
HAL Id: hal-03765659
https://imt-atlantique.hal.science/hal-03765659

Submitted on 31 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Sparse channel estimation algorithms for OTFS system
Rabah Ouchikh, Abdeldjalil Aïssa-El-Bey, Thierry Chonavel, Mustapha

Djeddou

To cite this version:
Rabah Ouchikh, Abdeldjalil Aïssa-El-Bey, Thierry Chonavel, Mustapha Djeddou. Sparse chan-
nel estimation algorithms for OTFS system. IET Communications, 2022, 16 (18), pp.2158-2170.
�10.1049/cmu2.12469�. �hal-03765659�

https://imt-atlantique.hal.science/hal-03765659
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Received: 22 April 2022 Revised: 13 July 2022 Accepted: 13 July 2022 IET Communications

DOI: 10.1049/cmu2.12469

ORIGINAL RESEARCH

Sparse channel estimation algorithms for OTFS system

Rabah Ouchikh1 Abdeldjalil Aïssa-El-Bey2 Thierry Chonavel2 Mustapha Djeddou1

1Laboratoire Télécommunications, Ecole Militaire
Polytechnique, Bordj El-Bahri, Algeria

2IMT Atlantique, Lab-STICC, UMR CNRS 6285,
Brest F-29238, France

Correspondence

Abdeldjalil Aïssa-El-Bey, Mathematical and
Electrical Engineering, IMT Atlantique, Lab-STICC,
UMR CNRS 6285, F-29238, Brest, France.
Email: abdeldjalil.aissaelbey@imt-atlantique.fr

Abstract

Orthogonal time-frequency space (OTFS) modulation, which has recently been proposed
in the literature, is one of the promising techniques designed in the 2D Delay-Doppler
domain adapted to combat high Doppler fading channels. However, channel estimation
in high Doppler scenarios in advanced mobile-communication systems is still a challeng-
ing task. In this paper, the problem of channel estimation in the Delay-Doppler domain
of the OTFS is focused on. First, a simple adaptation of the generalized orthogonal
matching pursuit procedure, which will serve as a baseline method in this work, is pro-
posed. Then, iterative algorithms are derived beneficiating from the sparsity of the channel.
The unknown channel vector is separated into an unknown sparse support vector cor-
responding to the delay and Doppler taps, and an unknown vector of channel gains.
These algorithms involve 𝓁1-norm minimization and a two-stage iterative procedure to
recover alternatively the channel support and its coefficients. The estimation problem is
also addressed from a Bayesian point of view. The sparse representation is reformulated
as a specific marginalization of the maximum a posteriori problem on the support of the
channel. To deal with the intractability of this problem, two existing techniques are adapted
to this context, namely: The Monte Carlo Markov chain with the Gibbs sampler and vari-
ational mean-field approximation with the variational Bayesian expectation-maximization
procedure. Finally, to assess the performance of the proposed algorithms, their complexity
and performance are compared against existing methods. Experimental tests, conducted
in high-mobility scenarios and low-latency applications, show that the proposed schemes
are slightly more expensive in terms of complexity load but perform significantly better in
terms of normalized mean square error and bit error rate.

1 INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) is the
most popular modulation technique deployed in 4G long-
term evolution and 5G mobile-communication systems [1].
It is known for its robustness and high spectral efficiency
in time-invariant frequency selective channels. However, its
performance deteriorates when the Doppler effect is high
(in high-mobility environments, such as high-speed trains);
hence, the need for other modulation techniques to deal with
this problem [2].

Orthogonal time frequency space (OTFS) modulation,
recently proposed in [3, 4], is one of the promising tech-
niques for advanced mobile-communication systems (5G and
beyond) thanks to the increased performance that it provides
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compared to OFDM modulation. With OTFS, each data
symbol is multiplexed onto 2D orthogonal basis functions
specifically developed to deal with time-varying multipath
channels dynamics at high speeds.

To detect data with minimal errors, the channel’s impulse
response must be known on the receiver side. Several chan-
nel estimation (CE) schemes for OTFS systems have been
proposed in the literature. Let’s briefly review some of them.

In [5], a 2D turbo compressed sensing (CS) algorithm for CE
is featured based on the previous work on turbo CS for fast
time-varying CE suggested in [6]. The support matrix of the
Delay-Doppler channel is modeled by using a Markov random
field and the Bernoulli Gaussian distribution.

The authors in [7] suggested a one uplink-aided high-
mobility downlink CE scheme for the massive multiple-input
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multiple-output (MIMO) OTFS networks. The MIMO-OTFS
signal model along the uplink and the reciprocity between
the uplink and the downlink are formulated to recover the
parameters of the channel including the delay, the angle, the
Doppler frequency, and the channel gain for each physical
scattering path.

A 3D-structured orthogonal matching pursuit algorithm-
based CE technique is proposed in [8], which exploits the 3D-
structured channel sparsity in the Delay-Doppler-angle domain.

In [9], a CE scheme is established using pulses in the Delay-
Doppler domain as pilots adapted for MIMO-OTFS. The
equivalent MIMO-OTFS channel matrix is obtained using a
single MIMO-OTFS frame thanks to the sufficient spacing
between pilots and data in the Delay-Doppler domain.

In another work [2], an embedded pilot-aided CE scheme for
OTFS is highlighted. In each OTFS frame, pilot, guard, and
data symbols are arranged appropriately in the Delay-Doppler
domain to avoid interference between the data symbols and the
pilot at the receiver side. The used CE is founded on a threshold
method. The estimated channel is fed to data detection through
the message-passing technique proposed in [10].

The authors in [11] proposed a pilot design and optimization
for the OTFS system to improve the accuracy of CE. The clas-
sical orthogonal matching pursuit (OMP) technique is adopted
for CE.

In [12], a Bayesian learning-aided sparse CE scheme for
OTFS modulated systems are featured. The pilots are directly
transmitted over the time-frequency domain grid for estimat-
ing the Delay-Doppler domain channel state information (CSI).
Within the same context in [13], an off-grid CE scheme for
OTFS systems is proposed based on the sparse Bayesian
learning framework.

Another pilot pattern, namely: a superimposed scheme, has
been recently proposed. In this scheme, pilots and data symbols
are spread in the Delay-Doppler domain. Several algorithms for
CE and data detection using this scheme are available [14–16].
In [14], a data-aided CE algorithm for a superimposed pilot
and data transmission scheme is suggested to improve spec-
tral efficiency. To accurately estimate the channel and detect
the data symbols, the channel is coarsely estimated based on
the pilot symbol, followed by an iterative process that detects
the data symbols and refines the channel estimate. In [15],
pilots and data symbols are superimposed in the Delay-Doppler
grid. In [16], an iterative algorithm for CE and data detection
is proposed. The CE step is formulated as a sparse recovery
problem via the variational Bayesian expectation-maximization
(VB-EM) procedure.

In the present paper, several CE algorithms for OTFS sys-
tems are proposed and compared against two state-of-the-art
methods recently suggested in [2] and [11].

First, this work starts with a simple adaptation of a method
that belongs to the greedy family, which is the general-
ized orthogonal matching pursuit (GOMP) [17, 18]. This
adapted technique will serve as a baseline method in the
developed solutions.

Next, two algorithms involving 𝓁1-minimization that take
into account the sparse nature of this problem are proposed.

The main idea is the separation of the unknown channel vec-
tor into an unknown sparse support vector, which corresponds
to the locations of delay and Doppler taps, and an unknown
vector of channel gains. These two 𝓁1-minimization algorithms
use an iterative two-stage procedure that consists on optimiz-
ing the recovery problem alternatively concerning support and
gain vectors. The first method resorts to the penalization of the
mean square error with the 𝓁1-norm of the gain vector. The sec-
ond uses the reweighted 𝓁1-norm, which further improves the
recovery performance.

Alternatively, the sparse representation problem is reformu-
lated as a specific marginalization of the maximum a posteriori
(MAP) problem on the sparse support-vector. And to deal
with the intractability of this problem, two Bayesian-based algo-
rithms are proposed. Whereas, the first relies on the Monte
Carlo Markov chain (MCMC) with the Gibbs sampler, the sec-
ond uses a particular variational mean-field approximation and
the VB-EM procedure.

In summary, the main contributions of this work are:

1. The proposal of two algorithms for sparse CE that involve
𝓁1-minimization to optimize the recovery issue about gain
and support vectors.

2. The proposal of two Bayesian-based algorithms for sparse
CE.

3. The complexity analysis of the suggested algorithms and
the evaluation of their performance in terms of NMSE and
BER.

Simulations will show that, compared to state-of-the-art
methods, most of the proposed algorithms perform signif-
icantly better in terms of normalized mean square error
(NMSE) and bit error rate (BER) but are slightly more expen-
sive. Experimental tests will also show that the proposed
algorithms remain applicable in high-mobility scenarios and
low-latency applications.

The rest of the paper is structured as follows. In Section 2,
the basic concepts of OTFS modulation are introduced and
the CE problem is formulated. In Section 3, the proposed
CE algorithms are described and their complexity is evalu-
ated. In Section 4, the two selected state-of-the-art methods are
described and the performance of the proposed algorithms are
compared against these methods.

Notations: symbols a, a, and A, stand for scalar, vector,
and matrix, respectively. (.)H denotes Hermitian transposition.
Operators ⊗ and ⊙ denote Kronecker product and Hadamard
product, respectively. vec(.) denotes the column vectorization
of an M × N matrix into an MN column vector. F n and
FH

n denote, respectively, the n-point direct and inverse discrete
Fourier transform matrices. IM is the M × M identity matrix.

2 GENERAL CONCEPTS OF OTFS AND
PROBLEM FORMULATION

In this section, first, the basic concepts of OTFS modu-
lation are detailed. Then, the input-output relation of the
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FIGURE 1 OTFS modulation block diagram: transmitter, channel and receiver

TABLE 1 OTFS system parameters

Notation Physical signification

N , M Number of time slots, number of subcarriers

Δt (s), Δ f (Hz) Slot duration, subcarrier spacing
1

NΔt
Quantization step along the Doppler frequency axis

1

MΔ f
Quantization step along the delay axis

k, l Doppler index, delay index

ptx , prx Transmit pulse, receive pulse

T = NΔt , B = MΔ f OTFS frame duration, OTFS frame bandwidth

𝜏max , 𝜈max Maximum delay shift, maximum Doppler shift

OTFS-modulator, OTFS-demodulator, and channel in the
Delay-Doppler domain is derived. Finally, the CE problem
treated in this work is formulated.

2.1 General concepts of OTFS

Details about the basic concepts of OTFS modulation can
be found in [2], [4], [10], [19], [20]. Table 1 summarizes the
notations and their physical meaning.

The time-frequency grid GTF and the Delay-Doppler grid
GDD are expressed as follows:

GTF = {
(
nΔt ,mΔ f

)
},

GDD =

{(
k

NΔt
,

l

MΔ f

)}
, (1)

for (n, k) ∈ {0, … ,N − 1}2 and (m, l ) ∈ {0, … ,M − 1}2.
The cross-ambiguity function between ptx (t ) and prx (t ) is:

Aptx ,prx
(t , f ) ≜ ∫ p∗tx (u − t )prx (u)e− j2𝜋 f (u−t )du. (2)

We say that the bi-orthonormal property condition between ptx

and prx is satisfied if

∫ p∗tx (t )prx (t − nΔt )e j2𝜋mΔ f (t−nΔt )dt = 𝛿(n)𝛿(m). (3)

Here, a single-input single-output OTFS system whose
block diagram is given in Figure 1 is considered. This

diagram is divided into three parts: transmitter, Delay-Doppler
channel, receiver.

On the transmitter side, the 2D information symbols X DD =

{x[k, l ]}N−1,M−1
k=0,l=0 (e.g. QAM or M-PSK symbols), which are

arranged on the Delay-Doppler grid GDD , are mapped on
the time-frequency grid GTF (n = 0 ∶ N − 1 and m = 0 ∶

M − 1) via the inverse symplectic fast Fourier transform as
follows:

X [n,m] =
1√
NM

N−1∑
k=0

M−1∑
l=0

x[k, l ]e
j2𝜋(

nk

N
−

ml

M
)
. (4)

Then, the Heisenberg transform modulator, which is equiv-
alent to an M -point inverse fast Fourier transform with a
pulse-shaping ptx (t ), will be applied on X to generate the
transmitter time-domain signal s(t ) as follows:

s(t ) =
N−1∑
n=0

M−1∑
m=0

X [n,m]ptx (t − nΔt )e j2𝜋mΔ f (t−nΔt ). (5)

The signal r (t ), received through a linear time-variant
channel, can be expressed as [4]:

r (t ) = ∬ h(𝜏, 𝜈)s(t − 𝜏)e j2𝜋𝜈(t−𝜏)d𝜏d𝜈 + w(t ), (6)

where w(t ) ∼  (w(t ); 0, 𝜎2) is the additive noise.
The Delay-Doppler channel is characterized by a reduced

number of reflectors, each defined by its delay, Doppler shift
and amplitude. The channel is sparse and its response h(𝜏, 𝜈)
can be expressed in the following form:

h(𝜏, 𝜈) =
P∑

i=1

hi𝛿(𝜏 − 𝜏i )𝛿(𝜈 − 𝜈i ), (7)

where 𝛿(.) is the Dirac delta function; P is the number of
paths; hi ∈ ℂ is the complex gain. 𝜏i ∈ [0, 𝜏max ] and 𝜈i ∈

[−𝜈max , 𝜈max ] are, respectively, the delay and Doppler shift
associated with the ith path.

li and ki designate the delay and Doppler taps for the ith

path:

{li , ki} = {𝜏iMΔ f , 𝜈iNΔt }. (8)
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On the receiver side, the signal r (t ) first passes through
a matched filter bank, which supplies the cross-ambiguity
function between prx (t ) and r (t ). Then, the output Y (t , f )
of the matched filter is sampled, leading to Y [n,m] =
Y (t , f )|t=nΔt , f =mΔ f . This procedure is referred to as the
Wigner transform.

Next, the relationship between time-frequency output sam-
ples Y [n,m] and input samples X [n,m] is:

Y [n,m] =
N−1∑
p=0

M−1∑
q=0

Hn,m[p, q]X [p, q], (9)

where

Hn,m[p, q] = ∫ ∫ h(𝜏, 𝜈)

× Aptx ,prx
((n − p)Δt − 𝜏, (m − q)Δ f − 𝜈)

× e j2𝜋(𝜈+qΔ f )((n−p)Δt−𝜏)e j2𝜋𝜈pΔt d𝜏d𝜈. (10)

Then, applying the symplectic fast Fourier transform yields

y[k, l ] =
1√
NM

N−1∑
n=0

M−1∑
m=0

Y [n,m]e
− j2𝜋(

nk

N
−

ml

M
)
. (11)

The connection between y[k, l ] and the transmitted symbols
can be expressed as a 2D circular convolution [10] as follows:

y[k, l ] =
k𝜈∑

k′=−k𝜈

l𝜏∑
l ′=0

bk′,l ′hk′,l ′𝛽k,l x[[k − k′]N , [l − l ′]M ]

+ v[k, l ], (12)

where bk′,l ′ ∈ {0, 1} is the path indicator and the term v[k, l ] ∼
 (v[k, l ]; 0, 𝜎2) is an additive circular white noise with vari-
ance 𝜎2. 𝛽k,l is a known phase shift caused by imperfect
bi-orthogonality of the rectangular waveform [19], given by

𝛽k,l =

⎧⎪⎪⎨⎪⎪⎩
e

j2𝜋

(
l − l ′

M

)
k′

N if l ′ ≤ l < M ,

e
j2𝜋

(
l − l ′

M

)
k′

N e
− j2𝜋

k

N if 0 ≤ l < l ′.

(13)

2.2 Problem formulation

In this work, a non-blind estimation approach for CE is con-
sidered, that is, to estimate the channel accurately, pilots in
the Delay-Doppler map and an efficient pilot pattern are
needed. Benefiting from the fact that the channel is sparse
in the Delay-Doppler domain, CE can be seen as a sparse
recovery problem.

FIGURE 2 Symbol arrangement in the Delay-Doppler grid (+: pilot; ∙:
data symbols; ◦: guard symbols)

The arrangement of pilots, guards, and data symbols pro-
posed in [11] is used, where the proportion of guard symbols
is reduced compared to the pattern of pilots proposed in [2]. In
addition, the distribution of pilots over several Delay-Doppler
positions in the grid helps limit the peak-to-average power ratio.
On the receiver side, a simple, yet effective, interference cancel-
lation scheme is adopted in [11] to address pilot contamination
in the pilot pattern. Figure 2 illustrates this arrangement in the
Delay-Doppler domain grid for OTFS frame transmission.

For each OTFS frame transmission, there are Lp = (2Np +

1)Mp pilots, Lg = (2(k𝜈 + Np) + 1)(l𝜏 + Mp) − Lp guard sym-
bols and Ld = MN − Lp − Lg data symbols in the Delay-
Doppler grid GDD . Their locations are given as follows:

x[k, l ] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

xp[k, l ] if , k ∈ [kp − Np, kp + Np]

and l ∈ [lp, lp + Mp − 1],

xd [k, l ] if k ∉ [kp − k𝜈 − Np, kp + k𝜈 + Np],

and l ∉ [lp − l𝜏, lp + Mp − 1],

0 otherwise (guard symbols),

(14)

where [kp, lp] denotes the reference position of the pilot sym-
bols such that 0 ≤ kp ≤ N − 1 and 0 ≤ lp ≤ M − 1. Here,
xd [k, l ] represent the data symbols located at the grid location
[k, l ].

Guard symbols ensure that received symbols for CE do not
interfere with data symbols. We note that in this pattern there
are no guard symbols on one side of the pilot. This is due to
the channel causality in the delay dimension. Therefore, the data
symbols on the right side will not corrupt the pilots. Unlike
Doppler taps which can be negative or positive, it is necessary to
place the guard intervals only on the left side of the pilots since
delay taps cannot be negative.

In the Delay-Doppler domain, due to the transmit symbol
arrangement in (14), the received pilot symbols can be expressed
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in the same way as (12), where k ∈ [kp − Np, kp + Np] and l ∈

[lp, lp + Mp − 1]. This can be written in a matrix form as:

y
p
= (X p ⊙𝚿)h + v = Ah + v. (15)

Let L = (2k𝜈 + 1)(l𝜏 + 1). Then, y
p
∈ ℂLp is the received vec-

tor for pilots, which is expressed as [y
p
]((k+Np )Mp+l−lp ) = y[k, l ],

and h ∈ ℂL is the channel vector, which is expressed as
[h](l ′ (2knu+1)+k′+k𝜈 ) = hk′,l ′ . Here, X p ∈ ℂLp×L represents the
pilots’ matrix, with [X p](l−lp+(k+Np)Mp,l ′ (2k𝜈+1)+k′+k𝜈 ) = x[k −

k′, l − l ′], while, 𝚿 ∈ ℂLp×L is an additional phase shift matrix
given by [𝚿](l−lp+(k+Np )Mp,l ′ (2k𝜈+1)+k′+k𝜈 ) = e− j2𝜋k′ (l−l ′ )∕NM .

It is worth noting that the vector h contains only P non-zero
elements, where P is the number of paths. The CE in this con-
text amounts to estimating the channel support {li , ki}

P
i=1 and

corresponding path parameters {hi , 𝜏i , 𝜈i}
P
i=1. Note that from

{li , ki}
P
i=1 one can calculate {𝜏i , 𝜈i}

P
i=1 using (8).

Finally, CE quantifies the sparse vector h from (15). In the
next section, the proposed algorithms to solve this problem will
be presented.

3 PROPOSED ALGORITHMS

In this section, various algorithms for sparse CE in OTFS sys-
tems are presented. A straightforward way to solve problem (15)
with the pilot pattern adopted in this work is to use a greedy
approach. Thus, the first algorithm is a mere adaptation of the
GOMP method [17, 18]. This adapted algorithm will be consid-
ered here as a baseline method for sparse CE. The remaining
algorithms are divided into two categories. The first one
includes two iterative algorithms involving 𝓁1-minimization.
The second one includes two algorithms based on Bayesian
approaches. This section concludes with the complexity analysis
of all the suggested algorithms.

3.1 Adapted GOMP for sparse CE

GOMP is the generalization of the OMP [21, 22] in the sense
that multiple indices are identified per iteration. Therefore,
GOMP ends the process of recovery with a much smaller num-
ber of iterations than the OMP. It is seen in [17] that GOMP has
a high-recovery performance (compared to 𝓁1-minimization
techniques) with fast processing speed and competitive compu-
tational complexity. In the present work, GOMP is adapted to
solve approximately the following problem:

ĥ = arg min
h

‖y
p
− Ah‖2 subject to ‖h‖0 ≤ 𝛿, (16)

where ‖h‖0 denotes the 𝓁0-pseudo-norm (i.e. the number of
non-zero entries of h).

GOMP is divided into four steps, namely: Identification,
Augmentation, Estimation, and Residual Update. These steps are

detailed in [17]. GOMP is one of the greedy algorithms which
are the least complex CS-theory detectors, but they suffer from
error propagation. A non-zero false estimate at a given iter-
ation can cause the non-zero estimate of all elements of the
vector to be incorrect. Moreover, GOMP ensures convergence
towards a local optimum, but there is no guarantee of conver-
gence towards a global optimum. This is a known weakness of
greedy algorithms.

3.2 Iterative two-stage (I2S) algorithm

To get around the drawbacks of GOMP, a criterion and an algo-
rithm that exploits the sparse structure of the channel h are
defined. To this end, one can write hk = bkgk, that is, h = b ⊙ g
and look for

minimize
b,g

‖y
p
− A(b ⊙ g)‖2,

subject to b ∈ {0, 1}
L
,

g ∈ ℂL .

(17)

Solving (17) is computationally very demanding. To ease this
problem, the usual approach is the relaxation of the constraints.
Here, the constraints involving b are relaxed by using the 𝓁1-
norm with lower and upper bounds. Then, (17) is relaxed as
follows:

minimize
b,g

‖y
p
− A(b ⊙ g)‖2,

subject to ‖b‖1 ≤ 𝛿,

0 ≤ b ≤ 1,

(18)

where 𝛿 is introduced to force the sparsity of b.
A two-stage algorithm is proposed to solve (18). This algo-

rithm estimates the support b given g in the first stage. Then, it
estimates the channel gain vector g given b in the second stage.
The estimate of g is obtained via a minimum mean square error
estimator which is given by

ĝ = AH

b̂
(AH

b̂
Ab̂ + 𝛾IL )−1y

p
, (19)

where Ab̂ = ADb̂, Db̂ is an (L × L) matrix given by Db̂ =

diag(b̂) and 𝛾 = 𝜎2∕𝜎2
g , with 𝜎2

g is the power of the P

channel coefficients.
To solve (18), the vector g

LS
of channel gains using the least-

squares solution for (15) is considered. Then, the initial vector
g(0) is defined as being the L vector containing the P largest
values of g

LS
and zeros elsewhere: g(0) = maxP (g

LS
). The pro-

posed iterative algorithm will be referred to as iterative two-stage

(I2S) and is detailed in Algorithm 1.
At the output of Algorithm 1, the entries of the support vec-

tor b̂ belong to [0, 1]. To reconstruct h, a binary support vector
is needed. There are two options to estimate it from b̂. The first,
without any prior, is to apply on b̂ a fixed threshold of 𝜌 = 0.5.
The second is to use an optimal hard threshold [23].
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ALGORITHM 1 Iterative two-stage (I2S) algorithm

Input: measurements y
p
∈ ℂLp , sensing matrix A ∈ ℂLp×L ,

Initialize g
LS

= (AH A)−1AH y
p
,

g(0) = maxP (g
LS

),

for i = 1 ∶ Niter do

stage (1)

⎧⎪⎪⎨⎪⎪⎩
b̂

(i )
= arg min

b
‖y

p
− A(b ⊙ g(i−1) )‖2,

s.t.

{‖b‖1 ≤ P ,

0 ≤ b ≤ 1,

stage (2)
{

g(i ) = AH

b̂
(i) (AH

b̂
(i) A

b̂
(i) + 𝛾IL )−1y

p
,

end for

Output: b̂, ĝ.

ALGORITHM 2 Reweighted iterative two-stage (RI2S) algorithm

Input: measurements y
p
∈ ℂLp , sensing matrix A ∈ ℂLp×L ,

Initialize ĝ
LS

= (AH A)−1AH y
p
,

g(0) = maxP (ĝ
LS

),

w(1) = 1L ,

for i = 1 ∶ Niter do

stage (1)

⎧⎪⎪⎨⎪⎪⎩
b̂

(i )
= arg min

b
‖y

p
− A(b ⊙ g(i−1) )‖2,

s.t.

{‖w(i ) ⊙ b‖1 =
∑L

k=1 w
(i )
k
|bk| ≤ P ,

0 ≤ b ≤ 1,

stage (2)
{

g(i ) = AH

b̂
(i) (AH

b̂
(i) A

b̂
(i) + 𝛾IL )−1y

p
,

end for

Update: w
(i+1)
k

=
1|b(i )

k
|+𝜖 ,

Output: b̂, ĝ.

3.3 Reweighted iterative two-stage (RI2S)
algorithm

To improve sparse signal recovery, an interesting solution has
been proposed in [24], named “reweighted 𝓁1-minimization”.
This solution can be seen as an intermediate between the 𝓁0-
minimization and the 𝓁1-minimization because it approximates
the former (which is not convex) while preserving its convexity
at each iteration, thanks to a criterion based on the 𝓁1-norm.
Therefore, based on this approach, a CE algorithm for OTFS
modulation, named Reweighted iterative two-stage (RI2S) algorithm
is proposed. The difference between RI2S and I2S lies in the
first stage, where the estimate of the channel support b (given
g) is provided by applying reweighted 𝓁1-minimization. This
is detailed in Algorithm 2, where W = diag(w1, w2, … , wL ). We
note that the initial weights are set to w(1) = [w1, w2, … , wL]T =

1L .
Here, the weights w

(i+1)
k

are updated as follows: w
(i+1)
k

=
1|b(i )

k
|+𝜖 . Large/small weights could be used to discour-

age/encourage non-zero entries in the recovered signal. Param-
eter 𝜖 > 0 is introduced to avoid the norm divergence due to
high weight values caused by extremely low entries of b (pro-
vides stability) and to ensure that a zero-valued component
in b

(i )
k

does not strictly prohibit a non-zero estimate at the
next step. A possible adaptive choice of 𝜖 is given in [24] as
𝜖 = max{|b(i−1)|(P+1), 10−3}, where |b(i−1)|(P+1) is the (P + 1)th

largest elements of |b(i−1)|.
3.4 Bayesian approaches

The unstructured sparse representation problem can be refor-
mulated as a particular marginalized MAP problem on the
support b of the sparse vector h. To deal with the intractabil-
ity of direct optimization of the distributions of interest,
two possible approaches are considered. The first is based
on MCMC simulation and involves the Gibbs sampler. The
second is based on a particular variational mean-field approx-
imation and VB-EM procedure [25]. Before the description of
the two proposed Bayesian-based CE algorithms, it is needed
to define the probabilistic prior models used to derive these
techniques.

3.4.1 Probabilistic model

The observation model (15) can be also expressed as follows:

y
p
=

L∑
k=1

bk gk Ak + v, (20)

where Ak is the kth column of A and v = [v1, … , vL]T is the
noise vector which is a white circular Gaussian, with p(vk ) =

1

𝜋𝜎2
e−|vk|2∕2𝜎2

. Therefore, p(y
p
|g, b) =  (Abg

b
, 𝜎2IL ),

where Ab ∈ ℂLp×P and g
b
∈ ℂP are made up of A and g

considering indices k where bk ≠ 0.
The sparse nature of h lies on the fact that most of its

entries are close to 0 and a few of them are not negligi-
ble. To account for this prior information, the entries of
h can be described as a mixture of two zero-mean Gaus-
sian distributions, with respective variances 𝜎2

0 and 𝜎2
1, such

that 𝜎2
1 ≫ 𝜎2

0: p(h) =
∏L

k=1 p(hk ) =
∏L

k=1 pk (hk; 0, 𝜎2
1 ) +

(1 − pk ) (hk; 0, 𝜎2
0 ), where pk = p(bk = 1) = 1 − p(bk =

0). Therefore, g obeys the following probabilistic model:

p(g) =
∏L

k=1 p(gk ) where gk ∼  (
gk; 0, 𝜎2

gk

)
. (21)

Note that the variances 𝜎2
gk

of Gaussian distributions realiza-
tions are independent of the support b. To detect the location
of spikes, note that the variables bk associated with the corre-
sponding entries of h are assumed to be independent Bernoulli
random variables, such that bk = 1 if a spike is present at hk and
bk = 0 otherwise. Thus, hk|bk ∼  (hk; 0, (𝜎2

1 )bk (𝜎2
0 )1−bk ).
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Unstructured sparsity can be modeled by a standard choice
based on a product of the Bernoulli distributions, as follows:

p(b) =
∏L

k=1 p(bk ) where bk ∼ Ber(pk ). (22)

Alternatively, instead of seeking to approximate the means
of the posterior distributions via MCMC simulation, recent
approaches aim to iteratively calculate exactly a variational
approximation of the target posterior distribution.

3.4.2 Channel estimation in a Bayesian
framework

At this point, MAP estimation of the sparse channel parame-
ters, which corresponds to the optimal Bayesian estimator [26]
is addressed. In this case, the estimation problem of support and
channel gains can take the following form:

(ĝ, b̂) = arg max
g,b

log(p(g, b|y
p
)). (23)

First, the channel support vector b is determined. To achieve
this, the probability of a false decision on b is minimized. The
decision that leads to this minimization is given as follows:

b̂ = arg max log
b∈{0,1}L

(p(b|y
p
)). (24)

The maximization of p(b|y
p
) is too costly. This is because

solving (24) requires the evaluation of the function log(p(b|y
p
)

for all sequences of b ∈ {0, 1}L (2L evaluations). Individual
decisions for the entries of the support b can be made from
a marginalized MAP, leading to:

b̂k = arg max log
bk∈{0,1}

(p(bk|yp
)). (25)

In the same way, the evaluation of p(bk|yp
) is intractable

due to the costly marginalization of p(b|y
p
) over the bl ’s, for

l ≠ k. To circumvent this difficulty, MCMC with Gibbs sampler
and mean-field variational approximations compute a tractable
surrogate q(bk ) of q(bk|yp

) [25],[27]. In this case, (25) will be
approximated by the following easier problem:

b̂k = arg max log
bk∈{0,1}

(q(bk )), (26)

Once the support b is estimated, channel coefficients g can
be estimated as ĝ = arg max

g
log(p(g|b̂, y

p
)):

ĝb̂ = (AT

b̂
Ab̂ + 𝚫)−1AT

b̂
y

p
, (27)

where ĝb̂ denotes entries of g restricted to the estimated
support, Ab̂ is the corresponding columns of A and 𝚫 =

diag(𝜎2∕𝜎2
g1
, 𝜎2∕𝜎2

g2
, … , 𝜎2∕𝜎2

gL
). If 𝜎2 ⋘ 𝜎2

gk
∀k, then, this

solution reduces to the least-square solution.

3.4.3 MCMC algorithm

The idea is to generate realizations of a given process and use
them to compute an estimator of the parameters. Thus, to
decide b, the marginal posterior probability p(𝜽|y

p
) of 𝜽 = (g, b)

is simulated using a Gibbs algorithm [28]. The Gibbs sam-
pler simulates realizations of samples 𝜃k according to the a
posteriori marginals p(𝜃k|yp

, 𝜃−k ). Denoting by g
−k

the vec-
tor g where entry gk has been removed and defining b−k in
the same way, each loop of the Gibbs algorithm leads to the
iterative simulation of variables gk ∼ p(gk|g−k

, b, y
p
) and bk ∼

p(bk|b−k, g, yp
). Implementation of the Gibbs sampler is sum-

marized in Appendix A.1. The Gibbs sampler is given by the
following distributions:

q(gk ) = p(gk|g−k
, b, y

p
)

=  (gk;
𝜎2

k

𝜎2
AT

k

(
y

p
− A−kg

−k

)
, 𝜎2

k
),

q(bk ) = p(bk|b−k, g, yp
)

=
𝛼bk (1 − 𝛼)1−bk (gk; 0, 𝜎2

bk
)

𝛼 (gk; 0, 𝜎2
1 ) + (1 − 𝛼) (gk; 0, 𝜎2

0 )
, (28)

where Ak = A(∶, k), A−k = (A1, … ,Ak−1,Ak+1, … ,AL ),
𝜎2

k
= (‖Ak‖2∕𝜎2 + 1∕𝜎2

bk
)−1 and 𝛼 = p(bk = 1).

(b(i ), g(i ) )i=1∶K denote the vectors supplied by operating the
Gibbs sampler K times. After K0 iterations, which represent a
learning period, the samples are (roughly) sampled according to
the target distribution. Then, comparing averaged simulations
for bk to a threshold 𝜌 = 0.5, minimizes the Bayes risk for the
corresponding decision b̂k ∈ {0, 1}:

b̂k =

⎧⎪⎨⎪⎩
1 if

1

K−K0

∑K

i=K0+1 b
(i )
k

> 𝜌,

0 otherwise,
(29)

Then, for ĝ, the corresponding maximum likelihood estima-
tor (27) can be chosen.

Details of the implementation of the proposed MCMC

algorithm for CE are summarized in Algorithm 3.

3.4.4 SoBaP algorithm

The methodology adopted here is to compute an approxi-
mation q(bk ) of the posterior probability p(bk|yp

) named the
mean-field approximation. It is detailed in [25]. The mean-field
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ALGORITHM 3 MCMC algorithm

Input: measurements y
p
∈ ℂLp , sensing matrix A ∈ ℂLp×L , Bernoulli

parameter 𝛼,

Initialization: g and b,

ĝ: ĝ(0)
∼ ([0,1] )1∶L ,

b̂: b̂
(0)

∼ (𝛼 )1∶L ,

while k ≤ K and |q(b
(k)
i

) − q(b
(k−1)
i

)| < 𝜖 ∀i ∈ {1, … ,L} do

for l = 1 ∶ L

do

simulate q(g
(k)
l

) = p(g
(k)
l
|g
−l
, b, y

p
)

=  (g
(k)
l
;
𝜎2

k

𝜎2
AT

l (y
p
− A−l g

−l
), 𝜎2

k
),

simulate q(b
(k)
l

) = p(b
(k)
l
|b−l , g, yp

)

=
𝛼

b
(k)
l (1−𝛼)

1−b
(k)
l  (gl ;0,𝜎

2
bl

)

𝛼 (gl ;0,𝜎
2
1 )+(1−𝛼) (gl ;0,𝜎

2
0 )

,

end for

end while

compute estimated b: b̂k = 1[𝜌,∞[ (
1

K−K0

∑K

i=K0+1 b
(i )
k

),

compute the ML estimator of g using (27),

Output: ĥ = b̂ ⊙ ĝ.

approximation [29] of p(𝜽|y
p
) is the surrogate distribution

q⋆(𝜽 ) satisfying

minimize
q⋆ (𝜽 ) ∫

𝜽

q(𝜽 ) log

(
q(𝜽 )

p(𝜽|y
p
)

)
d𝜽,

subjecttoq(𝜽 ) =
K∏

k=1

q(𝜽k ),

∫
𝜽k

q(𝜽k )d𝜽k = 1, ∀k ∈ [1,K ], (30)

where 𝜽 = (b, g) and p(𝜽|y
p
) is its posterior distribution.

The problem (30) can be solved by successive minimizations
of the Kullback-Leibler divergence [30] with respect to factors
q(𝜽 i ). Then, the VB-EM algorithm [31–33] used in this work
is given in [25]. It will almost surely converge towards a sad-
dle point or a local/global maximum of the problem (30) under
mild conditions [25]. The relation between this procedure and
the known expectation-maximization algorithm [34, 35] results
from the addition of the constraint q(𝜽i ) = 𝛿(𝜽 i − 𝜽 i ) on some
q(𝜽 i )

′s.
The mean-field approximation offers a good framework for

approximating the marginals p(𝜽 i |yp
). Indeed,

p(𝜽 i |yp
) = ∫

𝜽−i

p(𝜽|y
p
)d𝜽−i ,

≃ ∫
𝜽−i

q(𝜽|y
p
)d𝜽−i ,

≃ q(𝜽i |yp
), (31)

where the last equality stems from the constraint of (30).

ALGORITHM 4 SoBaP algorithm

Input: measurements y
p
∈ ℂLp , sensing matrix A ∈ ℂLp×L ,

Initialization: p(b) =
∏

k
p(bk ),

prior mean for g: m = 0L ,

probability q: q(0) ∼ ([0,1] )1∶L ,

r: r (0) = y
p
− A(b ⊙ m),

while k ≤ K and ∀i ∈ {1 ∶ L} |q(b
(k)
i

) − q(b
(k−1)
i

)| < 𝜖 do

Estimation of 𝜎2 (see Appendix A.3).

for l = 1, … ,L do

compute Σ(bk = 1) (see Appendix A.2).

compute m(bl )(k) and q
(k)
l

(see appendix A.2),

update r (k): r (k) = r (k) − Al (b
(k)
l

m(bl )(k) ),

end for

end while

estimate support b: b̂ = (q > 0.5),

estimate g conditional to q using (27),

Output: b̂, ĝ.

The soft Bayesian pursuit (SoBaP) algorithm used in this
section considers the particular case where the mean-field
approximation q(g, b) of p(g, b|y

p
) simply writes q(g, b) =∏

k
q(gk, bk ). Together with the model (21), the corresponding

VB-EM update is given in Appendix A.2. From (31), an approx-
imation of p(bk|yp

) therefore follows simply from the relations

p(bk|yp
) ≃ ∫ q(gk, bk )dgk = q(bk ).

By using this approximation, (25) can be solved easily by a
simple threshold operation, that is, b̂k = 1 if q(bk = 1) > 𝜌 and
b̂k = 0 otherwise, with 𝜌 = 0.5 as for the MCMC algorithm. A
crucial parameter that can influence the performance of SoBaP

and that deserves to be estimated adaptively (at each iteration)
is the noise variance 𝜎2. A good estimator of 𝜎2 is crucial
for the convergence of the algorithm. Its estimation requires
its introduction as a new variable in 𝜽, that is, 𝜽 = [b, g, 𝜎2].
Then, q(g, b, 𝜎2) = q(𝜎2)

∏
k

q(gk, bk ). Letting q(𝜎2) = 𝛿(𝜎2 −

𝜎̂2), the estimation of 𝜎2 is given in Appendix A.3. The steps of
SoBaP are detailed in Algorithm 4.

3.5 Complexity analysis of the proposed
algorithms

In the case of GOMP, the complexity of the kth iteration
in terms of multiplications is approximatively 2LpL + (4K 2 +

2K )kLp [17]. Thus, the overall complexity is dominated by the
identification step. For Ng iterations, it is (NgL

2).
In the case of I2S and RI2S, solving the convex optimiza-

tion problem considered in the first stage is relatively fast. The
solution for this linear programming problem is obtained via
the Matlab CVX toolbox [36, 37], a package for solving convex
problems based on the interior-point method. The complexity is
dominated by (L3). Whereas, the second stage, which involves
the calculation of a minimum mean square error, is evaluated
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around (L3). Therefore, the overall complexity of these two
algorithms is around (Nt L3) for Nt iterations.

In the case of MCMC, the complexity requires (L2) oper-
ations for each iteration. Thus, the overall complexity of this
algorithm is upper-bounded by (NmL2) for Nm iterations.

In the case of SoBaP, the most expensive operation is the
update (equation (41) in [25]) which is (L2) at each iteration.
Thus, the overall complexity of SoBaP is around (NsL

2) for
Ns iterations.

4 RESULTS AND DISCUSSION

In this section, the proposed algorithms are tested and
compared with two state-of-the-art methods from [2] and
[11]. The description of these methods is given in Sec-
tion 4.2. The comparative tests are presented in Sec-
tion 4.3 in terms of complexity, NMSE, and BER in real
scenarios.

4.1 Simulation setup

All the simulations are performed on a regular desktop PC using
MATLAB 2018a. Information bits are mapped to QPSK before
being transmitted through the OTFS transmitter.

For the channel delay model, the Extended Vehicular A
model [38] of the 3GPP, the standardization body for 5G cel-
lular communications is adopted. Note that each delay tap has
a different single Doppler shift in the form 𝜈i = 𝜈max cos(𝜃i ),
where 𝜃i ∼ [0,𝜋] and 𝜈max denotes the maximum Doppler
shift determined by the user’s equipment speed. The maximum
delay tap is set to l𝜏 = 10 and the maximum Doppler tap to
k𝜈 = 4, which corresponds to a high-speed scenario with a
maximum user’s equipment speed v = 120 km∕h. The channel
coherence time Tc = 1∕𝜈max = 2.25 ms is longer than the OTFS
symbol duration Ts = T ∕(MΔ f ) = 0.13 𝜇s, which means that
the channel variation is slow in this case.

To achieve good CE, the size of pilot signals should cover the
maximum delay and Doppler spread, that is, Mp ≥ l𝜏 and 2Np +

1 ≥ k𝜈 . Thus, to balance the estimation accuracy and spectral
efficiency, Mp and Np are set to 16 and 4, respectively.

Pilots are chosen to optimize the average mutual incoherence
property of A which is expressed as [11]

𝜇avg =
2

L(L − 1)

∑
1≤i< j≤L

|aH
i a j |||ai ||2.||a j ||2 , (32)

where ai denotes the ith column of A. Note that the coherence
reflects the correlation between the columns of A; a higher cor-
relation will degrade the performance. Therefore, pilots will be
chosen so as to minimize 𝜇avg. Four types of pilot sequences are
tested: constant amplitude zero auto-correlation sequences (CAZAC),
Gaussian sequences, Hadamard sequences, and particle swarm opti-

mization (PSO) sequences [11]. Table 2 shows that the best value
of 𝜇avg is the one corresponding to the PSO sequences, which

TABLE 2 Average mutual incoherence property (𝜇avg )

Pilot sequence 𝝁avg

Gaussian 0.082

Hadamard 0.059

CAZAC 0.047

PSO 0.024

TABLE 3 Simulation parameters

Parameter Value

The carrier frequency ( fc ) 4 GHz

Spacing between the sub-carriers (Δ f ) 15 kHz

OTFS frame size (N ,M ) (128, 512)

Modulation scheme QPSK

Bandwidth (B) 7.68 MHz

justifies choice of this type of pilots. Other system parameters
retained for simulations are listed in Table 3.

Performance will be calculated in terms of BER and NMSE.
The NMSE is a normalized mean square error with values in
[0, 1], defined by

NMSE = 1 −

( |hH ĥ|‖h‖2‖ĥ‖2

)2

. (33)

4.2 Description of the selected
state-of-the-art methods

The comparison of the developed techniques is done against the
two state-of-the-art methods proposed in [2] and [11]. The first
one is well known and widely used. The second one is a recent
on-grid channel estimation method that uses a pilots scheme
and guard intervals in the Delay-Doppler domain.

In [2], a simple CE method based on thresholding is pro-
posed to solve (15) with respect to h using a pilot pattern with
only one pilot symbol xp transmitted per frame. It operates as
follows: for 1 ≤ k ≤ Lp, entries k such that |y

p
(k)| ≥ 𝜆 (real

positive detection threshold), determine the support vector b
of h where we set (above the threshold) b(k) = 1 and h(k) =
y

p
(k)∕xp. Otherwise, b(k) = 0 and h(k) = 0. This method relies

on the fact that the existence of a path implies that the received
symbol is the weighted pilot signal with additive white Gaussian
noise. Otherwise, it is only noise.

This method (Threshold method) is simple and has a low
complexity. However, miss-detection and false-alarm probabili-
ties can be altered by varying the threshold 𝜆 on path detection.
To guarantee good performance, the SNRp (pilot signal-to-noise
ratio) must be high (the minimum value of SNRp used in [2] is
30 dB). If we assume that SNRp = SNRd (the signal-to-noise
ratio of data symbols), then this method may not detect some
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paths. In particular, for SNRp = SNRd < 20 dB, this method
generally detects n < P paths. An optimal threshold can be used
to counter this problem [23]. At this point, as this approach
will serve as a benchmark, it is slightly modified as follows. It
is assumed that P is known and that the estimation of chan-
nel coefficients are given as h(k) = y

p
(k)∕xp, where k’s are the

indices of the P values with largest amplitudes in y
p
. This modi-

fication does not penalize at all the method. In fact, it will enable
the method to reach its best performance so as to provide a
good testing ground for the proposed algorithms.

As second method, the OMP procedure proposed in [11]
is used. It uses a pilot pattern, where the proportion of guard
symbols is reduced. To achieve accurate CE, based on the
MIP criterion, an OTFS pilot sequence optimization prob-
lem is formulated and a PSO-based procedure is developed to
solve it. The classical OMP algorithm is adopted as the CE
algorithm.

4.3 Comparison with the state-of-the-art
methods

Here, the proposed CE algorithms are compared with the
two selected state-of-the-art methods in terms of complexity,
NMSE, and BER.

4.3.1 Complexity

To refine the complexity analysis given in Section 3.5, the order
of the number of iterations Ng, Nt , Nm , and Ns must be known.

It is shown in [17] that Ng ≤ min(P ,L∕N ), where N is a
small constant and P is the number of channel taps. In practice,
Ng and P have the same order. Therefore, the overall complexity
of GOMP is ng(L2).

The parameters Nt , Nm , and Ns are determined experimen-
tally. The average number of iterations needed for convergence
as a function of the dimension L for each of the proposed
algorithms is plotted. Figure 3 shows the average number of iter-
ations allowing I2S, RI2S, MCMC and SoBaP to converge, as a
function of L for a constant maximum delay tap (l𝜏 = 10). Note
that L = (l𝜏 + 1)(2k𝜈 + 1), therefore, varying k𝜈 in the interval
[0, 16] amounts to varying L in [11, 363].

Figure 3 shows that the average number of iterations for
I2S and RI2S remains constant (about 10) independently of
the dimension L. For MCMC and SoBaP, this average number
grows according L. However, in the case of SoBaP, this num-
ber variates slowly. The dotted lines in Figure 3 correspond to
linear approximations of the MCMC and SoBaP curves. These
approximations remain valid for the values of k𝜈 used in the
present work. In summary, the computational cost of all the
proposed algorithms is (L3); except for the baseline method
GOMP which is (L2).

Another metric to qualify the complexity of these algorithms
is the runtime. Figure 4 shows the runtime in seconds of the
proposed algorithms as well as that of the two state-of-the-art
methods as a function of k𝜈 .

FIGURE 3 Number of iterations Niter versus L, for M = 512, N = 128,
Mp = 16, Np = 4, l𝜏 = 10, SNR = 20 dB and QPSK modulation

FIGURE 4 Runtime versus maximum Doppler tap k𝜈 , for M = 512,
N = 128, Mp = 16, Np = 4, l𝜏 = 10, SNR = 20 dB and QPSK modulation

Figure 4 confirms the complexity analysis of Section 3.5. The
runtime of I2S, RI2S, MCMC and SoBaP are of the same order.
The runtime of the baseline GOMP is smaller and is comparable
to that of the state-of-the-art methods in [2] and [11].

4.3.2 Normalized mean square error (NMSE)

The variation of NMSE as a function of SNR is now
investigated. We have set SNR = SNRd = SNRp. For a fair
comparison with the one-pilot scheme, the total power of each
OTFS frame is the same for all schemes.

Figure 5 illustrates that GOMP and the methods in [2]
and [11] show similar performance. All the other algorithms
perform better, SoBaP being the best overall.
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FIGURE 5 NMSE versus SNR : maximum Doppler speed 120 km/h, for
M = 512, N = 128, Mp = 16, Np = 4 l𝜏 = 10, k𝜈 = 4 and QPSK modulation

FIGURE 6 BER versus SNR : maximum Doppler speed 120 km/h, for
M = 512, N = 128, Mp = 16, Np = 4, l𝜏 = 10, k𝜈 = 4 and QPSK modulation

4.3.3 Bit error rate (BER)

The variation of BER as a function of SNR is now investigated.
Here, the message-passing procedure [10] is used to detect the
data symbols by solving a set of MN linear equations after the
removal of pilots contribution.

Figure 6 shows the variation of BER versus SNR. Note that
state-of-the-art methods in [2] and [11] and GOMP perform
similarly. However, the other algorithms perform better. Here
again, it is observed that SoBaP is the best overall and achieves a
BER close to that of the oracle.

FIGURE 7 BER versus SNR: low latency communication, for M = 128,
N = 16, Mp = 16, Np = 4, l𝜏 = 10, k𝜈 = 4 and 16 − QAM modulation

4.3.4 BER under low-latency communications

New generations of advanced mobile communications primar-
ily require low-latency communications [39], that is, small N .
Figure 7 shows the variation of BER versus SNR in the case of a
low-latency application. Here, the number of time slots and the
number of subcarriers used are N = 16 and M = 128, which
corresponds to a frame duration of 1.1 ms.

It is worth noting that there is a downgrade of the perfor-
mance of all methods (which is expected in low-latency appli-
cations). However, the downgrade for state-of-the-art methods
and GOMP is more pronounced than that of other algorithms.
Here again, SoBaP is still the most efficient algorithm.

4.4 Discussion

Several different algorithms for sparse CE in OTFS systems
(GOMP, I2S, RI2S, MCMC and SoBaP) are suggested and
compared with the state-of-the-art methods in [2] and [11].
Comparison have been made in terms of complexity, NMSE
and BER.

Simulations have shown that GOMP and the methods in [2]
and [11] have similar lowest complexity. SoBaP costs slightly
more but is still less expensive than the other algorithms.

Regarding the performance in terms of NMSE and BER,
simulations have shown that GOMP performs similarly to meth-
ods in [2] and [11]. All the other algorithms perform better.
Those based on Bayesian approaches (MCMC and SoBaP)
dominate those based on 𝓁1-minimization (I2S and RI2S). In
particular, SoBaP is the best algorithm. It exceeds the two state-
of-the-art methods proposed in [2] and [11] by about 8 dB at
BER = 10−3 and by about 6 dB at NMSE = −15 dB.

Consequently, it appears that SoBaP offers a good compro-
mise between performance and complexity.
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It is worth noting that the proposed algorithms remain inter-
esting even in high-speed scenarios. This is due to the fact
that the channel coherence time is higher than the duration
of an OTFS symbol for high speeds. Therefore, the channel
variations remain slow in Delay-Doppler domain and the inter-
ference between adjacent subcarriers has similar properties. For
example, with the simulation parameters used in this work and
for a relative speed of 500 km/h, the channel coherence time is
equal to 0.54 ms. This value is still greater than the duration of
an OTFS symbol Ts = 0.13 𝜇s.

In future work, it will be worthwhile to test the perfor-
mance of these algorithms in OTFS systems using Turbo
coding [40–42]. Moreover, it will be interesting to adapt these
algorithms (in particular SoBaP) to the case of superimposed
schemes [14–16].

5 CONCLUSION

In this paper, the design of CE algorithms in the Delay-
Doppler domain for OTFS systems has been addressed. First,
iterative algorithms involving unknown sparse support vec-
tor, which corresponds to the delay and Doppler taps, and
an unknown vector of channel values have been developed.
The two proposed algorithms use an iterative two-stage pro-
cedure consisting in optimizing the support and channel gains
alternatively. The first resorts to the 𝓁1-minimization of the sup-
port vector. The second uses a reweighted 𝓁1-minimization to
improve the recovery performance. The estimation problem is
also addressed from a Bayesian point of view. The structured
sparse representation is reformulated as a particular marginal-
ized MAP problem on the support vector. In order to deal
with the intractability of this problem, two existing techniques
are adapted to this context. The first is based on the MCMC

with the Gibbs sampler and the second on a specific variational
mean-field approximation, as well as the VB-EM procedure.
The proposed schemes have been compared to a recognized
CE method and to a recent on-grid channel estimation method.
Experimental results have shown that the proposed schemes
are computationally slightly more expensive but perform signifi-
cantly better in terms of NMSE and BER and remain applicable
in high-mobility scenarios and low-latency applications.
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APPENDICES

A.1 Gibbs sampler

The Gibbs sampler is implemented as follows:

- Initialization: b = b(0) and g = g(0),
- For i ≥ K and for k randomly covering {1, … ,L}

- Detection step :

calculate: dk = p(bk = 1|y
p
, 𝜽

(i )
−k

),

draw: b
(i )
K

= 1dk>u , with u ∼ [0,1],

- Estimation step :

draw: g
(i )
k

∼  (g
(i )
k
;m

b
(i )
k

, 𝜎2

b
(i )
k

),

where I is the uniform distribution of I , and

1I (t ) =

{
1 if t ∈ I ,

0 otherwise.
(A.1)

A.2 VB-EM update

Particularized to model (21), the corresponding VB-EM update
is given as:

q(gk, bk ) = q(gk|bk )q(bk ), (A.2)

where

q(gk|bk ) =  (m(bk ), Σ(bk )) (A.3)

q(bk ) ∝
√
Σ(bk )e

(
1

2

m(bk )2

Σ(bk )

)
p(bk ), (A.4)

and

Σ(bk ) =
𝜎2

gk
𝜎2

𝜎2 + bk𝜎
2
gk

AT
k Ak

, (A.5)

m(bk ) = bk

𝜎2
gk

𝜎2 + bk𝜎
2
gk

AT
k Ak

rT
k

Ak, (A.6)

rk = y
p
−
∑
l≠k

q(bl = 1)m(bl = 1)Al . (A.7)

A.3 Estimation of 𝜎2

The estimate of 𝜎2 is therefore given as follows:

𝜎̂2 = arg max
𝜎2

{∑
b
∫

∏
k

q(gk, bk ) log(p(g, b, y
p
|𝜎2))

}
=

1
L
⟨‖y

p
−
∑

k

bkgkAk‖2⟩∏
k

q(gk,bk )

=
1
L

(yT
p

y
p
− 2

∑
k

q(bk = 1)m(bk = 1)yT
p

Ak

+
∑

k

∑
l≠k

q(bk = 1)q(bl = 1)m(bk = 1)m(bl = 1)AT
k Al

+
∑

k

q(bk = 1)(Σ(bk = 1) + m(bk = 1)2)AT
k Ak ). (A.8)
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