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We consider the transmission of a continuous phase modulated (CPM) signal through a Gaussian channel affected by Doppler shifts. We propose a receiver robust to the Doppler shifts derived from a non-coherent detection criterion. We compare its performance to another non-coherent receiver based on a linear approximation of the CPM signal (Laurent decomposition) to which we add a Doppler compensation. Simulation results show that the first algorithm is robust to low-moderate Doppler shifts, while the second is robust to any one. We finally compare these two algorithms to delay-optimized differential detectors which do not require any Doppler shift estimation. We also provide complexity estimations to guide the possible complexityperformance trade-offs.

I. INTRODUCTION

Improving the connection of Objects to the Internet (IoT) is possible by relaying the communication through Low Earth Orbits (LEO) satellites [START_REF] Qu | LEO satellite constellation for Internet of Things[END_REF], especially in areas where setting up gateways is costly. There are two options: use an existing wireless communication standard or design an ad-hoc one [START_REF] Fraire | Direct-to-satellite IoT -a survey of the state of the art and future research perspectives[END_REF]. In this paper we are interested in the latter one for the uplink and suggest using a Continuous Phase Modulation (CPM). Its constant envelop enables an optimized energy efficiency of the amplifier which is of utmost importance both for satellites and objects.

This communication segment is affected by Doppler shifts due to the high orbiting speed of LEO satellites. So the detection algorithms should be robust to Doppler shifts. We focus in this article on non-coherent CPM detection which can be grouped into two families depending on the criterion they are based on. The first one pre-processes the received signal to neutralize the phase contribution making possible the application of the maximum-likelihood criterion for coherent detection on the resulting signal. Numerous papers based on differential preprocessed signals can be found in the state-of-the-art. The common feature is the use of the product of the received baseband signal and a conjugate time-delayed version of it, yielding a signal that is referred to as differential signal.
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Different algorithms are proposed and applied either on timediscrete differential signals (see e.g. [START_REF] Kaleh | Differential detection of partial response continuous phase modulation with index 0.5[END_REF]) or on time-continuous differential signals (see e.g. [START_REF] Makrakis | Differential detection of correlative encoded continuous phase modulation schemes using decision feedback[END_REF]- [START_REF] Jerbi | Delay Optimization of Conventional Non-Coherent Differential CPM Detection[END_REF]). The main advantage of differential algorithms is their robustness to Doppler shifts, but the signal-to-noise ratio (SNR) loss can be important depending on the algorithm. The second non-coherent detection class is derived from the generalized maximum-likelihood criterion [START_REF] Trees | Detection, estimation and modulation theory[END_REF], [START_REF] Piat-Durozoi | Minimal State Non-Coherent Symbol MAP Detection of Continuous-Phase Modulations[END_REF] and only requires the knowledge of the phase distribution. Algorithms proposed either in [START_REF] Simon | Maximum-likelihood block detection of noncoherent continuous phase modulation[END_REF] or in [START_REF] Colavolpe | Noncoherent sequence detection of continuous phase modulations[END_REF] with an uniformly-distributed phase assumption belong to it. In this article, we propose two algorithms both based on this non-coherent criterion and robust to Doppler shifts. The contributions are (i) a novel CPM non-coherent detection based on the direct application of the generalized maximum likelihood principle (ii) the insertion of blind Doppler estimation principle of [START_REF] Colavolpe | Detection of linear modulations in the presence of strong phase and frequency instabilities[END_REF] in the proposed algorithm as well as in the CPM non-coherent detection of [START_REF] Colavolpe | Noncoherent sequence detection of continuous phase modulations[END_REF] (iii) the comparison of the two resulting receivers with the delay-optimized differential detector of [START_REF] Jerbi | Delay Optimization of Conventional Non-Coherent Differential CPM Detection[END_REF] in presence of Doppler shifts. The remainder of the article is organized as follows: model and notations are introduced in Section II. In Section III, we derive the non-coherent detection criterion and the two proposed detection algorithms. Simulation results are provided in Section IV and a conclusion is given in Section V.

II. SYSTEM MODEL AND NOTATIONS

We consider a sequence of N independent and identically distributed (i.i.d.) information symbols a = {a i } 0≤i≤N -1 to be transmitted. Given M an even positive integer, a i takes on values in the M -ary alphabet M = {±1, ±3, .. ± (M -1)} with equal probabilities. The complex envelope of the CPM-modulated signal is given by:

s(t, a) = 2E s T s e jθ(t,a) , (1) 
where E s is the average symbol energy, T s is the symbol period and θ(t, a) is the signal phase which depends on the information symbols. It is defined by:

θ(t, a) = 2πh N -1 i=0 a i q(t -iT s ), ( 2 
)
where h is the modulation index and q(t) is the phase shaping pulse whose expression is q(t) = t -∞ g(u)du with g(t) the frequency waveform. In practice, g(t) has a finite duration LT s and it must satisfy the following conditions:

g(t) = g(LT s -t), 0 ≤ t < LT s t -∞ g(τ )dτ = q(LT s ) = 1 2 , ∀t ≥ LT s (3) 
We consider a Gaussian transmission channel which introduces a phase rotation of the modulated signal equal to 2πf D t + ϕ (Doppler shift). The phase ϕ is modeled as a random variable with a uniform distribution in [0, 2π[ and the frequency shift f D is constant. The baseband equivalent received signal, denoted r(t), is given by:

r(t) = s(t, a)e j(2πf D t+ϕ) + η(t), (4) 
where η(t) is the realization of a zero-mean wide-sense stationary complex circularly symmetric Gaussian noise, independent of the signal, and with double-sided Power Spectrum Density 2N 0 .

III. DETECTION STRATEGY

The detection strategies proposed in this article are based on the generalized maximum-likelihood [START_REF] Trees | Detection, estimation and modulation theory[END_REF] that we shall recall below. Let T 0 be the observation interval of the signal r(t) and let A designate the set of possible symbol sequences, F the variation interval of f D and I 0 the modified first-order Bessel function. The generalized maximum-likelihood method [START_REF] Trees | Detection, estimation and modulation theory[END_REF] is used for a blind Doppler shift estimation in conjunction with symbol detection and consists in maximizing the following cost function

Γ(ã, f D ) = log I 0 1 N 0 T0 r(t, a)s * (t, ã)e -j2π f D t dt - 1 2N 0 T0 |s(t, ã)| 2 dt (5) 
over A × F. This is equivalent to:

max ã∈A Γ(ã, f D (ã)) (6) 
with

f D (ã) = arg max f D ∈F T0 r(t)s * (t, ã)e -j2π f D t dt .
In the following, we apply criterion (6) according to two alternative algorithms. The first (denoted A), based on a linear decomposition of the CPM, is a combination of the methods described in [START_REF] Colavolpe | Noncoherent sequence detection of continuous phase modulations[END_REF] (denoted NSD algorithm) and [START_REF] Colavolpe | Detection of linear modulations in the presence of strong phase and frequency instabilities[END_REF]. The second (called B) is a sub-optimal algorithm for deriving the criterion directly from (1).

A. Receiver A based on the linear decomposition of CPM

This receiver combines the non-coherent CPM detection algorithm [START_REF] Colavolpe | Noncoherent sequence detection of continuous phase modulations[END_REF] with the Doppler estimation and joint detection algorithm applied to a linear modulation [START_REF] Colavolpe | Detection of linear modulations in the presence of strong phase and frequency instabilities[END_REF]. We consider a linear decomposition of the CPM modulation [START_REF] Laurent | Exact and approximate construction of digital phase modulations by superposition of amplitude modulated pulses (AMP)[END_REF], [START_REF] Mengali | Decomposition of M-ary CPM signals into PAM waveforms[END_REF] to get an approximation of the modulated signal:

s(t, a) ≃ K-1 k=0 N -1 i=0 α k,i h k (t -iT s )
where K is the number of principal components, h k (t) the impulse response of the kth linear filter and α k,i a symbol defined from a (see [START_REF] Mengali | Decomposition of M-ary CPM signals into PAM waveforms[END_REF] for exact expressions). The receiver consists of a cascade of a filter bank where filters are adapted to h k (t), followed by a sampler at period T e , and a whitening filter. T e should be small enough to assume that the samples are a sufficient statistic [START_REF] Meyr | On sampling rate, analog prefiltering, and sufficient statistics for digital receivers[END_REF]. However, for a moderate frequency offset (f D T s ≪ 1), T e = T s is small enough. The sampler outputs are given by:

x k,n = r(t, a) ⊗ h k (-t)| t=nTs ≃ s k,n e j(2πf D nTs+ϕ) + η k,n
where

s k,n = K-1 m=0 i α m,i p m,k ((n -i)T s ), (7) 
with

p m,k (t) = h m (t) ⊗ h k (-t) and η k,n = η(t) ⊗ h k (-t)| t=nTs .
We introduce the notation x n = (x 0,n , x 1,n , ..., x K-1,n ) T and define s n , α n and η n likewise. We will also use the discrete impulse response matrices P n = [p i,j (nT )] for i, j = 0, 1, ..., K -1. With these notations, the observation vector reads:

x n ≃ e j(2πf D nT +ϕ) Lw l=-Lw P T l α n-l + η n , (8) 
where L w is a parameter that depends on L.

As the noise samples η k,n are correlated, a multidimensional whitening filter (WMF) is implemented [START_REF] Colavolpe | Noncoherent sequence detection of continuous phase modulations[END_REF]. It is specified by the sequence of matrices {W l } 0≤l≤Lw . The WMF output observation vector, denoted by z n , is given by:

z n = Lw l=0 W l x n-l = e j(2πf D nTs+ϕ) Lw l=0 W l s n-l e -j2πlf D Ts + w n , (9) 
where

w n = Lw l=0 W l η n-l .
Going back to the detection criterion, we apply two approximations. The first one is to consider log I 0 (x) ≃ x. The second one depends on the context: we assumes that f D T s is small and that e -j2πlf D Ts ≃ 1 in the expression (9) of z n . Given a sequence ã of symbols in A, we define sn with [START_REF] Makrakis | Multiple differential detection of continuous phase modulation signals[END_REF] and finally

ỹn = Lw l=0 W l sn-l .
The likelihood function calculated in the joint symbol detection and Doppler estimation algorithm is:

Γ N (ã, f D (ã)) = K-1 k=0 N -1 n=0 z k,n ỹ * k,n e -j2πn f D (ã)Ts - 1 2 K-1 k=0 N -1 n=0 |ỹ k,n | 2 . ( 10 
)
Maximizing [START_REF] Piat-Durozoi | Minimal State Non-Coherent Symbol MAP Detection of Continuous-Phase Modulations[END_REF] involves prohibitive complexity in practice.

We adapt the procedure used in [START_REF] Colavolpe | Detection of linear modulations in the presence of strong phase and frequency instabilities[END_REF] to deal with linear modulations. A Viterbi algorithm is applied associated with a windowing of size N v for the detection of symbols, a windowing of size N D ≥ N v for the blind estimation of the Doppler shift and an approximation of Γ N (ã, f D (ã)) by ∆ N (ã) which is calculated in an iterative way as follows:

∆ n (ã n ) = ∆ n-1 (ã n-1 )) + λ n (ã n ) (11) 
with the branch metric being

λ n (ã n ) = K-1 k=0 Nv-1 i=0 z k,n-i ỹ * k,n-i e -j2π(n-i) f D (ã n n-N D ))Ts - K-1 k=0 Nv-1 i=1 z k,n-i ỹ * k,n-i e -j2π(n-i) f D (ã n n-N D ))Ts - K-1 k=0 ỹk,n 2 
.

The state at time n -1 is defined by the vector ỹT n-1 . . . ỹT n-Nv+1

T , which implies a total of S = M Nv+Lw-1 states. As in [START_REF] Colavolpe | Detection of linear modulations in the presence of strong phase and frequency instabilities[END_REF], a per-survivor processing (PSP) approach enables to estimate f D (ã n n-N D ) based on ãn and the partial sequence ãn-1

n-N D = (ã n-1 . . . ãn-N D +1
) associated to the surviving path at state level at time n -1. The dataaided (DA) estimation algorithms proposed for linear phase modulations in [START_REF] Morelli | Feedforward frequency estimation for PSK: a tutorial review[END_REF] are easily applied to the CPM case.

B. Receiver B based on the exact expression of CPM

Considering the constant envelope of the CPM waveform, the likelihood function [START_REF] Svensson | Performance evaluation of differential and discriminator detection of continuous phase modulation[END_REF] becomes:

Λ(ã) = Γ(ã, f D (ã)) = T0 r(t, a)s * (t, ã)e -j2π f D (ã)t dt Let t k = kT s and let v n (t, ã) = r(t, a)e -j2π f D (ã n n-N D
)t . To reduce the complexity, we apply the iterative approximation of Λ(ã) under the same principles of windowing and of definition of the cumulative and branch metrics:

λ n (ã) = Γ n (ã) - (n-1)Ts (n-Nv)Ts v n (t, a)s * (t, ã)dt ( 12 
)
where

Γ n (ã) = tn t n-Nv v n (t, ã)s * (t, ã)dt .
With the same reasoning, the search for the sequence maximizing the likelihood function ( 5) is done using a Viterbi algorithm executed on a trellis whose states at time n correspond to all the possible realizations of s(t, ãn n-Nv+1 ). The estimation f D (ã n n-N D ) is done as for receiver A using the PSP approach on a window of length N D . The development of the first term of the equation ( 12) leads to:

Γ n (ã) = 2E s T s Nv-1 m=0 tn-m tn-m-1 v n (t, ã)e -jθ(t,ã) dt . ( 13 
)
The term depending on θ(t, ã) in the interval [t n-m-1 , t n-m ] can be simplified:

θ(t, ã) = 2πh n-m-1 u=0 ãu q(t-uT s ) = Θ(t, ã)+πh n-m-L-1 u=0 ãu (14) with Θ(t, ã) = 2πh n-m-1
u=n-m-L ãu q(t -uT s ). By replacing ( 14) in ( 13), and after some straightforward calculations, we come up with:

Γ n (ã) = 2E s T s Nv-1 m=0 e -jπh n-m-L-1 u=n-Nv -L+2 ãu I m (ã) with I m (ã) =
tn-m tn-m-1 v n (t, ã)e -jΘ(t,ã) dt. We deduce that the computation of λ n (ã) depends only on [ã n-1 , .., ãn-Nv-L+2 ]. The Viterbi algorithm therefore applies to a trellis with S = M Nv+L-2 states (number of realizations of [ã n-1 , .., ãn-Nv-L+2 ]).

IV. PERFORMANCES

In this Section, an evaluation in terms of simulated error rates and complexity estimation is proposed for the two algorithms A and B. These performances will also be compared to differential detection based decoders [START_REF] Jerbi | Delay Optimization of Conventional Non-Coherent Differential CPM Detection[END_REF] which are robust to any constant Doppler shift. Differential detection is built on the generation of a differential signal which is obtained by multiplying the received signal with its delayed version. The considered delay is given by the number K of symbols and is usually K = 1. However, performances can be improved by optimizing K as proposed in [START_REF] Jerbi | Delay Optimization of Conventional Non-Coherent Differential CPM Detection[END_REF]. In the following, notation K opt will refer to the optimized value of K according to [START_REF] Jerbi | Delay Optimization of Conventional Non-Coherent Differential CPM Detection[END_REF].

A. Bit Error Rates Comparison

In this section, bit error rates (BER) are estimated through Monte-Carlo simulations as a function of the ratio E b /N 0 where E b denotes the average information bit energy. To this aim, we take into account the overhead used for initialization and estimation in the calculation of E b /N 0 . We illustrate the error rate performance by first considering the GMSK waveform in Figure 1, with BT = 0.25 and L = 2 to transmit short frames of N = 120 symbols. The symbol duration is fixed to T s = 10 -4 s. The blind estimation of f D in detectors A and B is obtained by an algorithm from Rife and Boorstyn [START_REF] Morelli | Feedforward frequency estimation for PSK: a tutorial review[END_REF]. For detector A, we proceed as in [START_REF] Colavolpe | Noncoherent sequence detection[END_REF] by keeping only the first of the principal components resulting from the linearization of the GMSK leading to a one-dimensional whitening filter (K = 1) with L w = 2. In the simulations, the choice of N v = 5 and N D = 8 proved to be the best trade-off between complexity and performance for both detectors.

For a small Doppler shift f D T s = 0.05, detector A and B perform nearly the same with a loss of 1 dB compared to the NSD performance which correspond to the performance without any Doppler shift. When the Doppler shift is increased to f D T s = 0.1, the performance of detector A is degraded and a gap of 3 dB compared to the NSD is observed at a BER of 10 -4 . Indeed, when the Doppler shift increases, the assumption of sufficient statistics does not hold anymore. This is not the case with detector B whose performance is only limited by the capabilities of the Doppler shift estimation algorithm. In fact, with a perfect Doppler shift estimation, the detector B and NSD curves are superimposed.

Differential detectors are insensitive to the Doppler shift and exhibit the same error rate whatever the value of f D . We observe that f D T s = 10 -1 is the threshold beyond which the BER curve of the differential detection with optimized delay crosses the BER curve of Detector B at a BER of 2.10 -5 . The error rate comparison between Detector B and differential detections for a 3REC CPM with h = 0.75 is illustrated in Figure 2 using the same Doppler shift estimation as for the previous GMSK case (same frequency resolution size). We observe that the gap to NSD is however higher (about 3 dB for a BER of 10 -3 ). We also observe that the performance of differential detection with optimized delay peforms better below a BER of 10 -2 . It is of course possible to improve the gap between Detector B and NSD by improving the Doppler shift estimation, yielding a higher complexity. In the following, a complexity estimation is proposed to unveil the best performance-complexity trade-offs.

B. Complexity Estimation

In this Section, we propose to estimate the complexity of detectors in terms of the number of trellis states (S), the number of multiplications for metric calculation (Q M ) per trellis section and the number of multiplications for Doppler Shift estimation per trellis section (Q D ). The complexity of the three detectors is summarized in the Table I.

Detector A based on Laurent's decomposition enables sampling at symbol time if the Doppler frequency shift remains moderate. The calculation of branch metrics amounts 

M Nv +L-2 M K opt +L-1 Q M (Lw + 1)K 2 + NvSM ρNvSM ρSM Q D ρS(N D + M -1) + M S N FFT 2 log 2 (N FFT ) none
to N v M Nv+Lw multiplications per trellis section, while the matched filtering involves (L w + 1)K 2 per trellis section.

In the case of detector B, the multiplications come solely from the branch metric calculations. The numerical calculation of the integral requires a discretization of the signal. Assuming it is done with ρ samples per symbol time, the total number of multiplications per trellis section is given by ρN v M Nv+L-1 .

Both detectors A and B use the Rife and Boorstyn [START_REF] Morelli | Feedforward frequency estimation for PSK: a tutorial review[END_REF] algorithm to blindly estimate the Doppler shifts. Its implementation uses Fast Fourier Transform (FFT) on a vector of ρN D samples (ρ = 1 for detector A) obtained by multiplying the received signal with the complex conjugate of the signal reconstructed from the last N D symbols using the PSP approach (amounting to Sρ(N D -1) + M Sρ multiplications). Zero padding this vector up to N FFT samples is used to increase the FFT resolution and thus the blind Doppler shift estimation resolution which affects the overall performance (amounting to M S NFFT 2 log 2 (N FFT ) multiplications). The optimized-delay differential detector is also based on a trellis and the calculation of its metrics requires oversampling the signal as well, that is ρ samples per symbol time. The number of multiplications is then given by ρM Kopt+L and no Doppler estimation is needed for the differential detector. Table II summarizes the numerical values of S, Q M and Q D used in our simulations in the case of GMSK with ρ = 8. N FFT = 32 for detector A and N FFT = 32 × ρ = 256 for detector B so that the frequency resolution is the same.

Considering both complexity and error rates, we can state that differential detection with optimized delay from [START_REF] Jerbi | Delay Optimization of Conventional Non-Coherent Differential CPM Detection[END_REF] is to be chosen in the high SNR regime or if low complexity is mandatory. If the constraint on complexity is a bit relaxed and lower SNR is considered, then detector A can be chosen if the Doppler shift is small. For larger Doppler shifts and low SNR, improved performance can be obtained close to the non-Doppler case with Detector B while increasing the complexity (both on the metric part and on the Doppler estimation part). The thresholds involved in this comparison do depend on the considered CPM parameters.

V. CONCLUSION In this article, we proposed two CPM detectors robust to phase uncertainty and Doppler shift. The first one (A) is adapted from a non-coherent CPM detection based on a linear decomposition that we complemented by a blind Doppler shift estimation part. The second one (B) is directly derived from the non-coherent detection criterion applied to the CPM waveform. The simulation results confirm the robustness of these detectors to small Doppler shifts, and to higher Doppler shifts for Detector B for which the only limitation is the performance of the blind Doppler shift estimator. Detector A and B are also compared to differential detectors. When an optimized delay is used, differential detection performs better in the high SNR / low error rate regime, while keeping a low complexity: differential detection does not include any Doppler shift estimation. As far as a lower SNR regime is concerned, provided that complexity is not an issue, Detector A for low Doppler shifts and Detector B otherwise offer better performances.
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 12 Fig. 1. Comparison of detectors A (ρ = 1, N FFT = 32) and B (ρ = 8, N FFT = 256) with optimized-delay differential detector [8] for GMSK -Nv = 5, N D = 8

TABLE I COMPARISON

 I OF THE DETECTORS IN TERMS OF COMPLEXITY (NUMBER OF STATES S, NUMBER OF MULTIPLICATIONS PER TRELLIS SECTION FOR DETECTION Q M AND NUMBER OF MULTIPLICATIONS PER TRELLIS SECTION FOR DOPPLER ESTIMATION Q D )

	Label	Detector A	Detector B	Differential detector [8]
	S	M Nv +Lw -1		

TABLE II NUMERICAL

 II VALUES OF S, Q AND E FOR GMSK

	Label	Detector A (N FFT =32)	Detector B (N FFT =256)	Differential detector [6] (K = 1)	Differential detector [8] (Kopt = 3)
	S	64	32	4	16
	Q M	643	2560	64	256
	Q D	10816	67840	NA	NA