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ABSTRACT

In many applications, one encounters signals that lie on mani-
folds rather than a Euclidean space. In particular, covariance
matrices are examples of ubiquitous mathematical objects that
have a non Euclidean structure. The application of Euclidean
methods to integrate differential equations lying on such ob-
jects does not respect the geometry of the manifold, which
can cause many numerical issues. In this paper, we propose
to use Lie group methods to define geometry-preserving nu-
merical integration schemes on the manifold of symmetric
positive definite matrices. These can be applied to a number
of differential equations on covariance matrices of practical
interest. We show that they are more stable and robust than
other classical or naive integration schemes on an example.

Index Terms— Lie groups, differential equations, symmet-
ric positive definite matrices, stochastic differential equations

1. INTRODUCTION

Ordinary Differential Equations (ODESs) arise everywhere in
science and signal processing, and are a fundamental tool to
describe the evolution of dynamical systems [1]. However,
except in simple cases, they rarely have analytical solutions,
and numerical integration schemes are required to obtain ap-
proximate solutions. Most of the time, the variable to integrate
lives in a Euclidean space, typically R™. In this situation,
one can choose from many schemes that have been developed
over the years, ranging from simple explicit/implicit Euler or
Runge-Kutta methods to adaptive time step schemes [2].
However, in a certain number of cases of practical interest,
one may require that the variable to integrate lies on a manifold
[3]. Examples include, among others, flows on spheres, rota-
tion or covariance matrices (or other matrix manifolds)[4]. For
abstract manifolds (i.e. that are not seen as embedded subman-
ifolds of R™), one cannot use classical integration schemes,
however advanced, since those require a vector space structure
to compute additions and scalar multiplications. In the more
common and intuitive case of embedded submanifolds of R™,
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the underlying vector space structure makes it possible to ap-
ply such ODE integration methods, but they cannot guarantee
that the numerical solution remains on the manifold at each
time step. For example, considering a differential equation
on a sphere, a small step taken in a direction of a tangent
vector to the current point does not belong to the sphere any-
more. A small error may be tolerable in practice, but staying
on the manifold may be crucial for subsequent uses of the
solution, e.g. computing geodesic distances for Riemannian
manifolds [5], for asymptotic stability [[6], or simply keeping
the structural or physical interpretation of a variable.

More formally, one may be interested in obtaining the flow
of a smooth vector field on a smooth manifold M generated by
a differential equation, with the initial condition z(0) = x:

d
=~ Flaw(®) (1)

dt

where x € M and F|,(t) is a (possibly time dependent) tan-
gent vector to the manifold at z;, and we have F' : [0, +-o00[—
X(M), with X (M) the set of smooth vector fields on M [7].

To integrate such differential equations, several frame-
works were developed under the umbrella term of Lie group
integrators [8]]. Interestingly, most of these methods can be ex-
tended to any smooth manifold acted upon by a transitive Lie
group [4]. We will use this latter framework to avoid having to
define a Lie group structure on our manifold of interest, which
can be done [9], but is less flexible than what we propose here.

In this paper, we focus more specifically on the manifold
of n X n symmetric positive definite (SPD) matrices, denoted
as Symi [10]]. This manifold is of particular interest since it
is the manifold of (nondegenerate) covariance matrices, that
are fundamental for multivariate statistics. Flows of covari-
ance matrices arise in many different applications, such as
Brain Computer Interfaces (BCI) [[L1], Diffusion Tensor Image
processing [12], finance [[13]], control [14]], or data assimila-
tion [15], to represent the evolution of second order moments
of random variables. For example, one may be interested in
the second order moments of the solution of Stochastic Differ-
ential Equations (SDEs), because they provide simplified and
interpretable representations of stochastic processes, though
partial in general. In data assimilation, quantifying and propa-
gating the uncertainty of the variable to reconstruct, coming



from either the dynamical prior model or the observations is
crucial and is done in practice using covariance matrices [16].
Solutions of covariance matrix ODEs which are not SPD are
meaningless in terms on statistical interpretation, strengthen-
ing the need for algorithms with guarantees. Thus, we focus on
equations similar to (), where the manifold M is SymI, and
the right hand side of (I)) is a symmetric matrix (an element of
the tangent space of the SPD manifold at the current point).

Our contributions are threefold: i) We propose to use a Lie
group action of invertible matrices on Sym," as a basis, as it
is broadly applicable to many equations of interest. ii) From
there, we design a Lie group version of the Runge-Kutta 4
(RK4) method (applicable to many other schemes) on Sym:{.
iii) We conduct experiments an example ODE on Sym:[ re-
lated to a multivariate SDE. They indicate that our integrators
perform better than classical schemes, in particular when the
integration step is large. In spite of the ubiquiteness of co-
variance matrices, to the best of our knowledge, Lie group
integrators have not been considered yet for Sym:. A reason
might be that for small enough time steps, iterates of classical
methods remain in the manifold. We have even obtained a
sufficient condition on the step size to guarantee this for an ex-
plicit Euler method. However, with moderately big time steps,
classical methods may cross the boundary of Sym:lr , (consist-
ing of symmetric semipositive definite matrices), leading to
low quality solutions or even diverging algorithms.

2. BACKGROUND ON LIE GROUP INTEGRATORS

The general idea behind Lie group methods is to take advan-
tage of the fact that the flow of a simple class of vector fields
on the Lie group, corresponding to equations analogous to
the linear ODE dx/dt = Ax in Euclidean spaces, is easy to
compute via the Lie exponential map. By temporarily fixing
the vector field of a general equation with a nonconstant "A"
(depending on x and ?), an approximate Euler-like scheme
can be computed step by step. Interestingly, these methods
can be effortlessly extended to smooth manifolds on which
we can find a transitive Lie group action, without more struc-
ture on the manifold [7, [8]. We use this property to define
integrators on the manifold of SPD matrices. Throughout this
section, we follow [4] (Chap.2). Let M be the smooth mani-
fold, G the Lie group, and ! the neutral element of G. A map
A: Gx M — MisaLie group action if and only if it is
smooth and satisfies the two conditions:

A, z)==x (2)
Ay, A(z,2)) = AMyz, z) 3)

A is said to be transitive if
Va,yeM,3geG,Ag,z)=y. “)

This means that any point of the manifold can be reached from
any other using the group action with an element of the group.

To every Lie group G is associated a Lie algebra g, i.e. a
vector space (the tangent space to the Lie group at the identity)
that represents an infinitesimal vector description of the group.
Consequently, associated to a transitive Lie group action on a
smooth manifold is a Lie algebra homomorphism, that trans-
lates the group action into an infinitesimal one from the Lie
algebra, giving an element of tangent space to the manifold at
every point. It determines, from the group action, the type of
equations that can be dealt with. It is defined [4]] (Lemma 2.6)
asamap A\, : g — X(M) such that, for a given point z € M:

A+ (@)(2) = - A(p(5),2) om0 ®

where p(s) is a smooth curve on G, parameterized by a scalar
s, with initial value p(0) = I and initial speed a € g (p'(0) =
a). Intuitively, this curve represents a direction a on the Lie
algebra towards which we can move infinitesimally from any
pointin G. A, can be seen as an infinitesimal group action that
extends this idea of moving infinitesimally from the current
point z on the manifold M in a specific way.

The general procedure to build a Lie group scheme to compute
Tigq from x;, with ;11 = t; + At, with At the time step is:
1) Write the differential equation in terms of a Lie algebra
homomorphism with an adequately chosen group action (A,
with the associated )

dx
7 = Flay () = AE(2(), 1)) (2(2)) (©)
with the initial condition x(¢;) = x;, and where { : M — g
is a smooth function (possibly time dependent). At a given
step, let us temporarily fix £ to its current value &(z;, t;).

2) Since the Lie group is transitive, we can write the flow on
M induced by &(z;,t;) as x(t; + At) = A(y(At), z;) for
some curve v € G starting at the identity with initial speed
&(x4,t;) . Actually [4] (Lemma 2.7), the corresponding flow
on G, -, follows the differential equation

Y _ it
a f(xutz)’Y(t) (7

with v(0) = I, and where we have defined the product be-
tween an element a of g and an element o of G as

d

= Ep(s)O—L?:O (8)

ao
with p a curve in G initially at I and with initial speed a.

3) The solution of the differential equation (7) on G can be
found by [4] (Theorem 2.8):

v(At) = exp(Até(xy, t;)) 9

with exp the Lie group exponential map. Thus, computing
the flow of this equation on the Lie group is easy, provided
the exponential map is tractable. Of course, the solution will
be an accurate approximation of the flow of Eq. (I) if At is



sufficiently small, since throughout the procedure £(z;, ¢;) is
kept constant.

4) We finally come back to the manifold using the group action:
Tit1 =zt + Ar) = A(v(Ar), 25).

If we want to apply another explicit scheme requiring interme-
diary computations of the flow, e.g. RK4, we need to compute
each of the required intermediary values using steps 3 and 4
above with the right values of = and ¢.

3. APPLICATION TO THE SPD MANIFOLD

Here, we propose and examine a suitable Lie group action on
Sym;' to build Lie group integration schemes on Sym_’. First,
the set of SPD matrices is indeed a smooth manifold, whose
tangent space at each point can be identified with the set of
symmetric matrices Sym,,. Thus, any differential equation on
Sym," has a symmetric matrix as a right-hand side.

We choose the Lie group acting on the manifold to be
the set of invertible matrices, endowed with the usual matrix
multiplication (i.e. the general linear group G L., (R)). Its Lie
algebra is the set of all square matrices M,,(R), which we
will simply denote as R™*"™. We define our group action:

A: GL,(R) x Sym,” — Sym

(M, P) — MPM” (10
We can easily check that it satisfies all the requirements to be a
proper group action and that it is indeed transitive. This group
action is very natural for covariance matrices, as it corresponds
to the effect of an invertible linear transformation of a random
vector on its covariance matrix.

From this transitive group action, using the definition in (3)),
we obtain the Lie algebra homomorphism A, : R"*" —
X(Sym.") (applied at the tangent space of a point P € Sym"):

A M)P) = LA

T A((5), P)ls=0 = MP + PM"

)
where v(s) = I+ sM + ... is a smooth curve on the Lie group
starting form the identity and with initial speed M € R"*".
Since we are dealing with a matrix group, embedded in R™*"™,
we can write the curve as a Taylor expansion. Following
Eq. (6), we can tackle any equation of the form

apP

T EP, )P +PEP, )T

12)

with € : Sym,” — R™*"™ any smooth function (possibly time
dependent) from SPD matrices to R™*™. This class of func-
tions is quite broad, so Eq. (T2) is not very restrictive and many
equations of interest can be written this way. For instance, with
a constant &, Eq. (12) governs the dynamics of the covariance
of a random variable that propagates via a deterministic linear
dynamical system [16]]. More complex functions £ can model

Fig. 1. 100 trajectories of the SDE (I6) with our choice of
parameters and a small time step (10 times larger than in the
next figures).

more complex situations. From (7)), we consider an initial
condition P(¢;) = P,. The differential equation on - is

D @ty (t)

7 (13)

with 4(0) = I, and the product (8) reduces to the matrix

product, since we consider a matrix Lie group.

Finally, following (9), the solution ~ is, as one would expect,
v(At) = exp(AtE(P;, 1)) (14)

where here, exp is simply the matrix exponential. Finally for

an explicit Euler scheme, we apply step 4 of Sec. 2]to obtain

the next iterate on Sym;':

For RK4, we compute each of the required intermediary values

using Egs. (T4) and (T3] updating the values of P and ¢.

4. CASE STUDY

We are interested here in a multivariate generalization of a Geo-
metric Brownian Motion (GBM), given by the (It6) SDE [17]:

1
dX = (A + 2B2) Xdt + BXdW, (16)

With X a random vector of size n, A, B € R"*" two com-
muting matrices, such that the eigenvalues of A + %B2 have
a strictly negative real part. W; € R is a Brownian motion. A
closed form expression of the trajectories exists, see Fig. [I]
We can derive ODEs followed by the mean (taking expec-
tations in (T6)) and covariance matrix (using [td’s Lemma [18]]
on XXT, taking expectations, and a few algebraic manipula-
tions). They provide a broad summary of the statistics of the



process (much simpler than e.g. the Fokker-Planck equation):

a7

dt
dP 1, 1.,\" "
—r=(A+3B*)P+P(A+ B%) +B(P+mm’)

(18)
Eq. (I8) can indeed be put in the form of Eq. (I2)), using

£P) = (A + ;B2> + %B(P +mm”)BTP~! (19)

Due to space constraints, we can only detail this example (with
n = 3) here, but our method also applies e.g. to model the
covariance of a multivariate Ornstein-Uhlenbeck process [[19],
or to several types of Riccati equations encountered in con-
trol [14], with appropriate choices of &.

We consider three explicit RK4 schemes for Eq. (I8): a Eu-
clidean scheme, a variant where each step is brought back to
the manifold using a Riemannian exponential map, with the
affine invariant metric of [10l 20] (Riemmanian RK4), and our
method (Lie RK4). We compare them to a reference numerical
solution obtained from a classical RK4 method with a very
small time step, for which we know the trajectory remains on
Sym;" and the integration error is small. We choose specific
commuting A and B so all the eigenvalues of A + %BQ have
a strictly negative real part. We start from a Gaussian initial
condition Xy ~ N(myg, Pg). Then, the process converges to
a distribution given by a Dirac centered at 0.

We set ¢ € [0, 5], and show results with 30 evenly spaced time
steps. We show the trajectories of the covariance matrix for
the three competing methods in Fig. 2] and plot three different
distances between the trajectories and the reference in Fig. [3}
the Frobenius (Euclidean) distance in R™*", as well as two
Riemannian distances on Sym:{: the log Euclidean [9]] and the
affine invariant [[10] distances, that better account for the geom-
etry of the trajectories (and give similar values in this example,
but not for larger time steps). At first glance, from Fig. [2] all
methods seem to reasonably approximate the reference, with
a notably worse performance for the Riemannian RK4. In
terms of Euclidean distance (Fig. [3| (a)), the classical RK4
is only slightly worse than the proposed method. However,
looking at Fig. [3] (b) and (c), we see that Riemannian-RK4
is actually much worse than Lie RK4, and the classical RK4
leaves the manifold after a few iterations only (at least an
eigenvalue becomes negative), resulting in infinite distances.
Even though the trajectory is not far from the true one in
Euclidean distance, the solution is not a covariance anymore
and loses any statistical interpretation. Errors keep increasing
since for the Riemannian distances, the stationary zero matrix
is outside the manifold, at infinite distance from it.

With even larger time steps, both the Euclidean and the
Riemannian-RK4 diverge after a small number of iterations.
For the former, this is expected since the manifold structure

BT

is destroyed even earlier. The latter fails because it is not
truly intrinsic to the manifold, contrary to ours, so a very bad
step in the Euclidean domain cannot be made up for, and the
(Riemannian) exponential map may not be optimal to provide
accurate schemes. For smaller time steps, Lie RK4 remains
the most precise up to a point, then classical RK4 becomes
slightly better on all metrics, probably due to accumulating
errors during the additional computations. However, in many
applications, the step size is imposed by the problem, e.g.
when observation data have a low sampling rate.

—— Classical RK4
—— Riemannian RK4
—— Lie RK4

—— Reference

0125 — Classical RK4
—— Riemannian RK4
— Lie RKa 0.075
0.075 — Reference

0.100

—— Classical RK4
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—— Reference

0.050
0.025

0.000
0.0 0.5 1.0 15 20 0.0 0.5 1.0 15 20 00 0.5 1.0 15 2.0
t
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t t

Fig. 2. Entries (4, j) of the covariance matrix across time for
all schemes and the reference. On diagonal terms, the blue line
cannot be crossed (this would result in a negative variance).
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—— Riemannian RK4 —— Riemannian RK4 —— Riemannian RK4
—— Lie RK4 8|1 —— Lie RK4 8] —— Lie RK4

@

IS
N

Fig. 3. (a) Frobenius (b) Log Euclidean (c) Affine Invariant
distances between each integrated trajectory and the reference.

5. CONCLUSION

We have presented a Lie group framework to define structure-
preserving integration schemes for flows of SPD matrices. Our
fully intrinsic method keeps iterates on the manifold, and pro-
vides smaller integration error than classical or naive methods,
especially for large time steps. This will be useful in our
future work to learn and represent uncertainty in data assimila-
tion [21}122]] or controls from observation data when governing
equations are unknown (by learning a function £ matching the
data). In such cases, the time step is imposed by data and the
training process may lead to ill-conditioned equations.



6. APPENDICES

6.1. Sufficient condition on the integration step for the
Euclidean explicit Euler method to stay on Sym;

In this section, we prove a theorem that provides a sufficient
condition on the integration step p for the classical explicit
Euler method to yield an iterate that still belongs to Sym,’,
regardless of the equation under consideration . T has to be
understood to be the right hand side of the ODE, computed for
the current value of the matrix to be integrated. Tighter bounds
could probably be found for a specific equation by looking at
the exact expression of T.

Theorem 6.1. Let P € Sym, and T € Sym,, i.e. T is in
the tangent space of P. Then

* if T is positive semidefinite, thenVp € RT, P + pT €
Sym;'.

* if''T has at least one negative eigenvalue, then for

min(sp(P))
0= =~ in(sp(T))’

we have P + pT € Sym?. sp(-) stands for the spec-
trum (i.e. the set of (real) eigenvalues) of a (symmetric)
matrix.

Proof. « if T is positive semidefinite, Vx € R™ we have

xT(P + pT)x = x'Px + px'Tx > 0
since xT'Tx > 0. Then P+ pT € Sym,’ forany p > 0.

e if T has at least one negative eigenvalue, we use a
inequality due to Weyl (1912), [23| 24] bounding the
eigenvalues of a sum of symmetric matrices by the sums
of the extremal values of the eigenvalues of each matrix:

Lemma 6.2 (One of Weyl’s inequalities [23]). Let
N,R € Sym,,, and M = R + N. Then

min(sp(M)) < min(sp(R)) + min(sp(N))
Applying this inequality to P + pT, we get
min(sp(P + pT)) < min(sp(P)) + pmin(sp(T))

If the right hand side is greater than 0, then P + pT €
Sym;. From this, isolating p, bearing in mind that
min(Sp(T)) < 0, yields the result.

0

This theorem means that when the tangent vector at the
given iterate happens to be positive semidefinite, then a clas-
sical Euler step will remain on the manifold. However, in the
general case, the tangent vector may have negative eigenval-
ues, and then we can only guarantee that the next iterate will
remain on the manifold for small enough time steps. Hence,
large integration steps may lead the next iterate to leave the
manifold.

6.2. Proof of the transitivity of the group action (I0)
* and define G = Y:X7 ¢

n°

Proof. Let X, Y € Sym
GL,(R). Then

A(G,X)=GXGT =Y3X7 X(Y:X7)T
L YiIXTXEIXEXTY?
—Y3IY?
=Y

O

6.3. Computation of the Lie algebra homomorphism (IT)

We start from the definition given in Eq. (3), and use the fact
that on a matrix group such as GL,(R), a curve - for which
~(0) = Iand 4'(0) = M can be written as a Taylor expansion

~(s) =1+ sM + o(s).

Then, working from the definition we have

A e) 2 4

& ZAG(5),P)lmo
d

= = ((&)Py(s)")ls=0

= d%((l + sM + o(5))P(I 4+ sM + 0(s))") | s=o

= (M + 0(1))P(I+ sM + o(s))
+ (I+ sM + o(s)) "P(M + o(1))" |s=0
= MP +PM”

6.4. Derivation of the covariance equations and corre-
sponding & for several equations of interest

Here we derive, for several examples of interest, equations
followed by covariance matrices. The first three cases concern
SDE on a stochastic process X; € R" for which we are
interested in the evolution of the covariance matrix (we drop
the time index for brevity)

P =E [(X - E[X])(X - E[X])"] =E[XX"]-E[X]E[X]”

The last case is different in nature and concerns an optimal
control problem in continuous time whose solution involves
solving an equation on an SPD matrix.

6.4.1. Linear deterministic system with stochastic initial con-
dition

The first equation of interest is simply a linear deterministic
dynamical system, given by

dX
— =AX
dt



This describes a stochastic process if the initial condition is
given by a probability distribution instead of a deterministic
value. In that case, taking the expectation of the solutions for

any possible X o, we get the same ODE on m(¢) = E[X (¢)].
dm
A
a — "

Then, to obtain a differential equation on P, we first compute
the derivative of X X -

dXXTy dx _,

——=—X X
dt dt +

And then we can obtain, taking expectations in the previous

equation, subtracting mm” to form the covariance (we can
swap derivation and expectation by dominated convergence):

P d
At dt
= AEXX"]+EXX"|AT -

ax’

=AXXT + XXTAT

(E[XXT] mmT)

Amm” — mmT AT

—A (]E[XXT] - mmT> + (IE[XXT] - rnT) AT
— AP +PA”
From this, it is clear that taking £&(P,¢) = A in (I2) corre-

sponds exactly to this equation. In other words, the simplest
ODE the group action (I0) can handle models the evolution
of the covariance matrix of a process passing through a linear
dynamical system.

6.4.2. Multivariate Ornstein-Uhlenbeck process

We now switch to a an actual (Itd) SDE, in this case a linear
one with a constant diffusion:

dX, = AX,dt + BdW,

where X € R", A €¢ R"*" B € R"™" W, € R"isa
multivariate Brownian motion (with independent entries). This
is a multivariate generalization of the well-known Ornstein-
Uhlenbeck process. Since the expectation of the Brownian
motion is zero, the ODE followed by the mean of the process is
the same as in the previous example. This entails that the mean
of the process will converge to zero as well as long as A has
no eigenvalues with a positive real part. There is a closed form
solution for both the trajectories and the covariance matrix
for a deterministic initial condition (see. e.g. [19]). Even
if the initial condition is stochastic, we can derive the ODE
governing the evolution of the covariance of the process. To do
this, we must first derive the SDE followed by X X T, using
1td’s Lemma [18]. We have (X X7);; = X,;X;. Applying
Itd’s Lemma to this function yields:

"X X
AX;X;) =) (E)T

k=1 k 11=1
— X;dX; + X;dX; + dX;dX;

0X1,0X;

Hence, gathering all these terms for 1 < 4,5 < n in a matrix
form, we get:

dXXT)=@xX) X" + xdX* +dxdx"

Replacing d X with its expression, and expanding, we obtain:

dXXT)=(AXdt+BdW ) XT + X(AXdt + BdW )T
+ (AXdt + BdW,)(AX dt + BdW ;)"

=AXX"dt+BdW , XT + XXTATdt

+ XdWTBT + AXXTATdt? + AXdtdW BT

+ BdW A X dt + BdW ,dW,B

Using the usual multiplication rules, dt?> = dtdW; = 0 and
dW  dWT = dtI, we obtain

dXX")=(AXX" + XXTAT + BB")dt

+ Xdw BT + Baw , X"

Note that this is still an Itd SDE, since by vectorizing X X
into a n2 dimensional vector, the last SDE can be rewrittten in
the usual form. To do this, we use the well known property of
the Kronecker product (denoted as ®): vec(BVA) = (A ®
B)vec(V), with vec the vectorization operator. This yields

dvec(XX") = (X ® A+ AT @ X)X + vec(BB"))dt

+ I+ K)(X @ B)dW,

where K € R"**"” is the commutator matrix, i.e. the matrix
such that vec(M7”) = Kvec(M). Writing out the solution to

this SDE, and taking expectations, we get:
dEX X"
% = AEXXT]+EXXT]AT + BB

Similarly as in the previous section, forming the covariance
matrix yields:

P d
dt dt
= AEX X7+ E[XXT]AT + BB”

— Amm” — mm7T AT

—A (IE[XXT] - mmT) + (E[XXT] - mmT) AT

(E[XXT} mmT>

+BB”
= AP + PAT + BBY

Finally, by defining £(P,¢) = A+ ;BBTP~
can use our framework to integrate this equation.

Lin (T2) we

Z Z 32 X; X dX ax, 6.4.3. Multivariate Geometric Brownian Motion

The multivariate GBM SDE is given by Eq. (I6). When A and
B commute, and A + %B2 has no eigenvalue with a negative



real part, [[17] provides a closed form solution for an initial
value of x( under the form:

X (t) = exp(tA + BWy)xo

With our choice of parameters (normal commuting matrices
for A and B, see Sec. @ we can obtain [[17] a closed form
solution on the variance of the process at each time step, and
for any initial (deterministic) xo: E[|| X (¢)||?]:

E[|X (6)] = E[X (1) X ()] = || exp(tQ)xol[*

where Q = w. Then, regardless of the initial distri-
bution, the process converges to 0 (with zero covariance).
Letting 6 £ A + 1B?, the ODE followed by m(¢) is

dm
E—@m

To obtain the equation on the covariance matrix, we follow the
same method as in the previous section, and from the expres-
sion of d(X X ™) given by Ito’s Lemma, we can compute:

d(XXT) = (0Xdt + BXdW)XT + X(0Xdt + BXdW,;)T

6.4.4. Riccati differential equation in continuous time finite
horizon linear quadratic optimal control

In this last application, we switch to a linear quadratic optimal
control problem with finite horizon and continuous time [14].
We consider a state variable x € R™, initially at x(0) = xo,
that is subject to a linearly controlled linear dynamical system:

% = Ax + Bu

where u € R" is the control variable, and A, B € R"*", We
want to control the system, e.g. to stabilize the trajectories
with t € [0,%], if A is such that without control, the system
diverges. This will happen if A has at least one eigenvalue with
a positive real part. In this case, the goal is then to minimize
the quadratic cost function wrt to u, leading to a so called
Linear Quadratic Regulator (LQR):

£l = (Il + [ i + i)

depending on the choices of the SPD matrices Q¢,, Q and R

+ (60X dt + BXdW;)(0X dt + BXdW,;)" to set a tradeoff between the energy of the control and how

=0XXTdt + BXaw, X7 + XXT0% at

X
+XdW, XTBT+oxXxXT0% >+ 0ththXTBT|| |

+BXdW,dtX"0" + BXdW2X'BT
which yields, after applying the conventions mentioned above:
dXXT)=0XXT + xXxT6" + BXX'BT)at
+BXXT + xxTBT)aw,
Writing out the solution and taking the expectation:
dE[X X 1]
dt
Then, forming the covariance matrix yields:
P d T T
2 (gxxT) - )
at — dt ( [XX7] - mm
=0E X X" +EXxXT]07 + BE[XXT|B”

T _ mmT@T

= 0E[XXT]+EXxXx7)0" + BEXXT|B”

— O6mm
—9 (E[XXT] - mmT) + (E[XXT] - mmT) o7
+ BE[X XT|BT
= 6P + PO” + B(P + mm”)B”

which is indeed equal to Eq. [I8] We notice that for the mul-
tivariate GBM, the ODEs on the mean and covariance are
coupled, since the equation on the covariance involves the
mean. In practice, we first integrate the equation on the mean
and plug the solution into the covariance ODE.

Finally, choosing & as in Eq. (T9) puts this equation within
our integration framework.

much we want to push the trajectory of x towards zero. We let
|2, = xTEx forany x € R”, and ¥ € Sym,' .
The closed-loop control solution is given in closed form by
u(t) = K(t)x(t), where K(¢) is a time dependent gain, given
by

K(t) = R 'BTP(t).

In the expression of the gain, P(¢) € Sym;," is an SPD matrix
that can be obtained by solving the so-called Riccati differen-
tial equation:

% = (AP +PA” - PBR 'BTP + Q)

with terminal condition P(t;) = Qg,. This time varying
algebraic Riccati equation can be derived from the cost func-
tion, either using Pontryagin’s maximum principle or dynamic
programming, through the Hamilton-Jacobi-Bellman equa-
tions [14]].

Once again, our proposed framework can handle this differ-
ential equation (and its many variants) by choosing (P, t) =
~A+1IPBR'BT - 1QP .

6.5. Choice of numerical values for the SDE

For the case study of Section[d] we chose n = 3. We chose
B to be a normal matrix (i.e. commuting with its transpose,
to simplify computations, and so we can apply the spectral
theorem):

™
I
(an)
[\
ot
X
=
O~
= O



We chose A to commute with B. For this, A and B must
be simultaneously diagonalizable. Hence we chose:

—5+ 20i 0 0
A=02xU 0 -5-20i 0 |UH
0 0 —4

where U € C™*™ is a unitary (complex valued) matrix diago-
nalizing B (whose eigenvalues are, in order, (1 #+ iv/3)/2 and
2). We know such a unitary matrix exists thanks to the spectral
theorem, that applies to normal matrices. ¥ is the Hermitian
transpose operator. A is actually a real valued matrix because
its complex eigenvalues are conjugate. With these choices, we
can check that A + %B2 is negative definite, guaranteeing that
X (t) converges to zero for t — oo.

6.6. Riemannian metrics on Sym,"

In this section, we simply give the expressions of the two
Riemannian distances on Sym: used in this paper, i.e. the
log Euclidean distance and the affine invariant distance. We
refer to [9, 10l 20] for more details on the Riemannian metrics
generating those distances.

The Log-Euclidean distance [9] is defined as

dre(P1,Pg) = [|log(P1) — log(P2)||r

where log is the matrix (principal) logarithm and || - || 7 is the
Frobenius norm.

The affine-invariant (sometimes called Fisher-Rao) dis-
tance [10l20] is defined as

da(P1,Py) = [|log(P; *PoP %) | .

The corresponding Riemann exponential map Expé at
P < Sym} , used in the Riemannian-RK4 method can be
obtained as as [[10]:

Expa(E) = P2 exp(P~ /2P~ 1/2)pl/2
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