ICDCS) [12], IEEE
International Conference on Computer Communications and
Networks (ICCCN) [15], and International Conference on
Network and Service Management (CNSM) [14]. Conferences
are often favored for the presentation of technical results, and
are therefore well represented in the reviewed papers (11),
alongside with journals (10), and books (1). Only three venues
are represented twice in our selection: IEEE Internet of Things
Journal [20], [30], IEEE Access [13], [28], and the IEEE
BigDataSE conference [17], [21]. Figure 6 shows the relevant
venues in the literature with their types and the number of
concerned papers.

The diversity of the venues for this topic can be explained by
the number of use cases where FL–based intrusion detection
can be applied. The IEEE Internet of Things Journal for
instance targets the domain of IoT and connected devices,
whereas the IEEE Transactions on Vehicular Technology is
more focused on connected vehicles. Nevertheless, both con-

tain papers on FIDS. As publication choices are currently moti-
vated by use cases, research venues are not yet representative
of FIDSs as a topic, but rather as a technique with diverse
applications.

3) Most active groups: Since they introduced the topic
of FL in 2016, the team at Google Research has been a
big influence for the research community [7], [65], [67],
[80], [81]. They mostly work on the primitives behind FL,
such as model aggregation with the FedAvg algorithm [7].
The team of TU Darmstadt (Germany) is contributing to the
field with DÏoT [12], [82] and an analysis of FL poisoning
attacks [8]. More recently, they produced FLGUARD [76], in
collaboration with Google and the Aalto University (Finland),
which makes them the most represented team in the field. The
University of Tokyo is represented by three recent works [23],
[31], [32] in the last two years on FL and segmented FL for
network intrusion detection.

Other groups are represented in the selected works once.
China is a major contributor, with seven different universities
contributing to the field [19]–[21], [29]. Figure 7 shows the
most active groups and their publications, with their topic
focus expressed with color.

C. Qualitative analysis
This section reviews the selected literature. The selected

works are detailed, and compared using the taxonomy. Ta-
ble IV summarizes the information and helps identify differ-
ences between the works. It gives partial answers to research
questions about the components of FIDSs and how to mea-
sure their impact on performance (RQs 2.1 and 2.2), while
Section V-C9 replies to RQ 1.2 about federation techniques.

1) Data source and type: Depending on the use case, there
are two main approaches. The first one is the one used by
[15], [20], where the model is made on the sensors’ values,
which is analogous to the operation of Host-based Intrusion
Detection System (HIDS). Since [20] targets medical devices,
values include hearth rate, oxygen saturation, among others.
The opposite strategy function at a higher level of abstraction,
independent of the values. The analysis is then performed
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on network traffic, as for Network-based Intrusion Detection
System (NIDS). Most papers [9], [12], [13], [18], [19], [22],
[23], [27], [30] use similar network features, such as source
and destination, local and remote ports, TCP flags, protocol,
and packet length. The authors of [26] also target network
features but at packet-level, all translated to 1D vectors: IP
addresses, layer-4 protocol, ports, and IP packet length as a
120-bit input vector. Li, Zhou, et al. [28] also explore network-
related features in their use case of satellite communications.

These values can be completed with preprocessing (see
Section V-C2) to extract other features from the raw data.
In both [14] and [12], the periodicity of packets is analyzed.
This is important for volumetry attack detection notably.
Furthermore, both work target IoT devices, which have a
sporadic, but periodic and predicable traffic. Thus, anomaly in
the packet-sequence, or in the inter-arrival time might indicate
an attack. While following a similar approach, FTL allows the
authors of [21] to address different features in each client’s
dataset.

The research led by Pahl et al. [14] differs from the other on
the source for the data. They use a middleware called Virtual
State Layer (VSL) to associate traffic with a device class (light,
router, sensor, …), thus allowing the training of per-class

models with high accuracy. However, many OT solutions do
not provide such metadata. Training per-class models requires
then a prior classification step, like in [12].

Additionally, even when considering the same data type,
use cases introduce significant differences in the available fea-
tures. For instance, two systems targeting the communication
between devices may encounter different protocols, services,
and even communication support. Among the selected works,
four use cases are considered, here sorted by representation:

• Information Technology (IT);
• Internet of Things (IoT);
• Cyber-Physical System (CPS);
• Autonomous Vehicles (AV).
The work of Liu, Zhang, et al. [29] is the only representative

of the Autonomous Vehicles (AV) use case, although they do
not use an according dataset. In fact, they train their model on
network traffic, with similar features to [9], [19], [21], [22].
With also similar features, Li, Zhou, et al. [28] apply FIDS
to the very specific use case of Satellite-Terrestrial Integrated
Network (STIN).

Finally, [13], and partly [27], address data distribution, es-
pecially knowing whether data are Independent and Identically
Distributed (IID). A non-IID data distribution can negatively
impact training performance [10]. However, most real-world
scenarios generate non-IID data, which is a major hurdle for
algorithm that require to be trained on live data with non-
supervised approaches.

2) Preprocessing: The source data can be manipulated to
extract new feature or reduce dimensionality through pre-
processing. Three main non-exclusive approaches are distin-
guishable in the selected works: feature extraction, feature
embedding, and feature selection:

• Feature extraction refers to the computation of numerical
characteristics after the data collection; e.g. inter-arrival
time (IAT) or number of packets per device in the context
of traffic monitoring. This approach is taken by Pahl et
al. [14] and Nguyen, Marchal, et al. [12] as they proceed



TABLE IV: Comparative overview of selected works—approach and objectives (1/2)

Ref

Internet of Things

Information Technologies

Cyber Physical Systems

Autonomous Vehicles

Satellite-terrestrial networks
Horizontal FL

Vertical FL

Federated Transfer Learning

Federated M
TL

Federated M
imic Learning

Online learning
Supervised

Semi-supervised

Unsupervised

Personalized models
Network-based

Usage-based Training location Data type Strengths

2018 Pahl et al. [14]  # # # #  # # # #  # #    # Device Abstracted network
traffic (middleware)

relatively lightweight,
online, no labels

2019 Rathore et al. [9] #  # # #  # # # # #  # #   # Edge-controller
(SDN) Network traffic (SDN) offers mitigation,

decentralized

2019 Nguyen, Marchal, et al. [12]  # # # #  # # # #  # #    # Gateway IoT network
traffic (TCPdump)

online, offers per-class
models, no labels

2019 Zhao et al. [16] #  # # # # # #  # #  # #   # Gateway Encrypted network
traffic (CICFlowMeter) versatile (multi-task)

2019 Schneble et al. [15] # #  # #  # # # #  # #  # #  Gateway Healthcare sensor values high adaptability, no labels

2019 Cetin et al. [17] #  # # #  # # # # #  # # #  # Gateway Network traffic (WIFI) –

2020 Zhang, Lu, et al. [20]  # # # #  # # # # #  # # # #  Gateway Air conditioner
sensor values offers traceability (blockchain)

2020 Li, Wu, et al. [18] # #  # #  # # # # #  # # #  # Gateway MODBUS traffic confidentiality (encryption)

2020 Rahman et al. [22] #  # # #  # # # # #  # # #  # Device IoT network
traffic (TCPdump) –

2020 Chen, Zhang, et al. [19] #  # # #  # # # # # # #  #  # Gateway IoT network
traffic (TCPdump) no labels

2020 Sun, Ochiai, et al. [23] #  # # #  # # # # #  # #   # Gateway Network traffic
(PCAP)

segmented (performance-
based models)

2020 Fan et al. [21]  # # # # # #  # # #  # #   # Gateway
(MEC)

IoT network traffic
(TCPdump, CICFlowMeter)

knowledge transfer between
public and private datasets

2020 Al-Marri et al. [24] #  # # # # # # #  #  # # #  # Gateway Network traffic
(TCPdump)

enhanced privacy
(mimic learning)

2020 Kim, Cai, et al. [25] #  # # #  # # # # #  # # #  # Gateway Network traffic
(TCPdump) –

2020 Qin, Poularakis, et al. [26] #  # # #  # # # # #  # #   # Gateway
(SDN) Network traffic (SDN)

very lightweight,
line-speed classification,
P4 language compatible

2020 Chen, Lv, et al. [13] #  # # #  # # # # #  # # #  # Gateway Network traffic
(CICFlowMeter)

robust to poisoning,
scalable

2020 Hei et al. [27] #  # # #  # # # #  #  # #  # Device Network traffic
(TCPdump)

online, offers traceability
(blockchain)

2020 Li, Zhou, et al. [28] #  # #   # # # # #  # # #  # Gateway Network traffic (PCAP,
CICFlowMeter, Argus)

relatively lightweight,
confidentiality (encryption)

2021 Popoola et al. [30]  # # # #  # # # # #  # # #  # Gateway IoT network
traffic (TCPdump, Argus) zero-days detection

2021 Qin and Kondo [31] #  # # #  # # # # #  # #   # Device Network traffic
(TCPdump) relatively lightweight

2021 Liu, Zhang, et al. [29] # # #  #  # # # # #  # # #  # Device Network traffic
(TCPdump) decentralized

2021 Sun, Esaki, et al. [32] #  # # #  # # # # #  # #   # Gateway Network traffic
(PCAP)

segmented (performance-
based models)

Use case FL type Training Approach

with periodicity mining. Since they only process binary
features, Qin, Poularakis, et al. [26] extract numerical
features, and convert them to 1D vectors.

• Feature embedding or dimensionality reduction is used
for algorithms that do not deal efficiently with high-
dimensional vectors. To that end, they use data dimen-
sionality reduction techniques, such as autoencoders [19]
or Principal Component Analysis (PCA) [25].

• Feature selection relates to the automated selection of
relevant features, before learning. The authors of [31] use
a greedy feature selection algorithm based on accuracy.
Logistic regression-based selection [24] can also be used
to eliminate features with a recursive algorithm.

The other works [9], [15], [18], [78] do not emphasize
on their feature selection strategy. Moreover, some papers
[15], [16], [18] use datasets that contains computed features

(V-C11). For experiments on live prototypes, feature compu-
tation is required.

Depending on the use case, additional features after feature
selection or extraction may vary. Network analysis often relies
on basic features, such as addresses and ports for source and
destination, protocol, data type, packet length, and timestamp.
However, these characteristics can also vary regarding their
provenance: network capture [57], [58] or abstracted commu-
nications [14]. Extracted features are very common, such as
inter-packet time, bytes sent per host, or bytes per packets [42],
[44].

Usage-based analysis, on the other hand, is entirely depen-
dent on the monitored device. Schneble et al. [15] monitor
health-related features, like arterial blood pressure or the raw
ECG signals. The authors of [20] focus on air conditioners,
and therefore measure related information such as water or air



temperature.
3) ML location: As explained in Section V-A2, the location

of ML algorithm in a system influences the architecture. The
proposed taxonomy (4) considers three types of locations: on-
device, on-gateway, and on-server. However, a large majority
of the literature concerns either on-device training, or uses a
dedicated device acting as a gateway. Most selected works use
a dedicated device to perform the analysis, while the others
assume the devices can support their own processing. The on-
server processing is not represented here, since it does not
suit the definition of FL. Some hybrid approaches are also
represented, with multi-stage aggregation [29].

The device types and architectural choices vary, depending
on the use case. Zhang, Lu, et al. [20] focus on a medical
use case where the analyzed data is composed solely of
sensor outputs (Section V-C1). Connected sensors are typically
lightweight devices unable to process data. Thus, they require
a gateway to be usable. Other works [15], [16], [18], [19], [24],
[25], [28], [30] rely on gateways because they are more suitable
for traffic analysis. It allows to capture all communications,
even if the devices are connected with different supports (e.g.
IEEE 802.3 versus IEEE 802.11). Gateway-based processing
can also be motivated by the architecture of the monitored
system. For instance, the authors of [21] reuse the existing
infrastructure of 5G by exploiting Mobile Edge-Computing
(MEC) gateways to capture traffic and perform analysis for a
5G IoT use case.

While also using gateways, Rathore et al. [9] differ by
relying exclusively on Software-defined networking (SDN)
switches to analyze the traffic and provide their counter-
measures. In this case, learning and detection does not happen
on the gateway itself (the SDN switch), but on an SDN
controller in charge of managing a fleet of switches. While this
approach employs an intermediary location for model training
and decision-making, it cannot be considered as cloud based
as the models are aggregated in a cloud server afterward.
While they have a similar architecture, Qin, Poularakis, et
al. [26] propose the opposite approach. The algorithm is
deployed on the SDN switch, allowing faster response time by
examining the traffic at packet-level. Their Binarized Neural
Network (BNN) detection algorithm (Section V-C4) enables
local detection close to real-time, even with high packet
throughput, such as during a Denial of Service (DoS) attack.
The authors test both approaches, and find similar performance
in terms of accuracy, precision, recall, and F1-score.

Pahl et al. [14] take another approach and assume the IoT
devices to be powerful enough to run their own analysis
and training. Their design cuts out the gateway by using a
middleware which allows peer-to-peer (P2P) communication
between the agents, thus removing the need for a gateway.
An IoT Microservice Store provides federation and model
aggregation, introducing different hierarchies of collaboration.
This assumption is also taken in [22], [27] and [31]. Liu,
Zhang, et al. [29] also train their models ”on-device” as their
use case target AV. Such vehicles often carry consequent
processing abilities for environment recognition alone, and are

thus assumed to be able to perform ML training.
4) Local algorithms: Most IDSs fall into one of the

following categories: anomaly-based, signature-based, or
specification-based. Hybrid systems are also considered, but
to the best of our knowledge, no example exist in the literature
of FL-based detection systems. Apart from preprocessing [83],
ML-based detection systems mostly rely on the detection of
anomalies, and thus exclude signature- and specification-based
detection. As introduced in Section IV, depending on the
presence of labels, three approaches coexist:
(1) Supervised learning transforms the anomaly detection

into a binary classification problem. It requires a balanced
labeled dataset for the training to be effective. However,
it is harder to deploy in real condition as local training
data are rarely labeled, and models can be skewed by
unbalanced class distribution [34]. This approach is yet
chosen by most of the selected works (16 out of 22).

(2) Unsupervised learning is suitable for unlabeled data. In
the specific use case of IDS, it assumes that (i) benign
traffic is much more frequent that anomalies in the testing
set [84]; (ii) abnormal packets are statistically different
from normal ones. Unsupervised learning is used by 5 of
the selected works.

(3) Semi-supervised learning is a hybrid approach where only
a small part of the training data is labeled. It can be used
to bootstrap a detection model by using a public labeled
dataset, but then training it on local captured data. This
newer paradigm is almost not represented in the selection,
but more recent works—published after the submission
of this survey—focus on semi-supervised learning [85],
[86].

Only four of the selected works adopt online learning [12],
[14], [15], [27]. Online learning refers to the ability to train
a model continuously as data arrives. It provides great adapt-
ability and allows the algorithm to follow the evolution of the
monitored system. All online work in the selection use either
unsupervised or semi-supervised approaches, as continuously
feeding labeled data is impracticable. The opposite approach,
offline learning, refers to a one-shot training on a defined
training set. Between the two, re-training enables updating
the models to fit more recent data, but this is not particularly
addressed in the selected work.

Further differences emerge between the chosen algorithms.
There is a strong representation of solutions based on Neural
Network (NN) (21 out of 22), as shown in Table V. However,
few use the same approach. The selected components (layers)
differ. Nguyen, Marchal, et al. [12] leverage the capabilities
Recurrent Neural Network (RNN) to detect unusual packets,
given a sequence of traffic. Gated Recurrent Unit (GRU) are a
type of RNN known to be very efficient in terms of resource
consumption. They allow to keep a history of the precedent
processed values, which is useful for context keeping or pattern
recognition. In this case, the packet history is used to detect
deviant traffic, and raise an alert. The authors of [13] also used
a GRU–based NN, but replaced the Softmax function of the



last layer by a Support Vector Machine (SVM) one to improve
performance, as it is stated to improve with linear functions.

Other bricks can be used to improve the processing. Li,
Wu, et al. [18] add a Convolutional Neural Network (CNN)
and a Multilayer Perceptron (MLP) to improve their model
performance, which is said to surpass both [12], [15]. CNNs
excel at analyzing complex pattern without performance issue.
Fan et al. [21] also implement CNN in the shared layers
of their FTL approach, the last layers being fully-connected
ones. The authors of [28] also experiment on CNN models,
with one, two, or three hidden layers, but observe decreasing
performance as the number of layers increases.

While they can be used together, CNN are often used as
a replacement for standard MLP. The authors of [15] use
a single hidden-layer MLP to classify the measurements as
normal or abnormal. Since they use medical measurements as
input (Section V-C1), the MLP is trained to recognize out-
of-range values or correlation issues (two linked values are
supposed to evolve in the same way). MLP is also used in
[22], [25], [27], [29]. While they provide significantly lower
performance, their use in FL research can be motivated by
their potential for easy aggregation. Moreover, advances in
FL do not rely on the local algorithm, but more on federation
strategies.

In [20], the learning is performed with a NN with two hid-
den layers. The last layer is a Softmax function which returns a
probability of being in a class (normal or abnormal), which is
applicable for most classification-based approaches [18], [21]–
[24], [30], [32]. Rathore et al. [9] also rely on Deep Learning
(DL) and NN, with an unspecified number of hidden layers.
In their work, the authors of [19] propose a combination of
an autoencoder for dimensionality reduction, and a Gaussian
Mixture Model (GMM) for classification. The entire process is
autonomous and does not require labeled data. An autoencoder
is also used by [31], in combination with Extreme Learning
Machines (ELMs). ELMs are feedforward NNs, just as MLPs,
where the weights of the neurons are set once, and never
updated. This leads to good generalization capabilities and
fast training, but lower performance. While using DL, Zhao
et al. [16] also differ from the others by implementing Multi-
Task Learning (MTL), where different models are trained
as declination of one common base model. The model is
otherwise simpler, as it is mostly made of activation and
dropout layers stacked.

The approach of Qin, Poularakis, et al. [26] differs in
the type of NN model used. To achieve line-speed packet
processing, their model needs to be executed on data-plain
SDN devices, which only support a subset of operations
when compared to regular network devices. To cope with
that limitation, the authors deploy a BNN algorithm. BNNs
are a category of NNs with only binary weights, activation
functions, and the according bitwise operations, allowing fast
execution and efficient memory consumption. These charac-
teristics make them suitable for low-level network detection.

Pahl et al. [14] are the only ones not using NNs, but
simpler clustering algorithm k-means, which require fewer data

to be trained. Before that, and to optimize the speed of the
k-means algorithm, grid-based clustering is used to identify
clusters quicker. The clustering is used for periodicity-mining
(Section V-C1), on which the approach is based. Detection
is based on both the difference between current and previous
communications, and the likelihood of the message (depending
on how often two devices communicate together). Moreover,
while non-DL machine learning is under-represented in the
literature of FIDS, the authors of [14] are not the only ones
to experiment on non-DL ML. Hei et al. [27] review other
alternatives like Decision Tree (DT), Random Forest (RF),
or SVM, but the MLP obtains better performance overall.
Schneble et al. [15] train K-nearest neighbors (KNN), DT,
Stochastic Gradient Descent (SGD), and SVM alongside their
Neural Network.

5) Defense capabilities: Defense strategies are barely cov-
ered in the selected works. Only one paper provides actionable
counter-measures. The work of Rathore et al. [9] builds upon
SDN, which allows the controller to modify the network
architecture in case of an attack. The proposed solution is
tailored for DoS or flooding attacks, and therefore only needs
to block the responsible traffic flow.

FIDSs could also provide remediation capabilities, pro-
viding automated resilience of a monitored system [98]. To
the best of our knowledge, there is no such work in the
literature. However, multiple works have been proposed to
provide self-healing behaviors to information systems [99],
[100]. Such functionalities could be considered to enhance
FIDS capabilities.

6) Federation strategy: FIDS literature shows how the
number of clients can impact performance. In [12], while
the FPR decreases to zero with the augmentation of clients,
the TPR also decreases slightly—from 95.43% to 94.07% by
going from 5 to 15 clients. Other works observe only positive
results, with a small accuracy increase (0.002% from 1 to 8
clients) in [15] for instance, while Li, Wu, et al. [18] measured
very stable results when going from 3 to 10 clients.

Consequently, massive FL applications often implement
a client-selection algorithm which only train a subset of
participant at each round, thus reducing the computing load
and bandwidth consumption. This selection can even be done
dynamically on performance metrics [78], but has not been
found in the literature on FIDS.

On an architectural perspective, most of the selected work
follow a client-server model, where clients train models locally
and a centralized server proceeds with model aggregation.
While relatively easy to deploy, such approach has caveats,
such as the necessity of trusting the central server, or the SPoF
in the aggregation process [47].

Therefore, the authors of [9], [20], [27], [29] rely on decen-
tralization in their design. Zhang, Lu, et al. [20] justifies its
use of blockchain as a way to ensure integrity for the detected
anomaly, in a failure-detection context. On the other hand, the
authors of [9] use the blockchain as a decentralized storage
and aggregation service to improve resiliency by removing the
SPoF. Liu, Zhang, et al. [29] rely on distributed ledgers for



TABLE V: Comparative overview of selected works—algorithms and performance (2/2)

Ref Local Algorithm Federation Algorithm Accuracy Precision Recall Fall-out F-Score K a Dataset

2018 Pahl et al. [14] BIRCH
K-means Parameter addition 0.9900 – 0.9600 0.0020 – 7 Generated

2019 Rathore et al. [9] ANN Vector concatenation ‡ 0.9100 ‡ 0.9100 ‡ 0.9100 – ‡ 0.9100 15 NSL-KDD [58]

2019 Schneble et al. [15] MLP Weight and biases average 0.9930 – – – – 64 MIMIC [87]

2019 Nguyen, Marchal, et al. [12] GRU FedAvg – – 0.9543 0 – 15 Generated

2019 Zhao et al. [16] FC (shared layers) → FC Weight and biases average ∗ 0.9797 ∗ 0.9634 ∗ 0.9681 – – –
CICIDS2017 [63]
ISCXVPN2016 [88]
ISCXTor2016 [89]

2019 Cetin et al. [17] SAE FedAvg – – – – – 933 AWID [59]

2020 Li, Wu, et al. [18] CNN-GRU → MLP Homomorphic parameter addition 0.9920 0.9885 0.9745 – 0.9813 7 CPS dataset [90]

2020 Chen, Zhang, et al. [19] DAGMM Parameter addition – 0.7447 0.9803 – ‡ 0.8700 2 b KDD 99 [57]

2020 Zhang, Lu, et al. [20] ANN CDW_FedAvg ∗‡ 0.8900 ∗‡ 0.8600 ∗‡ 0.9450 – ∗‡ 0.8500 4 Generated

2020 Fan et al. [21] CNN Parameter aggregation ∗ 0.9100 – ∗‡ 0.9350 ∗‡ 0.0020 – 4
CICIDS2017 [63]
NSL-KDD [58]
Generated

2020 Rahman et al. [22] ANN FedAvg ∗ 0.7731 – – – – 4 NSL-KDD [58]

2020 Sun, Ochiai, et al. [23] CNN Parameter aggregation ∗ 0.8710 – – – – 20 LAN-Security
Monitoring Project [91]

2020 Al-Marri et al. [24] ANN FedAvg 0.9812 ∗ 0.9900 ∗ 0.9900 ∗ 0.1320 ∗ 0.9900 10 NSL-KDD [58]

2020 Kim, Cai, et al. [25] MLP FedAvg 0.9712 – – – – 4 NSL-KDD [58]

2020 Qin, Poularakis, et al. [26] BNN SignSGD ∗ 0.9640 ∗ 0.9555 ∗ 0.8645 – ∗ 0.9055 8 CICIDS2017 [63]
ISCX Botnet 2014 [92]

2020 Chen, Lv, et al. [13] GRU-SVM FedAGRU ∗ 0.9905 – – ∗ 0.0108 ∗ 0.9762 20
CICIDS2017 [63]
KDD 99 [57]
WSN-DS [93]

2020 Hei et al. [27] MLP FedAvg ∗‡ 0.8950 ∗‡ 0.9750 ∗‡ 0.8775 – ∗‡ 0.9225 3 DARPA 1999 [94]

2020 Li, Zhou, et al. [28] CNN Homomorphic parameter addition ∗ 0.8100 ∗ 0.1900 4 Generated

2021 Liu, Zhang, et al. [29] MLP Parameter aggregation ‡ 0.9600 0.9400 0.9500 – – 6 KDD 99 [57]

2021 Popoola et al. [30] ANN FedAvg ∗ 0.9939 ∗ 0.9819 ∗ 0.9676 – ∗ 0.9728 5 Bot-IoT [95]
N-BaIoT [96]

2021 Qin and Kondo [31] ONLAD [97] (ELM + AE) FedAvg 0.7040 – – – – 8 NSL-KDD [58]

2021 Sun, Esaki, et al. [32] CNN Parameter aggregation – – – – ∗ 0.8930 20 LAN-Security
Monitoring Project [91]

Metrics

∗ Value is an average of those provided by the authors.
‡ Value is read from a graph in the article, and may vary a few from the exact value.

a K is the highest number of client considered in the experiments.
b Chen, Zhang, et al. [19] measure how one client performs, by training one other.

traceability and integrity, but also to support the aggregation
between roadside units (RSUs), in a decentralized manner.
Their aggregation process has two stages. Firstly, in P2P
between the vehicles themselves, and secondly between the
RSUs—which connect vehicles to the rest of the world in
the Vehicle-to-Everything (V2X) paradigm. Finally, Hei et al.
[27] use the Hyperledger Fabric [101] to provide integrity and
redundancy.

7) Communication: FL relies on communication to share
models between participants, which can be compelling in con-
strained environments [26]. Therefore, some selected works
try to reduce the communication overhead generated by their
solution. Pahl et al. [14] show that their BIRCH cluster
approach reduces packet size (from 169 bytes for the average
packet to 96 per model), but also communication frequency
by sending only one packet per minute.

The authors of [15], [20] compare the communication used
by their system in model sharing, and compare it with the
dataset size, which would require to be transferred in non-
FL settings. While their results show that the relevance of
FL to limit communication usage can be questioned in small
datasets, its strength is undeniable with standard use cases—
above 105 bytes according to [20]. While the communication

overhead is one of the advantages of FL over centralized ML,
it is not often considered in the literature.

Communicating the model parameters can also impact its
confidentiality. The authors of [18] and [28] use homomorphic
encryption to aggregate the parameters without the server
knowing the generated model. The Paillier cryptosystem sup-
ports addition [102], which is performed on the server, before
the result is disseminated back to the clients. Each client can
then decrypt the generated model, and devise the parameters
by the number of participants to obtain the averaged biases
and weights.

8) FL type: As introduced in Section IV-B, most FL
implementations use HFL, 18 out of 22. VFL does not appear
in the literature, and is yet to be applied to the use case of
FIDS. As VFL requires having the same samples but different
features, it is not applicable to collaborative IDSs. Having
the same samples would mean that the different participants
monitor the same devices, just using different features, which
does not follow the motivations of this work. Nevertheless,
VFL might be relevant for correlation purposes in a local
architecture.

On the other hand, some papers show that FTL can be used
to train models in different but related contexts. For instance, a



model trained on the periodicity of specific devices as in [12],
[14] would not perform well against devices with behaviors
that are too different. However, with FTL, one could quickly
train a local model specific to his devices, using the knowledge
acquired previously by others, as in [21]. Another application
of this concept is used by [16] with MTL, where a same model
is trained simultaneously for multiple tasks. Like in FTL,
the model is retrained after the sharing to have personalized
behavior.

Al-Marri et al. [24] implement Federated Mimic Learning
(FML) to improve data privacy. Mimic learning is a technique
that use two models and two datasets to train and share
information afterward. Teacher model is trained on the real
and sensitive data, and used to label a public dataset. Student
model is then trained on the newly labeled public dataset, and
shared with other participants after that.

9) Aggregation strategy: The aggregation strategy is at
the core of FL. In 2016, Google proposed FedSGD [7] along
with the concept of FL. FedSGD is a weighted average of
the local gradient. SGD is commonly used in NNs as an
optimization function; in fact, most research in the past was
about adapting models, so they can be efficiently solved with
SGD [7], [103]. Thus, gradient aggregation is stated to be
the most logic choice. However, aggregating the gradient at
each epoch is costly in terms of bandwidth consumption and
computing power. Therefore, the authors introduce FedAvg,
with the aggregation of model parameters instead of gradient.
This let each client training the model locally and only sharing
the updates after multiple epochs. This approach is the base
of most implementations going forward.

Multiple articles [12], [24], [25], [30], [31] use directly
FedAvg in their work, just as [22], their contributions being
centered on the anomaly detection. In [20], a variant of FedAvg,
called CDW_FedAvg is used. To enhance the performance of
their system, the authors weight the average according to
the distance between the positive and negative classes of
the client using centroid distance. The Centroid Distance
Weighted (CDW) average allows to reduce the impact of the
heterogeneity in the IoT. The heterogeneity issue is a big
motivation for finding alternate aggregation methods. While
not focusing on intrusion detection, Sun, Lei, et al. [104]
propose an asynchronous FL strategy based on node clustering
and a deep Q-network (DQN) Reinforcement Learning (RL)
algorithm that identifies the best aggregation frequency in real
time.

In [13], the authors propose another FedAvg–based approach
which adds attention mechanism to decrease the communica-
tion cost by selecting clients. The clients measure the perfor-
mance of their model, and update new weights accordingly,
the larger the weight the better. When aggregating the client
parameters, the server uses the weights as a representation of
the client’s importance, and thus the quality of its model. In
fact, the number of considered clients has been shown to alter
the results significantly (Section V-C6).

Other articles average the weights and bias in the NN ma-
trices [9], [15], [19], while not mentioning FedAvg explicitly.

Thus, the obtained matrix is used to define the hidden layer
(often the last if there are more than one) of the model.
Li, Zhou, et al. [28] propose further optimizations of the
FL algorithm to suit their use case of satellite-terrestrial
communications. The aggregation of weights and biases is
also used by [21], though not for HFL but FTL. The lower
layers of DL models learn the more generic features [105],
thus allowing the sharing of only the relevant information,
and letting the last layers learn personalized features only
applicable to the local network.

Because they use BNNs with only binary values, the authors
of [26] cannot simply average the model parameters. While the
last layer of the BNN could be converted to numerical values
to be aggregated more easily, the authors prefer the binary
approach SignSGD [106]. This aggregation algorithm relies
on majority voting to estimate the best weights for the layers.
While their system performs well, the authors point out that
updates that do not change the sign of the weights represent
a waste of resources, since only two values are possible, +1
or −1.

Pahl et al. [14] use balanced iterative reducing and clus-
tering using hierarchies (BIRCH) clusters, which have the
particularity of being easily aggregated by simply adding the
features of multiple clusters together. The model fusion is
performed in a microservice (µS)-store that distributes and
monitors the stored models. Timestamps are also saved to
detect the staleness of the clusters.

10) Model target: Training an efficient generic model can
be difficult, and yield unsatisfying results. As highlighted
in [12], anomaly detection systems suffer from higher false
positive rate, and lower sensitivity when monitoring different
behavior at the same time. To solve this problem, Nguyen,
Marchal, et al. [12] add an autonomous classification mod-
ule [82] that allow them to classify devices first, and then
train per-class models afterward. The authors of [9] also train
specific models with their traffic classifier, but do not specify
how.

This classification problem is not a security-only issue,
and standards have been proposed for devices to advertise
information; Manufacturer Usage Description (MUD) [107]
for instance allows devices to signal to the network what type
of functionalities and authorizations they require to function
properly. While they do not rely on an existing standard, Pahl
et al. [14] use a middleware providing similar feature by
communicating predefined classes attached with each device’s
requests.

Fan et al. [21] differ in their strategy with their implemen-
tation of FTL. While a global model is trained in the cloud,
each client trains a personalized version of this model thanks
to the transfer learning (TL) approach. This allows to train
models accurately on the singularities of each network, while
improving the overall performance of the system. Zhao et al.
[16] also have a specific approach with MTL, as it allows their
model to target different problems at once. In their experiment,
the same base model is then trained for anomaly detection,
virtual private network (VPN) traffic classification, and TOR



traffic recognition.
In their work, the authors of [23], [32] also train multiple

models, but not per class or environment. Segmented Feder-
ated Learning (SFL) is a dynamic approach that creates new
models depending on the accuracy of the clients. When a
client’s accuracy is too far from the others, a new branch is
created, and some clients’ models are aggregated in a new
segmented cluster.

Qin and Kondo [31] propose another way of building
different more specific models, by training models depending
on the feature set used by the local device. They emit the
hypothesis of building models per attack: devices could train
a model for DoS attacks, others for Probes.

The other works considered in this survey use a global
model for their detection [13], [15], [18]–[20], [22], [24]–[28],
[30], regardless of the data type, or detection method.

11) Analyzed dataset: While the literature on intrusion
detection provides multiple datasets (Table II), the choice
of the dataset depends on the use case. In the context of
federated intrusion detection, two types of datasets can be
found: network traces or sensor values. Table IV shows the
comparison between the selected approaches, with the datasets
used for training and evaluation. As explained in Section V-C1,
two (2) out of twenty-two (22) works are targeted to sensor
values [15], [20]. In their paper, Zhang, Lu, et al. [20]
generate their own dataset using Raspberry Pis as sensors to
represent air conditioners. The dataset is labeled and contains
seventy features, but only eighteen are kept by the authors,
all regarding the status of the devices (e.g. evaporator wa-
ter temperature, condenser water temperature, compressor air
temperature, exhaust air temperature, etc.), but the dataset has
not been made public, to the best of our knowledge. Schneble
et al. [15] are using the public dataset MIMIC [87], which
contains a collection of medical information, such as arterial
blood pressure, and the raw ECG signals corresponding to the
measured voltage across leads on the body. The authors extract
seven features from the dataset.

The other works, which are using network traffic as source,
differ on the device types they consider. Li, Wu, et al. [18]
use a public dataset [90] made of MODBUS data labeled in
eight different classes, the first one for normal operation, the
other for seven types of cyberattacks. The dataset contains
twenty-six features and one label. Qin, Poularakis, et al. [26]
focus on botnets in one of their scenarios. To test validate
their assumptions, they use the ISCX Botnet 2014 [92] dataset,
which is composed of diverse botnet and malware traffic.
The dataset is replayed to the gateway to capture packet-level
features from the gateway directly.

The authors of [19], [27] and [29] use the dataset generated
during the KDD Cup 99, which is also public [57]. The dataset
contains 41 features and one label, classifying the attacks into
either normal traffic, or one of the four represented classes of
attacks:

• DoS attacks—high traffic volume from a (or multiple)
host to another;

• User to Root (U2R)—privilege escalation to gain access
to a root account in the system (password sniffing or
guessing, brute force, ...);

• Remote to Local (R2L)—malicious incoming traffic over
the network to gain local user access (exploit, ...)

• Probing attacks—information gathering by sending re-
quests (nmap, ...).

The dataset has however been improved in 2009 as NSL-KDD,
to cope with the shortcomings of the original version, namely
redundant records, and low difficulty [58]. Multiple papers
use this NSL-KDD version [9], [21], [22], [24], [25], [31],
separated in two datasets Train+ and Test+, which contain
125,973 and 22,544 records, respectively. More recent datasets
have also been used for IT use cases, like CICIDS2017 [63]
in [16], [21], [26]. Chen, Lv, et al. [13] use both, as a way
to increase the heterogeneity of input data. They also add the
WSN-DS dataset [93] to target wireless communication.

Some works address specifically the issue of IoT devices,
which introduce a new whole set of constraints. They have
little performance, poor patching capabilities, often weak
encryption and authentication mechanisms [1]. Furthermore,
their heterogeneity and sporadic traffic make IDS be less
efficient and/or inadequate [12], [44]. These characteristics
make common dataset inefficient to train detection models
tailored for the IoT. As a response to this, both Pahl et al.
[14] and Nguyen, Marchal, et al. [12] generated their own
dataset. In [12], the authors generated from 33 ”from the shelf”
IoT devices (cameras, light bulbs, routers, home assistants...)
recorded during their different phases of operation (On, Off,
user activity...). Three datasets have been generated:

• activity: execute the user interactions 20 times for each
device. Some devices are not submitted to user interac-
tions, so the dataset only provides standby traffic.

• real-life: 11 devices are deployed in a ”smart home”
configuration with real users which interacted with the
devices over a week

• attack: The Mirai malware was deployed in the selected
devices to characterize the different phases of the malware
(pre-infection, infection, scanning, and DDOS)

The dataset is not published yet1. Pahl et al. [14] used
another approach to generate their dataset, by using the VSL
middleware. The dataset has been published on Kaggle [108].
7 VSL microservices are monitored in four different sites over
24 hours. Two datasets have been created, using different pe-
riodicities for their services. The first one contains anomalous
accesses, the second DoS attacks. In total, 7 attack classes are
represented, which corresponds to 3 percent of the dataset.
From the data provided by VSL are extracted 8 features:
addresses and types for source and destination (4 features),
operation, data type, value, and timestamp. A computed peri-
odicity is added afterward to the features (Section V-C1).

While public datasets are not always available, especially
recent topics like IoT [12], they ensure the reproducibility of

1The authors have been contacted on June 7 (2021), and stated that the
anonymization of the data is still in progress.



experiments, and comparison with the state of the art. The
data sets generated need to be shared so that the community
can validate the results. Reproducibility is currently a major
hurdle for FIDS research.

12) Costs and metrics: Researchers use metrics in the
literature to assess, validate, and compare their solutions. In
this work, metrics are divided in three categories that follow
the life cycle of FIDSs: training, federation, and execution.

While training DL models, most ML frameworks use and
display training loss and training accuracy, that are used to
adapt the model’s weights at each epoch. When plotted on
a time-based frame (time, epochs, or rounds in case of FL),
these metrics show the evolution of the model’s training. It
can be used to measure the convergence time of the model,
often characterized as obtaining an accuracy above a defined
threshold (e.g. 90% in [13]), or with the percentage of loss
improvement between two epochs (e.g. 0.01 in [25]). Training
time also serve as a comparison between approaches [15],
even though it depends a lot on the underlying hardware
architecture. Finally, it can be used as a metric to select other
hyper-parameters, such as the number of epochs in [29].

Li, Zhou, et al. [28] summed training time and commu-
nication time at each round in a unique metric time cost.
This overall training cost is justified by their constrained
environment, where resources are very limited. Therefore,
instead of reaching for maximum accuracy, the authors fix the
accuracy as a target and iterate on hyper- and meta-parameters
(e.g. learning rate, epochs per round) to find the lowest time
cost.

Algorithm complexity and resource consumption are also
relevant metrics to measure local training costs. Constrained
use cases like IoT require complex algorithm to run on
resource-limited devices. In [14], the authors also study com-
plexity to choose BIRCH clusters instead of K-means, as
updating the former is easier—O(d) vs O(n ∗ d), where d
is the dataset size.

Hardware-related resources are used by [9], [16], mostly
to emphasize differences between their approach and another,
often more standard one. These resources often include CPU,
disk and memory usage, as well as energy consumption. How-
ever, evaluating hardware-related metrics requires experiments
to be implemented using the same hardware and software
stacks. Hardware- and energy-based metrics are especially
relevant in constrained scenarios [12], [15], whereas training
time is relevant for most use case, while not a priority. When
these measures are collected on reference hardware, it can also
be used to evaluate the feasibility of the approach, as in [12], if
the hardware matches the deployment constraints of the study.

Federation-related metrics are heavily tied to the communi-
cation between clients, or with a server. The communication
overhead is a core metric of FIDSs, as high bandwidth
consumption is a drawback of CIDSs (see Challenge 4),
especially in constrained environments [26]. The overhead is
often measured in bytes, either per packets [14], or for the
total of all communications [15], [20].

Metrics must be adapted to the specificities of each solution,
for instance when adding a feature. Consequently, Zhang,
Lu, et al. [20] add specific metrics in their evaluation to
measure the impact of using the blockchain, like the time of
the blockchain encoring process. Some works [9], [18], [19],
[21]–[24], [30], on the other hand, do not cover federation-
related metrics in their evaluation, which is questionable as it
is a critical part of FIDSs.

Finally, execution-related metrics are mostly focused on
performance, and often come from the ML community. As
shown in Table V, accuracy is used by almost all reviewed
works, followed by precision and recall. Researchers often
use accuracy to compare their results with related works.
Accuracy can be completed by fallout, specificity, and miss
rate (Section IV-D).

More performance metrics can be derived from these, like
F1-score, or the area under the curve (AUC). The latter is ob-
tained from the receiver operating characteristic (ROC) curve,
which is used to evaluate binary classification algorithms [9],
[12], [14]. MCC is another popular metric for binary clas-
sification tasks, and considered by some as the best metric
for this use case [71]. It is used in [9]. Finally, the confusion
matrix is used by [13], [16], [24], [32]. It allows a visualization
of classification performance by opposing predicted classes
against the real ones. While critical in intrusion detection tasks,
the miss rate is never directly addressed by the selected works,
as the author often prefer the related recall metric.

Other execution metrics like execution time are considered,
as it can be critical for intrusion detection tasks. Latency
allows a comparison between different architectures, especially
centralized, distributed, and decentralized [9]. Latency is also
relevant for highly constrained setups, as in [26]. As pointed
out in Section V-C3, ML location can have an impact on data
collection, but also on detection latency, if data need to travel
over network to be analyzed.

Execution metrics are only relevant when comparing works
that share implementation. Such comparison is often per-
formed by reimplementing a selection of related works. They
can also be used to highlight differences between approaches,
like between local, federated, and ideal models [9], [18].

VI. DISCUSSION AND OPEN ISSUES
This section provides a synthetic overview of the state of

the art of FIDS to succinctly answer RQs about components
and metrics (RQs 2.1 and 2.2), while a more thorough analysis
is proposed in Section V-C. It answers RQ 3.3 by discussing
the limitations of this work, and identifies open issues and
research directions.

A. State of the Art of FIDS
Even though the set represented by the selected works is

small, there are a few conclusions that can be extracted. As
denoted in Section IV, FL has been introduced for two reasons:
(1) it breaks isolated architectures by allowing learning over
distributed data; (2) it speeds up training, and reduces com-
munications when compared to centralized learning. FIDSs,



enable collaborating without endangering each participant’s
security by keeping data local.

As highlighted in Table IV, most reviewed works use offline
supervised classifiers. This makes them less applicable to real-
world usage, due to the lack of adaptability and the need
for labeled data. However, supervised classifiers are easier
to design and deploy, and allow researchers to focus on the
federation aspects of FIDSs.

Most works use NNs for detection, regardless of the data
on which they are trained. This is in line with the community
of ML–based detection that already tends toward NN for their
high performance and generalization capabilities [44]. More-
over, the selected set of papers implies that CNN and RNN
perform better at generalizing shared models than simpler NNs
like MLP. Furthermore, since NNs require large quantities
of data and high computing power, their training is time-
consuming. Therefore, distributing the training among clients
allows producing accurate models in a shorter period of time.

Most architectures in the paper set rely on a gateway to
perform the analysis. It is in fact simpler to deploy and
convenient as it reduces the number of probes. This also limits
these approaches to NIDS use, as only network characteristics
are visible at the gateway. It omits other aspects of the
systems, such as local device-related metrics, like processes,
inter-process communication, or memory consumption, that
could be useful for correlation purposes. Moreover, the closer
the learning is made to devices, the more numerous, and
therefore less generalized, the models will be. In fact, all meta-
parameters an impact the performance of the final system.
Meta-parameters are configuration variable that are not related
to the model itself, such as the architecture, the aggregation
strategy, or the use of device classes. Especially, model target
(Section V-C10) and aggregation strategy (Section V-C9) can
significantly affect the performance.

Performance can be characterized solely with ML indicators.
Table V shows the ML approaches used by the papers and their
performance. Common metrics include accuracy, precision,
recall, fallout, and F1-score. These metrics alone do not allow
comparing works between them, because of their too important
differences, e.g. dataset used, architecture, use of personalized
models. They are however useful to compare one solution
with an ideal system with unconstrained resources and access
two all data at once, to see how the federation affect the
model’s performance. Depending on the application of FIDS,
other metrics can be used, like the resource consumption on
constrained devices, the latency of the detection system when
performed on a dedicated remote device, or the communication
overhead.

While we observe a convergence in metrics for performance
measurements, these metrics comes from research on ML-
based detection systems [36], [42], [44]. Other metrics depend
on objectives and application, and are not consistent among
FIDSs evaluations.

Finally, publication is so far use-case–based, and some
contributions in the selected works rely primarily on applying
FIDS to a use case for the first time. As interest for FIDSs

grows, we expect contributions to tend towards the develop-
ment of methods and techniques, instead of use cases.

B. Limitations of this survey
This survey reviewed 22 technical papers about FIDSs,

selected using SLR methodology. This ensures that the se-
lected papers are representative of existing works in this field.
Other surveys in similar but broader fields worked with bigger
quantities of papers; 231 in [50] about FL, or 95 in [45] for
ML-based IDSs. Therefore, all conclusion extracted from the
selected works must be put in perspective of the number of
analyzed papers.

Furthermore, SLR methodology guarantees the exhaustive
aspect of the selection. However, relevant papers may have
been missed; especially, edge–use-cases and unusual wording
can exclude papers from the selection process. We expect the
steps presented in Section III to mitigate this risk, notably
snowballing.

Moreover, the selected metrics give insight on the quality of
the predictions, and more importantly the comparison between
FIDS and local detection, when provided. As the selected
works target different use cases with different objectives, a
performance metric-based comparison is less relevant. Using
the same datasets, hardware and network configuration, and
coding frameworks, a thorough reimplementation of the re-
viewed papers could provide significant contributions.

C. Open issues and research directions
As FL is becoming more mature, new research tend focus

either on side-aspects like security and privacy [8], [38],
[67], [109], [110], or on its application to a specific use
case, as do the works selected in this survey. This survey
focuses on the application of FL to security and intrusion
detection. Therefore, after the analyses in Section V, the
selection emphasizes on algorithms that are: (i) efficient to
classify and group device’s behavior; (ii) have models that can
be easily aggregated; (iii) select relevant features that keep
their significance upon aggregation; (iv) can cope with the
heterogeneity of monitored environments and devices.

This section reviews open questions identified by literature,
and according research directions.

1) System performance: Like any detection system, FIDS
look for absolute performance: a system with perfect classifi-
cation score, yielding zero false positives or negatives. To that
end, several leads have been identified by the literature. Firstly,
Generative Adversarial Networks (GAN) are to be studied as
inputs to the federated system [15]. GAN are used to train
an ML classifier by generating false examples with another
dedicated network, with the objective of allowing the classifier
to detect adversarial examples.

Furthermore, as pointed out in Section V-C2, the impact
of feature selection on a model’s performance is undisputed.
However, future work is required to properly identify features
that are especially suited for FL and knowledge sharing. Ex-
tending relevant features is also to be addressed, thus closing
the gap between NIDS and HIDS use.



Another consequent part of training efficient ML models
depends on build good behavior representation. Tools have
been proposed in the literature like periodicity mining [12],
[14], but they face limitations. Periodicity mining do perform
well on simple environments like autonomous IoT devices,
but falters on more complex behaviors including human inter-
action or chaotic traffic. Furthermore, protocol mining could
provide good performance in IoT and IIoT applications by
allowing to characterize correct operation, e.g. preventing a
motor from driving longer than its specification allows [14].
More generally, manual feature selection is an important part
of the identified potential improvements [32], especially for
applicability in other contexts.

Finally, other works propose to work on measuring the
influence of model’s hyperparameters on the performance of
the model [23], e.g. number of epochs, learning rate, batch
size. This is in accordance with the findings of this survey.
The link between the system’s performance and its hyper- and
meta-parameters is not explicit. Future works are still required
to evaluate and compare each meta-parameter to understand
their impact on performance.

2) Adaptability and scalability: Distributed systems such as
FL are often used to cope with resource limitation, notably in
terms of computation and bandwidth. However, and as pointed
out by several selected works [9], [21], FL faces limitations
when dealing with a high number of clients. Visible in the
literature, participant selection for each round is a known
strategy.

Nevertheless, current approaches have a lot of limitations,
including devices dropout during the process, long response
time for the upload and update of the models, clients with
less relevant data [22]. Further research is therefore required
on client selection [21] in the context of FIDS: score- or
time-based dynamic fusion [78], reputation, number of attacks
detected, and so on.

Moreover, constrained environments like low-bandwidth
networks, or low-powered devices, may also impact the ability
of FL to provide detection in a timely fashion (Section IV-B).
Further work is thus required on improving the performance
of FL by implementing compression algorithm [21] or glob-
ally reducing the number of computation rounds [22]. These
constraints also accentuate the heterogeneity of environment
and devices.

3) Transferability: Current solutions tend to focus on fed-
erating learning and detection for same-domain devices and
resources. Hence, open issues include allowing the federation
of cross-domain clients [18]. As pointed out in Section V-C1,
the features selected for model training have to be applicable
to multiple environments. Transfer learning [49], [111] and its
federated variant FTL [21], [112] have been applied to similar
domains in the past, and might also represent a favorable
direction for future research in terms of adaptability. Since
the submission of this study, three papers [113]–[115] have
been published in this direction, highlighting the relevance of
this topic for the community.

While generating trained models per class of devices has

been experimented-on in literature [12], [14], current methods
often consider that all local models need to share the same
NN architecture and hyperparameters. This limitation makes
current FIDS less versatile and transportable to other domains.
Multiple techniques could be considered to overcome these
issues. Allowing the training of multiple variations of the same
models could provide better adaptability [19]. Following this
idea, systems could provide multiple algorithms with models
tailored for specific use cases, allowing better local results.
Works on the balance between providing more models or
training them more could provide significant contributions.
Finally, FTL could also be applicable to generate use-case–
specific models from the experience of the global federated
system, with only few local data.

4) Security and timeliness: Using FL or ML to detect
intrusions can introduce new threats to the system, like model
poisoning. Several works have reviewed vulnerabilities of
FL systems and proposed counter-measures [8], [38], [109],
[116]. With FL, model poisoning becomes easier, as one
participant can theoretically impact the model of every other.
FLGUARD [76] implements model-poisoning detection, but
other strategies could be studied, especially in the aspects of
reputation systems, and weighting of the aggregation. Like-
wise, current solutions require an increase of the trustworthi-
ness of client devices for the aggregation process [20], inspired
by the state of the art of collaboration systems and information-
sharing platforms. In particular, current research on these
topics address problems such as trust or reputations [2], [39],
which are relevant for FIDS.

Moreover, as attacks evolve, the training data tend to be
easily outdated. Updating strategies need to be studied to
provide accurate results as time goes [21], and adapt to
changes in the traffic behavior [31]. While the security of
the parameter aggregation has been tackled with homomorphic
encryption [18], [28], Chen, Lv, et al. [13] identify this aspect
as potential future works, as well as other security measures
as MPC or differential privacy.

5) Self-defense and self-healing: As highlighted in Sec-
tion V-C5, current research on FIDS is focused on intru-
sion detection and attack classification. Mitigation is barely
represented in the literature [9]. However, technologies like
SDN offer quick mitigation capabilities, and recent works
study the effectiveness of such defense mechanisms [117],
[118]. New emerging applications like self-defense and self-
healing systems could benefit from FIDS and other FL-based
technologies.

VII. CONCLUSION

This paper provided the first Systematic Literature Review
(SLR) on FL-based intrusion detection and mitigation. While
FL is maturing, using it for intrusion detection and miti-
gation adds new challenges. Section V resented successful
applications of FIDSs. By comparing relevant state of the
art, this work laid the ground for assessing and comparing
future works on machine-learning based Federated Intrusion



Detection Systems (FIDSs): Section V-A provided a reference
architecture and a taxonomy.

Section V-B identified the major venues, the most active
research groups, and the evolution of the FL for intrusion
detection and mitigation. It reveals an increasing interest of
the community in the topic. Section V-C reviewed central
papers by applying the taxonomy, see Figure 4. The focus
was on NNs, their aggregation and detection capabilities, and
the impact that hyper- and meta-parameters have on their
performance that is critical for FIDS. Finally, Section VI-C re-
vealed topics that need future research. It highlights limitations
of current works on model performance, behavior modeling,
adaptability, and security.

Overall, this work showed how FL can improve IDSs,
making it an important technique for increasing the resilience
of future systems. While enabling information-sharing, FIDSs
bring the strong advantage of preserving privacy and security
by not sharing raw data but only models that abstract from
privacy-critical raw-data by design.

ACRONYMS
FL Federated Learning.
ML Machine Learning.
IDS Intrusion Detection System.
IT Information Technology.
OT Operational Technology.
TI Threat Intelligence.
CIDS Collaborative IDS.
FIDS Federated Intrusion Detection System.
RQ research question.
CTI Cyber Threat Intelligence.
AI Artificial Intelligence.
DDoS Distributed Denial of Service.
IoT Internet of Things.
IID Independent and Identically Distributed.
SLR Systematic Literature Review.
APT Advanced Persistent Threat.
SPoF single point-of-failure.
CD-FL Cross-device Federated Learning.
CS-FL Cross-silo Federated Learning.
HFL horizontal federated learning.
VFL vertical federated learning.
FTL federated transfer learning.
PPV positive predictive value.
TPR true positives rate.
TNR true negative rate.
FPR false positives rate.
FNR false negative rate.
MCC Mathew Correlation Coefficient.
MAPE-K Monitor-Analyze-Plan-Execute plus Knowledge.
IIoT Industrial Internet of Things.
MPC multi-party computation.
HIDS Host-based Intrusion Detection System.
NIDS Network-based Intrusion Detection System.
VSL Virtual State Layer.
CPS Cyber-Physical System.
AV Autonomous Vehicles.
STIN Satellite-Terrestrial Integrated Network.
IAT inter-arrival time.
PCA Principal Component Analysis.
MEC Mobile Edge-Computing.
SDN Software-defined networking.
BNN Binarized Neural Network.

DoS Denial of Service.
P2P peer-to-peer.
NN Neural Network.
RNN Recurrent Neural Network.
GRU Gated Recurrent Unit.
SVM Support Vector Machine.
CNN Convolutional Neural Network.
MLP Multilayer Perceptron.
DL Deep Learning.
GMM Gaussian Mixture Model.
ELM Extreme Learning Machine.
MTL Multi-Task Learning.
DT Decision Tree.
RF Random Forest.
KNN K-nearest neighbors.
SGD Stochastic Gradient Descent.
RSU roadside unit.
V2X Vehicle-to-Everything.
FML Federated Mimic Learning.
CDW Centroid Distance Weighted.
DQN deep Q-network.
RL Reinforcement Learning.
BIRCH balanced iterative reducing and clustering using hierarchies.
µS microservice.
MUD Manufacturer Usage Description.
TL transfer learning.
VPN virtual private network.
SFL Segmented Federated Learning.
AUC area under the curve.
ROC receiver operating characteristic.
GAN Generative Adversarial Networks.
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