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aIMT Atlantique, Lab-STICC, UMR CNRS 6285, Brest F-29238, France

Abstract

Strategic spatial planning is becoming more popular around the world as a decision-making way to build
a unified vision for directing the medium- to long-term development of land/marine areas. Recently, the
study of marine areas in terms of spatial planning such as Marine Spatial Planning (MSP) has received much
attention. One of the challenging issues in MSP is to make a balance between determining the ideal zone
for a new activity while also considering the locations of existing activities. This spatial zoning problem
for multi-uses with multiple objectives could be formulated as optimization models. This paper presents
and compares the results of two multi-objective evolutionary-based algorithms (MOEAs), Synchronous
Hypervolume-based non-dominated sorting genetic algorithm-II (SH-NSGA-II) which is an extension of
NSGA-II and a memetic algorithm (MA) in which SH-NSGA-II is enhanced with a local search. These
proposed algorithms are used to solve the multi-objective spatial zoning optimization problem, which
seeks to maximize the zone interest value assigned to the new activity while simultaneously maximizing
its spatial compactness. We introduce several innovations in these proposed algorithms to address the
problem constraints and to improve the robustness of the traditional NSGA-II and MA approaches. Unlike
traditional ones, a different stop condition, multiple crossover, mutation, and repairing operators, and also
a local search operator are developed. A comparative study is presented between the results obtained
using both algorithms. To guarantee robust results for both algorithms, their parameters are calibrated and
tuned using the Multi-Response Surface Methodology (MRSM) method. The effective and non-effective
components, as well as the validity of the regression models, are determined using analysis of variance
(ANOVA). Although SH-NSGA-II has revealed a good efficiency, its performance is still improved using a
local search scheme within SH-NSGA-II, which is specially tailored to the problem characteristics. The two
methods are designed for raster data.

Keywords: Multi-Objective Spatial Zoning Optimization, Evolutionary Algorithms, SH-NSGA-II, Memetic
Algorithm, Multi-Response Surface Methodology, Marine Spatial Planning, Raster

1. Introduction

Spatial management planning is a resource location-allocation strategy described as the process of
locating and allocating distinct human activities or uses to the specified units of areas on the Earth’s surface
[13, 15].

One of the first and foremost prerequisites for properly managing spatial planning is spatial data,5

often known as geospatial or geographic data. That is, data about the geographic position of features
and boundaries on the Earth’s surface, such as natural features, land regions, ocean surfaces, and so on.
Coordinates and topologies are commonly used to map and store spatial data [33, 5].
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Land-use planning [18], biodiversity conservation planning [43], MSP [5] and military planning [27] are
only a few of the decision issues in the spatial planning strategy that employ spatial data. Due to competing10

goals and restrictions in the mentioned problems, selecting the optimum zone(s) or area(s) for a certain
purpose using geographical data may be challenging. In contrast to land-use planning, maritime activities
were not handled for many years, since the sea was thought to be unbound and its resources inexhaustible
[8, 5]. Today, protecting the global marine environment has become critical and the MSP strategy is a central
tool for developing sustainable human activities in the ocean, taking into account the interactions between15

different activities and stakeholders [2].

1.1. Problem definition
In MSP, decision issues are optimization problems in which we must determine the best location and/or

shape of a geographic region for a certain activity, given certain constraints. Two sub-optimization difficulties
here are the appropriate location and shape of a spatial region.20

Solving these two sub-optimization issues at the same time is a relatively new class of optimization
problems, and there has not been much study on it in the literature. As previously stated, we focus on
the zoning problem in this study, a special sub-topic of MSP in which a fixed number of human activities
already exist in a certain maritime region and the best site for a new activity must be established. The area’s
present activities are regarded fixed and cannot be changed. The overall attractiveness of the new activity’s25

location is determined by a map that is provided for the whole region and reflects the degree to which it is
worthwhile or unattractive to complete the activity at each place in the area.

The existing activities in the area can be classified into 3 different categories :

• shipping lanes (known as sea lane or sea route), are navigable paths regularly used by large ships,
which cannot be broken down into new activity.30

• ports (also called harbours), The ships are situated on the edge of the ocean (on the mainland) and are
used for loading and unloading cargo or passengers,

• restricted areas in the ocean, are considered additional activities and do not intersect with new activity.
These restricted areas can, for example, represent marine protected areas, wind or tidal turbine farms,
recreational areas, military areas, etc.35

Meanwhile, in addition to the interest map, the other criteria that need to be considered in finding the
precise zone for the new activity is the distance to the different elements of the three categories of existing
activities. Therefore, they could be imposed on in terms of the constraints to the problem as the minimum
and the maximum distance of the new activity to the different existing activities. In other words, the new
activity should be located:40

• at a minimum distance of each of the existing activities (depending on each existing activity),

• at a maximum distance of each of the existing activities (depending on each existing activity).

Finally, in our case, it is preferred that the zone be as compact as possible for two main reasons. First, an
activity may also need a compact zone without holes in it; second, it also prevents potential conflicts with
other new activities that may arise in the region in the future.45

Therefore, the purpose of this problem is to find the optimal location for the new activity that maximizes
not only its interest, but also its compactness. At the same time, it must meet the minimum and maximum
distance constraints for existing activities without crossing them.

As presented in a recent article [5], Figure 1 introduces the definition of the problem in a fictive maritime
area and all its distinct elements. The upper dark gray area of the picture (with the topographical isolines)50

shows the mainland, on which four ports are located. The lower section illustrates the marine region, where
the new activity (e.g., fishing) must be situated and where many other activities already exist: numerous
shipping lanes, a windmill farm (restricted area), and a protected natural area (restricted area). The interest
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Figure 1: Problem Definition [5]

for the new activity is displayed on the background map in three shades of gray (the more interesting the
area, the darker it is). In this situation, the new activity must be placed within a defined minimum distance55

of the shipping lanes ((d>
s ′)), a given minimum and maximum distance of the closest port (d>

p ′ and d
6
p ′),

and a provided minimum distance of restricted regions (d>
r ′). The picture depicts three places for the new

activities. A is situated in an area of the sea that is ideal for the new activity. B, on the other hand, is in
a less interesting section of the marine region, but C is in a highly fascinating part of the maritime area.
The star rating represents the average interest of the three areas (1 star corresponds to a low interest, and60

3 stars to a high interest). Furthermore, each of these three areas has a separate compactness assessment,
which is shown by squares rating box. As B is a rectangle, it is very compact, A is fairly compact, whereas
C is not very compact. Choosing between these three locations merely on the basis of their compactness
and interest is a challenging task, as none of them surpasses the others on either measure. Moreover, the
graphic depicts some of the distance limits. As shown in Figure 1, among the three proposed zones A, is65

meeting all minimum and maximum distance restrictions, while is extremely compact and interesting. On
the other hand, the area B ignores a limit on the maximum distance to the nearest port (d6

p ′) and a limit on

the minimum distance to the restricted windmill farm (d>
r ′). While it is an utterly compact zone, but less

interesting. Similarly, the region C fails the minimum distance limit to the shipping lane (d>
s ′), while being

less compact and yet infinitely interesting. Finally, among all, it is only the area A the most preferable by70

considering objectives and constraints at the same time.
However, the challenge at hand begins with geospatial data, which is data relating to or including

information about places on the Earth’s surface. In this study, we employ the raster data given as a regular
grid of cells or pixels. A value is assigned to each pixel in a raster that reflects some unit of measurement
about the underlying geographical area. The quality of raster data is mainly determined by its resolution.75

As a result, we assume that the interest map for the new activity is a two-dimensional matrix of uniform
cells on a regular grid with nrow rows and ncol columns, yielding a total of nrow ·ncol = m cells. Each
cell in this grid is supposed to have a homogeneous interest value for the particular activity.
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1.2. Related Work and knowledge gaps
The majority of spatial zoning approaches are expressed as multi-objective non-linear optimization80

models, which are frequently solved using stochastic search techniques, resulting in sub-optimal solutions
[34]. However, Basirati et al. offered an exact mathematical zoning model for MSP as a Multi-Objective
Integer Linear Program (MOILP) in a recent study. However, the main drawback of this study is that it does
not solve large-scale problems due to the high computational cost and hardness limitations of MOILP[28, 5].
Therefore, to reach good enough solutions in practice, using heuristic or Meta-Heuristic (MH) algorithms85

are typically sufficient for the real case studies in large scale [37, 25].
Aerts et al. used a simulated annealing to solve the spatial goal programming for the land use allocation

problem. The purpose of this work is to determine the multi-site allocation between different land use,
which is kinda partitioning problem without considering the existing elements as constraints.

Yao et al. highlights the prominent sustainability concerns in land use planning and suggests a gen-90

eralized multi-objective spatial optimization model to facilitate conventional planning. They developed
an evolutionary-based algorithm to solve the land use optimization problem. One of the limitations with
this work, however, is that they are focusing on the simple partitioning problem without considering the
influence of the land uses on each other. Moreover, the developed heuristic algorithm is a traditional genetic
algorithm (GA).95

According to Stewart and Janssen, an improved land use optimization model is proposed for land use
planning with a new spatial component. A GA is developed to solve the optimization problems. The context
relates to interactive decision support for land use planning in which the data are stored in a vector-based
GIS, which is the extended earlier work by the authors for a grid (raster) structure. However, again the
weaknesses of this work concern the mathematical formulation which is nonlinear, and it is a kind of100

partitioning problem solved by a traditional GA which is not compared with any other algorithm.
Following the reviewed studies in this field, the main knowledge gaps addressed in this paper is

designing the efficient MOEAs to be able to:
1. solve spatial zoning optimization problems which is more than a simple partitioning problem.
2. be applicable for any real big map size.105

3. converging to good enough solutions in a reasonable computing time.
4. be compatible with the raster data.

1.3. Contributions of this paper
On the basis of the knowledge gaps identified previously, this article presents the following contributions.

1. Problem resolution: We present two different population-based MOEAs (SH-NSGA-II and MA),110

which are Pareto-based techniques, to address the computational hardness issue of the exact method for
the large-scale spatial zoning optimization problem in MSP. Initialization, stop condition, chromosome
encoding, crossover, mutation, check and repair operators, constraint management methodologies,
and algorithm structure in raster data are all suggested as innovations. The proposed MOEAs are used
to simultaneously optimize the interestingness and compactness objectives of the new activity’s zone.115

2. Experimental validation: MRSM for parameters tuning: we set up a design experiment (DOE) as Box-
Behnken design(BBD), which implements a multi-response regression model for three different map
sizes of the problem in order to determine the optimal value of the algorithm parameters. Moreover,
the effectiveness of all models are validated by Analysis of Variance (ANOVA).

3. Comparison Analysis: To compare two MOEAs, different performance measures are indicated and120

calculated for better characterization of the Pareto solutions, resulting in more precise analysis between
two algorithms for small- and large-scale problem. To guarantee all conclusion, the significance value
of the Wilcoxon signed-rank test (WSRT) (paired samples) tests of all performance measures for the
exact method, SH-NSGA-II, and MA in three problem size levels are calculated and compared.

The article is structured as follows. In Section 2, we proposed the SH-NSGA-II and MA algorithms for125

the problem at hand to find the optimal solutions. In Section 3, we describe an experimental design to tune
the parameters of the proposed algorithms, while in Section 4, we propose the computational results on
artificially generated synthetic instances. Conclusions are drawn in Section 6.
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2. Problem Resolution

Exploration of the search space (diversification) and exploitation of the best solutions identified (intensi-130

fication) are two contradicting criteria to consider while constructing a MH. In general, basic single-solution
based metaheuristics (S-metaheuristics) are more exploitation-oriented, whereas basic population-based
metaheuristics (P-metaheuristics) are more exploration oriented [38]. However, at each iteration of the
basic steepest local search algorithm, the best adjacent solution that improves the results is selected [38]. In
other words, during the search, S-metaheuristics (such as local search and simulated annealing) control and135

transform a single solution, whereas P-metaheuristics (such as particle swarm and evolutionary algorithms)
evolve an entire population of solutions [38]. As a result, utilizing some strategies in these algorithms that
enhance the underestimated local search section might be useful to empower P-metaheuristics.

2.1. Solution Encoding Schema
One of the first tasks in successfully implementing MH algorithms is to choose the solution representation.140

In the spatial planning, the problem solution representation could involve geographic location dimensions
(“cells”, “patches”, or “grids”).

To randomly produce feasible initial population of solutions, we must consider various constraints while
solving multi-objective optimization problems (MOOPs). For the spatial zoning optimization problem, there
is a set of constraints as follows:145

• The size of each solution is a fixed number of cells (the required solution size).

• Intersections between the solutions and other existing activities are not permitted.

• No hole is accepted in each solution because if a zone is closed and bounded, then it is compact [3, 40].

• The layout and structure of the solution should be uninterrupted, that is, without a break in continuity
to make a solution compact.150

Figure 2 depicts a mapping between the space of solution and the space of encoding. on the left of Figure
2, a raster reflects a specified zone of an activity on a map. This raster-based zone includes a regular grid of
cells, or pixels. Each raster cell contains a single value, and the coordinate of each raster cell relates to the
center of the cell ((xi,yi) in Figure 2). Each cell can be defined by a cell dimension, such as the width and
height of the cell. As cells in a raster are frequently square, their width and height will be the same.155

In the GAs, the term “chromosome” is used to represent one single solution, while the term “population”
is used for a given number of chromosomes. Therefore, the chromosome shown on the right of Figure 2
illustrate the encoded solution as a chromosome.

In Figure 2, the direction of generating a chromosome in a raster starts from the south-west of the map
shown by the numbers 1 to 15 as an example (1 is located in the first cell and 15 in the last one, that is, the160

order of their selection).
However, our proposed algorithms lead to a Pareto front that includes multiple different chromosomes

(solutions) on the map for a specific activity, one of which is illustrated in Figure 2. Therefore, if we translate
and gather multiple chromosomes all together in one matrix, we will reach to the matrix of population 1
(Poplist). By doing so, the solution representation in this paper is a multi-dimensional matrix (m×n), in165

which m shows the number of rows of the matrix and n declares the number of columns. In other words, n
reveals the size of each chromosome, that is, the total number of cells of its equivalent zone, while m the
given population size in the proposed algorithms (Npop).

Poplist =



(x11,y11) · · · (x1j,y1j) · · · (x1n,y1n)
...

...
...

(xi1,yi1) · · · (xij,yij) · · · (xin,yin)
...

...
...

(xmi,ymi) · · · (xmj,ymj) · · · (xmn,ymn)


m×n

(1)

5



(x15,y15)(x1,y1) (x2,y2) (x3,y3) ...

151 2 3 ...

A chromosome

Solution encoding

A solution of the problem

Figure 2: Mapping between the space of solution and the space of encoding

2.2. Evolutionary Multi-Objective Optimization Algorithms (SH-NSGA-II and MA)
As the computational complexity and a non-elitism approach are two major obstacles in MOOPs, MOEAs170

could be the efficient approaches to address them. MOEAs optimize two or more conflicting objectives by
considering a collection of Pareto optimum solutions. Deb et al. proposed an efficient approach to achieve
Pareto frontiers called NSGA-II. Figure 3 is a graphical depiction of NSGA-II. Figure 3 shows how the given
set of five solutions (F1-F5) are classified into three non-dominated fronts (Pt+1). As can be seen on the
left of Figure 3, Pt is a population that NSGA-II randomly generates with respect to population size Np.175

Following that, Ot is the chosen chromosomes by the selection operator for the offspring population, with
regard to a crossover rate Pc and a mutation rate Pm. As shown in the first rectangle on the left of Figure 3,
NSGA-II then combines Pt and Ot to generate Rt, which it then sorts into numerous non-dominated fronts
Fi based on coverage and fitness function. These sorted Fis, which are shown in the next rectangle, give rise
to the next population, Pt+1 as the last rectangle on the right, in which the best Fis form Pt+1. Because the180

size of Pt+1 should be the same as that of Pt, all elements of Fi may not be in Pt+1 like F4 and F5 marked as
“Rejected” in the figure. As a result, crowding sorting is used to complete Pt+1 by adding an incomplete
front in the crowding distance technique, in which the required population is created by the top of the front
elements, such as F1, F2, and F3 in Figure 3, without sacrificing good solutions (elitism). NSGA-II generates
Ot+1 from Pt+1 similarly as Ot. It then iterated the preceding processes to achieve the best Pareto solutions185

while keeping a stopping criterion in mind. For further information on NSGA-II, readers might consult
[9, 10]. The chromosomes in Pt are then sorted into numerous fronts of non-dominated solutions.

In this paper, which is an extended version of our conference paper (LION16), we propose the SH-NSGA-
II architecture for solving the spatial zoning optimization problem. Compared to the typical NSGA-II, the
suggested one employs a different initialization approach, stop criterion, four crossover operators, and190

three mutation operators throughout the search phase [10]. Furthermore, offspring chromosomes, which
are produced by the four crossovers and three mutations, may compete with parent chromosomes for
survival from generation to generation. Furthermore, the proposed SH-NSGA-II includes a check and
repair mechanism that prevents the search process from being trapped in local optima. In other words, the
proposed SH-NSGA-II is capable of preventing repeating solutions by producing solutions with various195

structures and without discarding non-feasible solutions: it can fix those that require minimal changes to
make them feasible/acceptable. The suggested SH-NSGA-II components will be described in depth in the
following sections.

In Figure 4, the SH-NSGA-II flow chart is presented. This flowchart starts by the first randomly generated
set of non-dominated population. Next, the set of initial current zones is assessed by computing their200

objective functions. By doing so, the main loop of the algorithm launches. One of four crossovers is chosen
at random in the initial phase to create non-iterative and acceptable offspring, and this random selection is
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Figure 3: Graphical representation of NSGA-II [9]
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Figure 4: The flowchart of SH-NSGA-II for spatial zoning optimization problem

repeated until the crossover rate is reached. On the other hand, if the probability of mutation is satisfied,
the same procedure as random selection in crossover is repeated for three mutation operators to produce
offspring. Following that, all populations and the achieved offspring are grouped together to form a union205

set, which is then evaluated. Because the size of a union set should be the same as the beginning population,
all zones may not be included in a union set at this point. As a consequence, the crowding distance approach
is utilized to complete it by adding an incomplete front, in which the needed population is formed by the top
of the front components without losing good solutions (elitism). Furthermore, it must attain the Pareto front
in each iteration in order to compute the stop criteria, which is the number of non-improved Hypervolume210
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(HV) values and will be explained in detail in Subsection 2.5. As a result, if this stop requirement is not met,
the final selected solution set is saved, and the next generation begins. Otherwise, the final Pareto front is
stated. It should be noted that three notations pm in Figure 4 represent the probability of mutation.

As mentioned in section 2, applying some strategy to empower the local search ability in MOEAs helps
to reduce the likelihood of premature convergence. Therefore, we propose another MOEA as a hybrid215

SH-NSGA-II using local search (MA) to enforce and compare with the proposed SH-NSGA-II. The MA
combines an evolutionary search-based optimization algorithm with a problem-specific local search to
balance the exploration and exploitation of the algorithm and therefore improve the quality of the solution
[12, 11]. MA has recently been shown to be useful and powerful in tackling difficult large-scale optimization
issues [16, 32, 46].220

The Algorithm 1 describes our proposed MA to solve the spatial zoning optimization problem. In this
pseudo-code, two different colors, red and black, are used. The red lines added to SH-NSGA-II in black to
make MA algorithm. Unlike traditional MA [10], the proposed one employs four crossover operators, three
mutations, and a local search operator during the search process. The proposed MA added a local search
strategy to SH-NSGA-II to improve its search efficiency.225

As can be seen in the pseudo-code 1, the start point for both algorithms is similar, that is generating a
random population with respect to the predefined population size (Npop) and then it is evaluated. To begin
with, all three groups of populations, including, crossover, mutation, and local search indicated by popcross,
popmutation, poplocal in order, will start with initial population. Afterward, on the basis of the crossover
rate, this operator begins to make a list of new offspring. In each turn, up to the crossover rate, a crossover230

(i) is randomly selected between four different crossover operators. In case of not being in the offspring list,
the feasible generated offspring would be added. After making the offspring list of crossover, the mutation
loop will be started by meeting the mutation probability. The initial population would be mated by three
different mutation operators (i) which are selected randomly iteratively. Then, the output of them would
be saved in the offspring list of mutation if it is not already there. Following that, the local search process235

would be launched by local probability. Unlike SH-NSGA-II, no binary tournament is used in the local
search operator selection process. Instead, a lower selective pressure is applied to select a number of the
population. By doing so, it ensures that each chromosome in the selected population gets an opportunity to
pass on their genes to the next generation, promoting variety and avoiding premature convergence. Then, a
union set would be updated by combining all gathered offspring from crossover, mutation, and local search240

operators. Next, using the crowding distance, the union set is adjusted to a certain size. Finally, the stop
condition is the number of non-improved HV values (K) which will be explained in detail in Subsection 2.5,
is calculated, and all population lists along with their evaluations are updated to check if to continue or stop
the main loop.

2.3. Search Components245

MOEAs employ different common search components (e.g., selection, variation operators (mutation and
crossover), and replacement) as their major mechanism to carry out the evolutionary process. This section
explains all the operators used in SH-NSGA-II and MA.

2.3.1. The Initialization Operators
The Pareto front can be generated more rapidly and produce more possible solutions with well-initialized250

populations, but the process is less efficient if the starting answers are poorly chosen. In spatial planning
optimization issues, maps including existing activities and feasible areas to be found as the new activity
should be incorporated into the iteration process, and initialization operators should generate 100% random
solutions. Instead of checking distances on all possible grids, the utilized technique for generating the
random population is similar to circle filling on a grid by bounding box, in which we save a lot of time by255

examining a much smaller region without looking at the rest of the grid. Compared to other basic algorithms,
this may be able to construct compact zones with sufficient diversity that match all the restrictions listed in
Section 2.1.

The following is a summary of the steps in this algorithm:

8



Algorithm 1 Pseudo-code MA

1: procedure MA(Npop,Rc,Rm,Pm,Rl,Pl)
2: pop← random population(Npop) . Create a random initial population set
3: F← evaluation Fitness(pop) . Evaluate the initial population
4: popcross,popmutation,poplocal ← pop
5: Fcross, Fmutation, Flocal ← F
6: while not stop criterion(counter < K) do
7: while not crossover rate do
8: Ci ← crossoveri(popcross, Fcross) . For ith crossover of 4
9: Offspringcrossi ← non repeat(Ci) . Clearing and Collecting offspring

10: end while
11: if mutation probability then
12: while not mutation rate do
13: Mi ← mutationi(popmutation, Fmutation) . For ith mutation of 3
14: Offspringmutationi

← non repeat(Mi) . Clearing and Collecting offspring
15: end while
16: end if
17: if local probability then
18: Offspringlocal ← local search(poplocal, Flocal)
19: end if
20: pop← insert(pop,popcross,popmutation,poplocal) . Create a union set
21: F← evaluation Fitness(pop) . Evaluate union set
22: Fpareto,Npareto ← pareto front finding(F,Npop) . Finding the pareto front
23: hv← HV(Fpareto,Npareto) . Calculating HV
24: counter← count(hvlist) . Counting the non-improved HV value
25: pop← selection(Npop,pop, F) . Do selection among union set
26: F← evaluation Fitness(pop)
27: Updating popcross, popmutation, poplocal, Fcross, Fmutation, and Flocal
28: end while
29: Reporting the final Pareto front based on the Crowding Distance
30: end procedure

9



1. The square bounding box must be defined first260

2. Getting all the cells in this box together
3. Choosing cells that match all the following criteria

• Starting with radius 1, being within the circle (if it is less or equal than the radius then mark it)
• Being feasible
• Being non-repetitive265

4. Step 3 is repeated until the upper-bound solution size is reached, and the radius is increased to the
maximum preset radius in each iteration (8)

As can be seen in Figure 5, it is a sample of circular fill of radius 3.5 with a bounding box. The values
shown in Figure 5 are the centroid distances of the grid from the center yellow point. The bounding box
is defined by the four bounds; left, right, bottom, and top. Having gathered all feasible cells within this270

rectangle, the checking approach begins. Here, we select the number of cells with respect to the solution
size starting with radius 1. Among all the inside gathered (x, y)s, those are marked that not only meet the
maximum radius distance restriction but also have yet-to-be selected (as shown in dark green). In order to
increase the variety structure of the generated zones, another algorithm is used in which instead of filling
the circle, the square surrounded this circle (the bounding box) is considered.275

Figure 5: Random population using circle filling on a grid by bounding box

2.3.2. Crossover Operators
Two proposed MOEAs utilize four crossovers, namely Crossover-1 (2.3.2.1), Crossover-2 (2.3.2.2),

Crossover-3 (2.3.2.3), and Crossover-4 (2.3.2.4), which are explained in details in this section. They are
applied to three separate sections of the chromosome, to thoroughly investigate the search space of the
problem. We must choose two parents as inputs for this operator for each crossover. As a result, binary280

tournament selection is chosen as a selection method to pick two selective parents [10]. The chromosomes of
both parents are then encoded and sorted according to x-coordinate/y-coordinate.

Having selected a random crossover i as mentioned on line 8 of the pseudo-code 1, the parent populations
go through the tournament selection and two of them are selected. The selected parents are mated by the
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selected crossover operator and generate maximum two offspring after passing the check and repair operator.285

The parents of the remained offspring are deleted from the parent population list. The updated parent list
will be returned to the crossover loop, and this action is iterative until the crossover rate is reached.

2.3.2.1. Single-Point Vertical Cutting Crossover (Crossover-1).
In this crossover, two parents representing two zones, together with their encoded chromosomes, are

represented in purple and yellow in Figure 6. Then, as shown in Figure 6, a cut-point cell is chosen at290

random along the length of each chromosome. The next step is to create the center cell of these two cut-point
cells, which is labeled “C” in red. As a result, each parent is split into three sections: before cut-point,
cut-point, and after cut-point.

This split is done vertically since both parents are ordered based on the x-coordinate to begin with,
which is why this crossover is named “Single-Point Vertical Cutting Crossover”. After locating the middle295

cell, the other two parts are vertically swapped and transformed to the new center point, i.e., the “left-
hand” side of “Parent-1” and the “right-hand” side of “Parent-2”are shifted to the middle cell that forms
“Offspring-1”.

The “left-hand” side of “Parent-2” and the “right-hand” side of “Parent-1” are substituted with the
identical middle cell, resulting in another offspring, “Offspring-2”.300

Figure 6: Single-point vertical cutting crossover (Crossover-1)

Figure 6 shows different numbers in the offspring chromosomes than those of parents because the
coordinates of parent cells are changed by the new center point to other locations in the map. The output of
each crossover is two offspring (children). By implementing this crossover leading to replacement through
the map, some offspring may become infeasible due to the violation of certain constraints of the spatial
zoning optimization problem. Therefore, it is needed to check and repair all offspring chromosomes to305

ensure their feasibility. This check and repair operator is explained in detail in Section 2.3.4. It is noted that
four crossovers are not related, and they usually have different inputs but always unique outputs.

2.3.2.2. Single-Point Horizontal Cutting Crossover (Crossover-2).
The cutting direction is switched from vertical to horizontal, unlike Crossover-1. To put it another way,

the y-coordinate is used to arrange two parent chromosomes. As shown in Figure 7, it should be noted that310

the random cut point in this example is the cell number (5). The graphical representation of this crossover is
shown in Figure 7. Next, the middle cell of these two cut-point cells (number 5) is made, which is called “C”
in red. Each parent is divided into three parts; before cut-point, cut-point, and after cut-point, respectively.
As both parents are sorted based on y-coordinate, this division is done horizontally, that is the reason why
this crossover is called “Single-Point Horizontal Cutting Crossover”. Having found the middle cell, the315

other two parts are horizontally swapped and transformed to the new center point, that is, “bottom” of
“Parent-1” and “top” of “Parent-2” are shifted to the middle cell that forms the “Offspring-1”. On the other
side, “bottom” of “Parent-2” and “top” of “Parent-1” are replaced to the same middle cell making another
offspring, “Offspring-2”.
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Figure 7: Single-point horizontal cutting crossover (Crossover-2)

2.3.2.3. Semi-Proportional Vertical Single-Point Cutting Crossover (Crossover-3).320

The structure (shape and size) and position of each zone are the two fundamental concerns in the spatial
zoning optimization problem, as far as can be deduced. That is why the fundamental goal of the two first
crossovers is to create well-diversified offspring in the parent neighborhoods from a structural standpoint.
However, the goal of the following two crossovers is to produce well-diversified offspring in close proximity
to the parents. Therefore, Crossover-3 and Crossover-4 are built to focus on positioning the new activity on325

the highly interesting zones. Therefore, the cutting type in Crossover-3 and -4 is the same as Crossover-1
(vertical single-point cutting).

However, after selecting the cutting cells at random in the parents, the new rule is used to locate the cell
“C” among the offspring. The method for locating the cell “C” is based on the first objective function, which
is the interestingness value of parents.330

However, after randomly selecting the cutting cells in the parents, the new rule is applied to find the cell
“C” in the offspring. The approach to find the cell “C” is based on the first objective function, namely, the
interestingness value of parents.

The difference between the initial objective function values of two parent chromosomes is calculated
using the indicator “proportion” in Crossover-3. Following the proportional value, three situations are335

considered:

1. Zero proportion: When both parents’ first objective function values are equivalent, the middle cell in
the distance between the parents’ selected cutting cells (1/2×A) is picked as the new “C” cell. The
cells of the offspring are created by modifying the parent chromosomes, depending on the sort of
cutting used here, which is vertical.340

2. Negative proportion: When the initial objective function value of “Parent-1” is smaller than “Parent-
2”, a new “C” cell is drawn toward the “Parent-2” placed in the distance (2/3×A) from the “Parent-1”,
resulting in one of the offspring. The other offspring, on the other hand, is formed in the middle
distance as previously. The rest of the procedure is identical to that of a zero proportion.

3. Positive proportion: The direction of the movement of the “C” cell is exactly the opposite of the345

negative proportion. Because the objective value of “Parent-1” is greater than that of the other. As a
result, one of the children is drawn to the first parent, while the other stays in the center. The rest of
the procedure remains unchanged.

For example, in Figure 8, the negative proportion is shown. As this crossover is called semi-proportional
single-point vertical cutting crossover, the first offspring stays in the middle, and the other goes toward the350

parent with a higher first objective function (interestingness value).

2.3.2.4. Full-Proportional Vertical Single-Point Cutting Crossover (Crossover-4).
The only difference between Crossover-3 and -4 is that in case of positive and negative proportions, both

offspring intend to get closer toward the parent with higher objective function. Therefore, we could call

12



Figure 8: Semi-proportional vertical single-point cutting crossover Crossover-3

it as full-proportional vertical single-point cutting crossover. All 4 crossovers are implemented iteratively355

through a loop. In each iteration, the check and repair operator checks the feasibility of the offspring
(explained in Section 2.3.4). If each offspring is validated, it will be added to the list of offspring. This
insertion will continue until the crossover rate is reached.

2.3.3. Mutation Operators
Vertical and horizontal reconfiguration of the solutions are examined to employ well-diversified solutions360

around the parent chromosomes, as demonstrated in the crossover operators. Three mutation operators,
on the other hand, are utilized to better explore the problem’s search space. After a certain number of
iterations within the main loop of the suggested MOEAs, the mutation operators will randomly be chosen.
The proposed MOEAs employ three mutation operators, namely Mutation-1, Mutation-2, and Mutation-3.
These operators start to be applied to each chromosome. The mutations’ structure is based on a mix of four-365

directional motions (right, left, up, and down) and rotational symmetry of the solution across solution space
(90°, 180°, 270°). Each mutation has two parent chromosomes as inputs, just like the crossover operators in
Section 2.3.2 (binary tournament selection). Each chromosome is shifted to the other side of the search space
in Mutation-1, with each parent’s moving step between the list of four directions chosen at random. On the
one hand, each gen coordinate (x, y) in each parent chromosome should be rotated counterclockwise by a370

specified angle around a given origin in Mutation-2, in addition to the 4-direction movement. In Mutation-3,
however, the rotation process is the only factor that affects each parent chromosome. There could only be
two offspring chromosomes after confirming the feasibility and correcting the result of each mutation.

2.3.4. Check and Repair Operators
Some challenges may arise throughout the solution development process. One challenge is that new375

solutions must be generated inside the possible solution space, not outside of it or in conflict with existing
activity. Another challenge is recreating the solutions in a compact manner (i.e. without any hole). Two
distinct check and repair operators, “check-and-repair” and “compacity-improver”, are employed to fix
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these difficulties. Three potential situations for the first issue and one scenario for the second issue might
occur as follows:380

• Scenarios pertaining to the first problem are as follows:

1. The chromosomes are not included inside the solution space (map).
2. The chromosomes are located within the solution space, but they overlap with the activities that

already exist.

• Scenarios related to the second issue:385

1. Holes or discontinuities can be seen in the chromosomes.

The following are some possible solutions for each scenario.

• The following is the recommended solution for the first issue, which uses the “check-and-repair”
operator:

1. A random population generator generates and replaces a completely new chromosome.390

2. Counting the number of overlapping cells; if there are less than 5, the search procedure continues
to look for alternatives in nearby cells while maintaining or expanding the compacity; otherwise,
the cell is completely deleted. The overlapping cell’s feasible and non-iterative 4-direction ((-1, 0),
(0, 1), (0, -1), (1, 0) neighbors are collected.

• The following is the proposed solution for the second issue, which employs the “compacity-improver”395

operator:

1. The “0-1” solution matrix is bound by the number “2”.
2. Examining the rows and columns for any “1” or solitary “0” completely encircled by “1”.
3. Removing the zero detected rows / columns and replacing the single encircled element “0” in the

outer layer of the matrix with one of the possible elements “1”.400

The solutions mentioned for “check-and-repair” are coded as explained in pseudo-code 2 to repair
infeasible chromosomes to meet all the constraints and requirements of the spatial zoning optimization
problem. In pseudo-code 2, the first proposed solution is coded in red and the second one in blue. In line 16
of this Pseudo-code, all feasible and non-iterative 4-direction ((-1, 0), (0, 1), (0, -1), (1, 0)) neighbors of the
overlapped cell are gathered.405

Figure 9 is a given example to better understanding how the “compacity-improver” operator works. In
Figure 9, one achieved solution with one hole and interruptions is shown in the shape “1”. The “compacity-
improver” first bounds the matrix of solution with value “2”. Next, the operator starts detecting the rows
and columns without “1” like the green row in matrix “2”. After deleting all zero rows and columns, the
initial solution turned into shape “3” with a hole. Afterwards, the operator makes a list of zeros with 2× 1410

or 4× 1 connected components in their neighbors. Like blue zero in matrix “4” which is surrounded by 4× 1
in red. Next, the zero is changed to 1 in orange as shown in matrix “5” and from the outer layer, one of the
ones is changed to 0 in purple. Finally, the repaired shape is “6” which is well-compact.

All crossover, mutation, and local search operators include these two repairing operators in their bodies.

2.3.5. Local Search Operator415

In addition to the crossovers and mutations which are used in both MOEAs, the suggested MA utilizes
a local search operator that performs a tiny modification on a given solution to extensively search the
neighborhood of that solution and boost the spatial zoning optimization problem convergence speed to the
optimality. Using tournament selection, the parent chromosomes of the local search are chosen from the
population with the size of the local search rate, and the offspring chromosomes are provided following the420

repair process.
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Algorithm 2 Pseudo-code Check-and-Repair

1: procedure CHECK-AND-REPAIR(pop,area, feasible cells)
2: counter← 0
3: remove list← ∅
4: check list← ∅
5: for i in pop do
6: for j in i do
7: if j not in area then
8: i← random population(Npop) . Replacing the new chromosome
9: else if j not in feasible cells then

10: counter← counter+ 1
11: check list← j
12: end if
13: end for
14: if 1 6 counter 6 4 then
15: for k in check list do
16: neighbour← get adjacent(Npop)
17: if neighbour , ∅ then
18: One of neighbor which leads to a more compact solution is chosen
19: else
20: remove list← i
21: end if
22: end for
23: else
24: remove list← i
25: end if
26: end for
27: pop← delete(pop, remove list) . Deleting the remove list from the population list
28: end procedure
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Figure 9: Compacity improver operator

This operator focuses on improving the interestingness values of the cells whose values are 2 units lower
than the maximum value. Therefore, it starts to search for the best replacements in the neighbors of these
cells. In this replacing process, the priority is on the higher value neighbors. However, it is noted that
only if the 4-direction neighbors of the considered parent’s gen are not in the parent chromosome, this425

replacement would be done. In other words, removing the selected gene bounded by other cells in the
parent chromosome would result in the non-compacity and hole in the offspring chromosome. Next, among
these neighbors, one of them is randomly selected as the replacement. The offspring chromosome of the
local search may be infeasible because some constraints can be violated after employing the local search
operator. Therefore, the local search requires employing the repair process.430

2.4. Evaluation and Selection Operators
Two different objective functions are used to calculate the fitness value of each chromosome (solution

quality). The first objective function is obtained by adding the interest values of the zone cells, and the
compactness value is determined using the “Normalized Discrete Compactness (NDC)” metric, proposed
by [42].435

Each time, the population is classified into distinct non-dominance levels through the selection procedure.
The fitness of any solution is equal to its level of non-dominance (“1” will be ascribed to the first non-
dominated front). This procedure is for the minimization problems, but otherwise the maximization
problems could be altered to minimization by multiplying by “-1”.

This approach allows for simultaneous non-dominated sorting and filling of population steps based440

on crowding distance until the population size requirement is reached. As a consequence, each time, a
non-dominated front finding operator was used to determine if the acquired solution could be included in
the Pareto set. Otherwise, there is no reason to continue sorting. If the number of identified solutions exceeds
the population size, the excess will be removed using the crowding-distance metric from the previous front
that could not be fully accommodated.445

When two solutions are compared, the crowded comparison operator gives the tournament winner.
The winner is determined by two factors in the population: the non-dominance ranking ri and the local
crowding distance di. The search space surrounding a ith solution in its front (marked with solid circles) that
is not filled by any other solution in the population is measured by the crowding distance attribute of that
solution. The perimeter of the cuboid produced by employing the nearest neighbors as vertices (solid circles450

(i − 1) and (i + 1)) is estimated as di, shown in Figure 10 by the dashed box (called the crowding distance).
The binary crowding tournament selection operator, which is based on ri and di, operates as follows: A
solution i wins a tournament over a solution j if any of the following criteria are true:

1. If ri < rj, the chosen solution is on a better non-dominated front.
2. If ri = rj and di > dj (When both solutions are on the same front and the criteria above cannot be met,455

this is used; in this situation, the solution that is located in a less congested region and has a bigger di ,
wins).
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Figure 10: Crowding-distance calculation. Points marked in filled circles are solutions of the same non-dominated front [4]

2.5. Stop Condition of MOEAs
Different termination criteria may be utilized in MOEAs, including 1) a predetermined amount of

iterations, and 2) convergence to a solution of a specified quality [38, 35]. We created a novel stop criterion460

that may alleviate some shortcomings of duplicate generations while also lowering the ratio of solution
quality to processing time. This condition is used to halt the operation after the algorithm has completed a
particular number of iterations without improving. It is based on the HV value, MOEAs Pareto set diversity,
and convergence control measure, over a set of iterations. For multi-objective issues, HV is a well-known
performance metric. It adheres to the Pareto principle and is based on the volume difference between a465

predetermined reference point and the solution offered. As a result, the HV necessitates the establishment
of a reference point that is greater than the Pareto front’s maximum value named by r in figure 11 [7]. It
determines the area / volume dominated by the set of solutions provided in relation to a reference point
[31, 17].

The figure 11 depicts a two-objective example, in which the area dominated by a set of points (p(1), p(2),470

and p(3)) is shown in gray. Whereas the goal with this metric is to increase the distance to the reference
point, to maximize its performance. The more HV value, the less distance to the Pareto front is.

Figure 11: HV indicator for a non-dominated approximation set of solutions [14]

This metric is also used for the stop criterion in the proposed MOEAs algorithms. That is, at the end of
each iteration in both algorithms, the HV of the optimal Pareto front is calculated and compared with that of
the previous iteration. Then, the number of non-improved HV values in each iteration is determined. If this475

number violates the predefined maximum bound, the main loop of each MOEA will be stopped and the
optimal Pareto front will be returned. The approach to define this upper bound is explained in Subsection
2.5.
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3. Tuning parameters

To be able to compare the performance of the two MOEAs, it is needed to tune their parameters. However,480

before that, a DOE approach is used to explore the impacts of the components. Next, the MOEAs parameters,
which have a substantial influence on the quality of the solution explored and then optimized by using the
response surface methodology (RSM). RSM contributes to the improvement and optimization of processes
by creating an analytical link between the input and result variables in experiments. However, most previous
RSM-based solutions focused on single-response problems, with multi-response scenarios receiving less485

attention [39]. Therefore, in this section the appropriate tuning approach for our problem is explained (3.1)
and the final obtained values of tuned parameters are reported (3.2).

3.1. Multi-Response Surface Methodology (MRSM) Optimization
According to researches, the optimal factor settings for one performance feature are not always consistent

with those for other performance qualities. Finding compromising circumstances in input variables that are490

moderately favorable to all responses might be addressed in more general situations [24]. More details on
RSM related design and optimization of response surfaces are given in [23] and [30].

However, in order to determine the substantial factors, MRSM developed a special type of fractional
factorial experiments (FFEs) to reduce the large number of experiments required in it [22]. BBD with one
central point is used to run the experiments, even though the responses may have curvature over the495

search ranges of the factors [30]. There are k = 4 factors for SH-NSGA-II and k = 6 factors for MA, each
with three levels, i.e. low, medium, and high, and each signed by −1, 0, and +1, respectively. The data
generation parameters of the spatial zoning optimization problem are summarized in Table 1. We vary these
problem-specific parameters in three different levels (low, medium, and high) for three different map sizes
(55× 55, 300× 300, 1000× 1000) as shown in Table 1. The total number of artificial datasets for each map500

size that have been generated are 34 = 81. Among 81 datasets, 8 of them are randomly selected to be used
in all evaluations for each map size. Moreover, the anonymous link where anyone with the link can view
all coded algorithms along with all used data is provided in the repository [3]. Using the data in Table 1,
the coded MOEAs were executed based on the BBD for four factors in three levels with a center point for
SH-NSGA-II and six factors in three levels with a center point for MA, shown in Table 2.505

Table 1: Data generation parameters

Parameter names Possible values Description
nrow 55, 300, 1000 Number of rows of the raster grid
ncol 55, 300, 1000 Number of columns of the raster grid
np 6, 8, 10 Number of ports
ns 6, 7, 8 Number of shipping lanes
na 3, 4, 5 Number of protected area
nw 2, 3, 4 Number of windmill farms

Multi-response optimization problems (MROPs) have been examined from a variety of perspectives
and can be divided into three groups, Desirability viewpoints, Priority based methods, and Loss function
[20]: The third category of MRSM (Loss function) achieves a balance between resilience and optimization
for multiple response issues by incorporating some well-established methods in it, such as GA, Artificial
Neural Network (ANN), Taguchi loss function, and desirability function. So, we create a hybrid technique510

that uses the Taguchi method’s loss function to compact and calculate multi-responses. In this paper, all
response values (multi-objectives) of MROP are aggregated and converted to a single one using the Taguchi
loss function.

In the Taguchi method’s loss function, there are two sorts of components: noise factors N and controllable
factors S. In this study, the signal-to-noise ratio (S/N) is used to examine the findings, as MOEAs have515
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Table 2: Search range of algorithm parameters

Algorithm Actual Values Coded Values Low(-1) Medium(0) High(+1)

SH-NSGA-II

Population size (Npop) x1 100 150 200
Crossover rate (Rc) x2 0,4 0,6 0,8
Mutation rate (Rm) x3 0,1 0,4 0,7

Mutation probability (Pm) x4 0,25 0,5 0,75

MA

Population size (Npop) x1 100 150 200
Crossover rate (Rc) x2 0,4 0,6 0,8
Mutation rate (Rm) x3 0,1 0,4 0,7

Mutation probability (Pm) x4 0,25 0,5 0,75
Local rate (Rl) x5 0,1 0,5 0,8

Local probability (Pl) x6 0,45 0,6 0,8

numerous runs to acquire better answers. Under varying noise situations, the signal-to-noise ratio evaluates
how the response fluctuates in relation to the goal value.

Three metrics are used to assess MOEAs in this article: HV, number of Pareto solutions (NPS), and
best solution (Best Sol). NPS metric presents the number of Pareto optimal solutions that are obtained by
each algorithm. For each set of solutions, the values of both objective functions, each weighted 0.5, are put520

together to identify the best solution. After that, Best Sol is picked as the best answer, the maximum (similar
to how the simple additive weighting algorithm (SAWA) in multi-criteria decision-making (MCDM) handles
[45]. Because the goal is to maximize efficiency, the higher the HV, NPS, and Best Sol values, the better.

There are four different formulations to calculate signal-to-noise ratios[19]. Following the objective of
our experiment, we selected the first type in which for the signal-to-noise ratio, the larger is better, whose525

aim is to get the maximum S/N determined in Eq.2:

S

N
= −10 log(

1
n

n∑
i=1

1
sum2

i

) (2)

Where sumi is the response in the Taguchi method, and n is the number of replications (n = 3). S/N is
the MRSM response. Since the largest S/N value corresponds to the optimal combination of parameter
values, this response should be maximized. A regression equation can be used to determine the relevance of
individual process factors and their interactions. It calculates the relationship between the response and the530

parameters of the input process.
To estimate the response functions, the developed algorithms and experimental DOE tests are pro-

grammed in Python 3.8 and R version 4.1.2, respectively. All experimental tests are done on an OpenStack
virtual machine running Linux/Ubuntu 20.04.1 LTS with 20 VCPU, 10 GB disk, and 30 GB RAM.

Then, the response function is estimated and optimized using MRSM. Furthermore, for each MOEA535

in each size, the design should fit the second-order regression model (a quadratic model), that is, the one
containing squared terms, product of two factors, linear terms, and an intercept. To find the subset of
variables in the dataset resulting in the best performing model, that is, a model that lowers prediction error,
the feature selection technique is applied to iteratively add and remove predictors in the predictive model.

In this article, we employed a feature selection strategy for all regression models that combined stepwise540

regression and cross-validation to produce the highest performing model. All final models are solved using
the coded parameters, and the algorithm finds the best combination of parameters (a stationary point in the
original units).

F-value and p-value (significant probability value less than 0.05) were used to determine the statistical
significance. The degree of fit of the polynomial model was assessed using the determination of coefficients545

R-squared, modified R-squared, p-value, and the acceptable stationary point in the original units, all based
on the ANOVA findings. Finally, the best combination is found, which is the stationary point based on the
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response surface model that was produced.
By means of best fitted regression models, the interactions of important factors on the response surface

were evaluated. Finally, the optimal combination is obtained, which is the stationary point based on the550

generated response surface model. One caution about DOE and MRSM is related to the extrapolation of
the stationary point, that is, whether this point is outside the experimental space or not? In other words,
since a quadratic model will always show an optimum point, its accuracy depends on the accuracy of the
model. Therefore, to validate the best MRSM model, it is necessary to make a balance between the accuracy
of optimal point and regression model at the same time. Figure 12 represents an example of response surface555

3D plots between population size and mutation rate, population size and mutation probability, mutation
rate and crossover rate, and mutation probability and crossover rate for the SH-NSGA-II algorithm for small
size maps. The graphs show the significant impact on S/N.

(a) (b)

(c) (d)

Figure 12: The response surface 3D plots of interaction of important factors on S/N: (a) interaction of population size and mutation
rate; (b) interaction of population size and mutation probability; (c) interaction of mutation rate and crossover rate; (d) interaction of
mutation probability and crossover rate

From Figure 12a, the contour plot shows that the mutation rate around 0.4 and population size between
150 and 160 led to the best value for S/N. By doing so for all other three plots, we can easily figure out that560

the obtained stationary point is driven correctly, and it is compatible with and in the range of all interactions
between important factors.

3.2. Final Tuned Parameters
The optimal values of the parameters related to the stationary point are tuned as shown in Table 3 after

finding the best fitted MRSM regression model for three distinct map sizes for each MOEA. The parameter565

setting may vary depending on the magnitude of the challenge in terms of the size of the map. As a result,
we fit a distinct MRSM model to each map size, resulting in various adjusted parameters.

As we divided our spatial zoning optimization problem into three different size levels, for each of them,
this stop criterion should be defined. To discover the ideal value for these criteria, we run 8 various problems
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Table 3: Tuned parameters for SH-NSGA-II and MA

Solving Methodologies Parameters Size
Small Medium Large

SH-NSGA-II
Npop 157 179 150
Rc 0,6 0,67 0,69
Rm 0,44 0,43 0,46
Pm 0,5 0,5 0,5

MA
Npop 150 163 124
Rc 0,55 0,6 0,6
Rm 0,4 0,5429 0,4
Pm 0,5 0,5 0,583
Rl 0,776 0,586 0,4
Pl 0,667 0,625 0,64

with a set number of repetitions 3000 to examine the trend of HV value for estimate for each size of both570

methods. The average number of repetitions without improvement for each size is then used as a stop
condition.

Table. 4 declares the stop condition value for the MOEAs in each size.

Table 4: Stopping Condition for SH-NSGA-II and MA

Solving Methodologies
Size

Small Medium Large

SH-NSGA-II 600 600 600

MA 400 500 500

4. Experimental Validation

Once the parameters have been tuned, the goal is to compare the performances of SH-NSGA-II vs. MA.575

To evaluate both methods, 8 different randomly selected datasets are used, as presented in table 1. Then, to
evaluate a much more robust comparison, each instance is implemented 30 times and each reported value is
the median of 30 runs of each problem with its respective method. Before presenting the results, the selected
performance metrics are presented in the subsection 4.1.

4.1. Performance Measures580

The fact that the result of the optimization process is a set of solutions representing an approximation of
the Pareto front, rather than a single solution, is a major challenge in multi-objective optimization assess-
ment. Because of the conflicting nature of the Pareto set solutions, we need to utilize certain performance
measurements to evaluate the given methods [6]. We cannot tell if the algorithm has converged to the
exact optimum until we know the Pareto-front. However, we can see when the algorithm has made the585

most progress during optimization and, as a result, whether the number of iterations should be reduced or
increased. Additionally, the measurements allow the two algorithms to be compared against each other. To
assess the performance of different multi-objective MHs, non-dominated sets of solutions must be compared
[38]. Although various measures for non-dominated sets have been proposed, there is no universally
acknowledged performance evaluation standard. To categorize quality indicators, many attributes can be590

employed.
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The quality indicators are listed in the order in which they meet two separate performance goals: 1)
convergence to the ideal Pareto front and 2) diversity of alternatives along the front. They are usually
based on metrics of cardinality, distance, or volume. Cardinality-based indicators necessitate a limited
approximation of the Pareto set. In general, distance-based indicators are sensitive to the scope of the595

objectives. As a result, all objective magnitudes must be standardized. It should be noted that relying solely
on one quality indicator is invariably insufficient. From each class of measurements, at least one indicator
must be chosen. Therefore, in addition to the metrics described in Section 3.1, the iteration number and three
other performance metrics are used to evaluate and compare both MOEA algorithms. NPS, BestSol, and HV
are the diversity-based, convergence-based, and hybrid categories of quality indicators, respectively.600

The higher the three other performance criteria, the greater the quality of the solution we have. Mean
Ideal Distance (MID):
This measure depicts the proximity of the Pareto solution to the ideal point (0, 0), which is a convergence-
based indicator as given in Eq. 3:

MID =

∑n
i=1 ci
n

(3)

where n is the number of the non-dominated set and ci =
√
f1i

2 + f2i
2 , and f1i, f2i are the value of the605

non-dominated solution of ith for the first and second objective functions, respectively.
Spread of non-dominance solution (SNS):

A diversity-based metric that analyzes the uniformity of the generated solution distribution in terms of
dispersion and extension is the spread of a non-dominance solution. The formula for this indicator may be
found in Eq. 4.610

SNS =

√∑n
i=1(MID− ci)2

n− 1
(4)

The rate of achievement to two objectives simultaneously (RAS):
The balance in reaching to objective functions is another convergence-based quality metrics. In the following
Eq. 5 Fi = min(f1i, f2i).

RAS =

∑n
i=1|

f1i−Fi
Fi

|+ |
f2i−Fi

Fi
|

n
(5)

5. Computational Results

Therefore, this section investigates the effectiveness of the proposed MA algorithm using defined615

indicators. To analyze these two MOEAs with respect to each indicator, we did the Wilcoxon signed-rank
test (WSRT) (paired samples) tests to check the null hypothesis that MA algorithm works better than
SH-NSGA-II with respect to each indicator. These conclusions are supported by significant Wilcoxon tests
(p − value < 0.05).

The WSRT tests the null hypothesis that two related paired samples come from the same distribution.620

In particular, it tests whether the distribution of the differences (x− y) is symmetric about zero. It is a
non-parametric version of the paired T-test.

To prove the validity of the algorithms, we need to show the gap between the optimal and MOEAs
solutions. As the solutions for the small size from the exact method are available, we could do the validation
for this size. Table 5 shows the performance indicators with respect to the exact methods and two MOEAs.625

As shown in Table 5 according to each measure, although both MOEAs achieved promising values and
pretty well close to exact solutions, MA has less gap than SH-NSGA-II with exact and optimal solutions in
small size. In figures 13, the differences between all three methods are shown.
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Table 5: The comparison between MOEAs and the optimal solution

Problems Map Size
HV Best Sol MID SNS RAS

Exact SH-NSGA-II MA Exact SH-NSGA-II MA Exact SH-NSGA-II MA Exact SH-NSGA-II MA Exact SH-NSGA-II MA
1

Small

5,866 5,5173 5,7448 0,563 0,5315 0,5462 78,859 76,0040 76,4613 3,038 2,215 2,984 0,995 0,9903 0,9913
2 6,310 5,7088 6,3004 0,557 0,5210 0,5570 85,126 79,5036 83,0024 4,936 1,730 4,455 0,996 0,9909 0,9940
3 6,313 5,6567 6,3004 0,558 0,5205 0,5570 84,002 79,0040 83,1690 6,725 1,368 4,627 0,995 0,9904 0,9940
4 6,310 5,7088 6,3034 0,557 0,5214 0,5570 85,112 79,1463 83,0024 5,039 1,891 4,553 0,996 0,9904 0,9940
5 6,316 5,7119 6,3004 0,557 0,5220 0,5570 85,126 79,3371 83,3357 4,814 2,060 4,455 0,996 0,9901 0,9940
6 6,313 5,7149 6,3004 0,557 0,5205 0,5570 85,751 79,3374 83,3357 5,158 1,869 4,502 0,996 0,9904 0,9940
7 6,310 5,6299 6,3004 0,558 0,5205 0,5570 85,223 79,0040 83,0023 5,606 2,060 4,231 0,996 0,9901 0,9939
8 6,310 5,7149 6,3004 0,557 0,5181 0,5570 85,112 79,3368 83,0024 5,314 2,079 4,293 0,996 0,9901 0,9939

Average 6,2556 5,6704 6,2313 0,5580 0,5219 0,5557 84,2891 78,8342 82,2889 5,0789 1,9090 4,2625 0,9958 0,9903 0,9936

Finally, in addition to small size, for the other two problem sizes, the results of both MOEAs with respect
to the performance metrics are shown in Table 6. For each set of problems, seven performance metrics are630

investigated which show execution improvement through MA algorithm. MA outperforms SH-NSGA-II by
taking all mentioned metrics into account.

Table 6: The Result of MOEAs

Problems Map Size
HV Best Sol MID SNS RAS

SH-NSGA-II MA SH-NSGA-II MA SH-NSGA-II MA SH-NSGA-II MA SH-NSGA-II MA
1

Medium

5,7088 6,1241 0,5163 0,5441 78,4038 81,6018 0,8989 2,6722 0,9901 0,9946
2 5,7088 5,8651 0,5196 0,5330 77,8921 78,2774 1,5506 2,1082 0,9901 0,9897
3 5,7088 6,1287 0,5172 0,5450 78,3789 81,2689 0,8721 2,9073 0,9901 0,9937
4 5,7057 6,1333 0,5154 0,5450 78,4323 81,0321 0,8692 2,9057 0,9901 0,9932
5 5,7057 6,1272 0,5154 0,5450 78,4038 81,4758 0,9147 2,8806 0,9901 0,9940
6 5,8636 5,8513 0,5356 0,5255 78,4328 77,3799 2,5409 1,6422 0,9898 0,9888
7 5,7057 6,1303 0,5154 0,5450 78,3675 81,2245 0,8647 2,9648 0,9899 0,9938
8 5,6451 6,1015 0,5163 0,5436 78,3789 80,7083 0,8421 2,8663 0,9899 0,9934

Average 5,7190 6,0577 0,5189 0,5408 78,3363 80,3711 1,1691 2,6184 0,9900 0,9927
1

Large

5,8958 6,1704 0,5129 0,5215 80,6714 82,8363 1,2377 2,0048 0,9901 0,9911
2 5,9640 6,1187 0,5145 0,5201 80,6714 81,2543 1,4120 1,3426 0,9897 0,9902
3 5,8881 6,0367 0,5168 0,5198 80,2547 81,2951 1,1655 1,5255 0,9895 0,9905
4 5,8881 6,2283 0,5155 0,5364 80,6714 83,1792 1,2235 2,6565 0,9894 0,9911
5 5,8138 6,1126 0,5054 0,5254 80,6463 82,2531 0,4633 1,9388 0,9888 0,9914
6 5,8850 6,0065 0,5129 0,5211 80,3623 80,8038 1,0260 1,7866 0,9895 0,9910
7 5,8942 6,3204 0,5103 0,5570 81,0039 81,8038 1,0945 2,7866 0,9900 0,9940
8 5,8881 5,9352 0,5103 0,5235 80,5050 80,9838 0,8421 1,7966 0,9897 0,9906

Average 5,8896 6,1161 0,5123 0,5281 80,5983 81,8012 1,0581 1,9798 0,9896 0,9912

Additionally, for small, medium, and large scale problems, with respect to the computational time MA is
almost 50%, 29%, and 17% faster than the extended SH-NSGA-II with higher solution convergence quality.

When a MOEA is used to solve a problem, it generates a set of Pareto solutions from which a decision635

maker (DM) can choose the best one. Because this decision is similar to those made in multi-attribute decision-
making (MADM) problems, one of the methods used in MADM is the technique for order preference, which
is similar to an ideal solution (TOPSIS) [21], the fuzzy hierarchical TOPSIS [41], simple additive weighting
(SAW) [29], the fuzzy SAW [26], and the linear programming technique for multidimensional analysis.

6. Conclusion640

The spatial zoning optimization problem, which can be found in a variety of domains, including MSP,
is defined in this paper. Two novel P-metaheuristics methods based on GA have been developed to solve
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Figure 13: The comparison among MOEAs algorithms and exact optimal solutions for small size

this problem (SH-NSGA-II and MA). To demonstrate the outperformance of the proposed MOEAs, 24 test
cases with 30 times replications were used. The results show that, on average, the proposed MA provided
better solutions in less computational time, and that, when compared to SH-NSGA-II, the proposed MA has645

better consistency. Finally, a set of (24× 30) Wilcoxon Signed-Rank tests revealed that the proposed MA
outperforms the SH-NSGA-II significantly. Although, these findings has gone some ways towards solving
the given specific problem in large-scale, more improvements could be possible to reduce the computational
time while increasing the convergence speed. Moreover, some improvements in population generator
operators could help in this regard to diminish the need of repairing operators. A further study could assess650

and develop more MOEAs to compare with the current proposed ones. Finally, we will investigate the
spatial zoning optimization problem applicability in the real world and test the robustness of the proposed
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MA on more complex spatial data with multi-agents in the future.
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[14] C. M. Fonseca, L. Paquete, and M. López-Ibánez. An improved dimension-sweep algorithm for the hypervolume indicator. In

2006 IEEE international conference on evolutionary computation, pages 1157–1163. IEEE, 2006.
[15] K. Gokbayrak and A. S. Kocaman. A distance-limited continuous location-allocation problem for spatial planning of decentralized690

systems. Computers & Operations Research, 88:15–29, 2017. ISSN 0305-0548. doi: https://doi.org/10.1016/j.cor.2017.06.013. URL
https://www.sciencedirect.com/science/article/pii/S030505481730151X.

[16] G. Gong, Q. Deng, R. Chiong, X. Gong, and H. Huang. An effective memetic algorithm for multi-objective job-shop scheduling.
Knowledge-Based Systems, 182:104840, 2019.

[17] A. P. Guerreiro, V. Manquinho, and J. R. Figueira. Exact hypervolume subset selection through incremental computations.695

Computers & Operations Research, 136:105471, 2021. ISSN 0305-0548. doi: https://doi.org/10.1016/j.cor.2021.105471. URL
https://www.sciencedirect.com/science/article/pii/S0305054821002215.

[18] M. J. Gwaleba and U. E. Chigbu. Participation in property formation: Insights from land-use planning in an informal urban
settlement in tanzania. Land Use Policy, 92:104482, 2020.

[19] N. A. Heckert, J. J. Filliben, C. M. Croarkin, B. Hembree, W. F. Guthrie, P. Tobias, J. Prinz, et al. Handbook 151: Nist/sematech700

e-handbook of statistical methods. In e-Handbook of Statistical Methods, pages 2–p, 2002.
[20] T. H. Hejazi, M. Bashiri, J. A. Dı, K. Noghondarian, et al. Optimization of probabilistic multiple response surfaces. Applied

Mathematical Modelling, 36(3):1275–1285, 2012.
[21] D. N. Jayakumar and P. Venkatesh. Glowworm swarm optimization algorithm with topsis for solving multiple objective

environmental economic dispatch problem. Applied Soft Computing, 23:375–386, 2014.705

[22] J. R. Karmoker, I. Hasan, N. Ahmed, M. Saifuddin, and M. S. Reza. Development and optimization of acyclovir loaded
mucoadhesive microspheres by box–behnken design. Dhaka University Journal of Pharmaceutical Sciences, 18(1):1–12, 2019.

25

https://osf.io/dx7z8/?view_only=f27d1a89a5ae49439f2dd57687735721
https://www.sciencedirect.com/science/article/pii/S030505481830008X
https://www.sciencedirect.com/science/article/pii/S030505481830008X
https://www.sciencedirect.com/science/article/pii/S030505481830008X
https://www.sciencedirect.com/science/article/pii/S030505481730151X
https://www.sciencedirect.com/science/article/pii/S0305054821002215


[23] J. P. Kleijnen. Response surface methodology for constrained simulation optimization: An overview. Simulation Modelling Practice
and Theory, 16(1):50–64, 2008.

[24] O. Köksoy. A nonlinear programming solution to robust multi-response quality problem. Applied mathematics and computation, 196710

(2):603–612, 2008.
[25] Y. Levi, S. Bekhor, and Y. Rosenfeld. A multi-objective optimization model for urban planning: The case of a very large floating

structure. Transportation Research Part C: Emerging Technologies, 98:85–100, 2019. ISSN 0968-090X. doi: https://doi.org/10.1016/j.
trc.2018.11.013. URL https://www.sciencedirect.com/science/article/pii/S0968090X18305278.

[26] D.-F. Li and S.-P. Wan. Fuzzy linear programming approach to multiattribute decision making with multiple types of attribute715

values and incomplete weight information. Applied Soft Computing, 13(11):4333–4348, 2013.
[27] S.-H. Liao, B.-L. Sun, and R.-Y. Wang. A knowledge-based architecture for planning military intelligence, surveillance, and

reconnaissance. Space Policy, 19(3):191–202, 2003.
[28] B. Lokman, M. Köksalan, P. J. Korhonen, and J. Wallenius. An interactive approximation algorithm for multi-objective integer

programs. Computers & Operations Research, 96:80–90, 2018. ISSN 0305-0548. doi: https://doi.org/10.1016/j.cor.2018.04.005. URL720

https://www.sciencedirect.com/science/article/pii/S0305054818300881.
[29] Y. Z. Mehrjerdi. Strategic system selection with linguistic preferences and grey information using mcdm. Applied Soft Computing,

18:323–337, 2014.
[30] R. H. Myers, D. C. Montgomery, G. G. Vining, C. M. Borror, and S. M. Kowalski. Response surface methodology: a retrospective

and literature survey. Journal of quality technology, 36(1):53–77, 2004.725

[31] L. Paquete, B. Schulze, M. Stiglmayr, and A. C. Lourenço. Computing representations using hypervolume scalarizations.
Computers & Operations Research, 137:105349, 2022. ISSN 0305-0548. doi: https://doi.org/10.1016/j.cor.2021.105349. URL
https://www.sciencedirect.com/science/article/pii/S0305054821001283.
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