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ABSTRACT

The reconstruction of better-resolved sea surface currents is a
key challenge in space oceanography. Besides the upcoming
SWOT wide-swath altimeter mission, new algorithms are ex-
plore to produce improved gap-free gridded products. Based
on the recent development of a generic end-to-end deep learn-
ing scheme for inverse problems backed on a variational for-
mulation, we investigate how this framework applies to the
space-time interpolation of satellite-derived SSH fields. We
consider different parameterization of the proposed end-to-
end learning scheme, especially regarding the embedded vari-
ational solver. Using an Observing System Simulation Ex-
periment based on high-resolution numerical simulations in
the Gulf Stream region, we show that the later may signifi-
cantly outperform the state-of-the-art, including DUACS op-
timal interpolation product, when jointly considering nadir
along-track altimeter data and upcoming SWOT wide-swath
data.

Index Terms— satellite altimetry, sea surface dynam-
ics, space-time interpolation, variational models, end-to-end
learning

1. INTRODUCTION

In [1], we use a 10◦× 10◦ subdomain of the GULFSTREAM
from the North Atlantic NATL60 high resolution determinis-
tic ocean simulation to assess how data-driven methods might
help to improve the operational DUACS Optimal Interpola-
tion (OI). Using a so-called Observation System Simulation
Experiments (OSSE), two types of pseudo altimetric obser-
vational dataset are merged: along-track nadir data for the
current capabilities of the observation system and wide-swath
SWOT data related to the upcoming SWOT mission. In this
further development of this preliminary work, we use the
same Ground Truth and observations to evaluate how the
connection between 4D-Var variational data assimilation and
joint learning of models and solvers bring a new gain to the
previous improvements of data-driven methods investigated
in [1], namely Analog Data Assimilation (AnDA) and FP-
GENN, a simplified version of the new variational proposed

framework. First, we briefly introduce the inverse prob-
lem related to space-time interpolation of partially observed
geophysical fields. Second, we introduce the considered
variational model inspired by 4D-Var data assimilation for-
mulation and how to build an iterative update operator based
on automatic differential tools to constitute a new avenue
in the way of minimizing the variational cost through the
end-to-end joint learning of the architectures for both NN-
based representations of the dynamics and of the iterative
update operator. Then, we propose an experiment based on
the NATL60 OSSE to illustrate how the NN-based gradient
minimization of the functional leads to better reconstructions
of the SSH fields. We also provide the accompanying pytorch
code for a reproducible research1.

2. PROBLEM STATEMENT AND PROPOSED
SOLUTION

Let y(Ω) = {yk(Ωk)} denotes the partial and potentially
noisy observational dataset corresponding to subdomain Ω =
{Ωk} ⊂ D, Ω denotes the gappy part of the field and index k
refers to time tk. Using a data assimilation state space formu-
lation, we aim at estimating the hidden space x = {xk(Ωk)}
from the observations y.

2.1. Considered variational model

Considering a variational data assimilation scheme [2], the
state analysis x? is obtained by solving the minimization
problem:

x? = arg min
x

J (x)

where the variational cost function J (x) = JΦ(x,y,Ω) is
generally the sum of an observation term and a regularization
term involving an operator Φ which is typically a dynamical

1The code of the preprint is available at https://github.com/CIA-
Oceanix/4DVARNN-DinAE



prior:

JΦ(x,y,Ω) = J o(x,y,Ω) + J b
Φ(x)

= λ1||y −H(x)||2Ω + λ2||x− Φ(x)||2

with H the observation operator and λ1,2 are predefined
or learnable scalar weights. This formulation of functional
JΦ(x,y,Ω) directly relates to strong constraint 4D-Var [3].
For inverse problems with time-related processes, the mini-
mization of functional JΦ usually involves iterative gradient-
based algorithms and in particular request to consider the
adjoint method in classic model-based variational data assim-
ilation schemes [2] where operator Φ identifies to a determin-
istic model xk+1 =M(xk):

x(i+1) = x(i) − α∇xJΦ(x(i),y,Ω)

In our case, we are interested in purely data-driven operator
Φ: we consider NN-based Gibbs-Energy (GENN) represen-
tations, a way of embedding Markovian priors in CNN [4]
which proves to be efficient on SSH altimetric datasets [1].
This enables to use deep learning automatic differentiation
tools: the computation of this gradient operator ∇xJΦ given
the architecture of operator Φ can be seen as a composition of
operators involving tensors, convolutions and activation func-
tions.

2.2. Trainable solver architecture

The proposed end-to-end architecture consists in embedding
an iterative gradient-based solver based on the considered
variational representation [5]. As inputs, we consider an ob-
servation y, the associated observation domain Ω and some
initialization x(0). Let us denote by Γ this iterative update
operator. Following meta-learning schemes [6], a residual
LSTM-based representation of operator Γ is considered here
where the ith iterative update of the solver is given by: g(i+1) = LSTM

[
α · ∇xJΦ(x(i),y,Ω), h(i), c(i)

]
x(i+1) = x(i) − T

(
g(i+1)

)
(1)

with g(i+1) is the LSTM output using as input gradient
∇xJΦ(x(i),y,Ω), while h(i) and c(i) denotes the inter-
nal states of the LSTM [7], α is a normalization scalar and T
a linear or convolutional mapping.
Let note that a CNN architecture could also be used instead of
the LSTM representation of Γ and that when replacing both
the LSTM cell by the identity operator and the minimization
function JΦ(x,y,Ω) by its single regularization term J b

Φ(x),
the gradient-based solver simply leads to a parameter-free
fixed-point version of the algorithm, the same used in [1, 4],
rather similar to the DINEOF approach, see Section 3.1.

2.3. End-to-end joint learning scheme

Overall, let denote by ΨΦ,Γ(x(0),y,Ω) the output of the end-
to-end learning scheme given architectures for both NN-based
operators Φ and Γ, see Figure 1, the initialization x(0) of state
x and the observations y on domain Ω.
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Fig. 1: Sketch of the gradient-based algorithm

Then, the joint learning of operators {Φ,Γ} is stated as
the minimization of a reconstruction cost:

arg min
Φ,Γ
L(x,x?) s.t. x? = ΨΦ,Γ(x(0),y,Ω) (2)

In case of supervised learning, where targets are gap-free,
L(x,x?) = ||x − x?||2 + ||∇x − ∇x? ||2, i.e. the L2-norm
of the difference between state x and reconstruction x? with
an additional term related to the gradient of state x. In case
of unspervised learning, given the observations y on domain
Ω and hidden state x, the 4DVar cost function may be used
L(x,x?) = λ1||y−H(x)||2Ω +λ2||x−Φ(x)||2 with weights
λ1 and λ2 to adapt according to the reliability of the observa-
tions.

3. EXPERIMENTS

In this section, we propose an intercomparison exercise of
several data-driven and learning-based approaches to help for
the reconstruction of altimetric fields. As a baseline the DU-
ACS operational processing tool based on well established
optimal interpolation (OI) techniques will be considered. The
other data-driven approaches used in the intercomparison are
1) AnDA [8], a purely data-driven data assimilation scheme
combining a patch-based analog forecasting operator with
Kalman-based ensemble data assimilation, 2) VE-DINEOF
[9], an EOF-based iterative method to interpolate in space
and time the missing data, and 3) (Fixed-Point) FP-GENN
and Grad-GENN, the proposed end-to-end learning frame-
work to learn jointly the NN-based representation Φ of the



dynamics coupled with a NN-based solver Γ of the targeted
minimization problem. In the proposed setup, FP-GENN uses
a number of 5 projections while Grad-GENN uses a number
of 2 iterations. We give a detailed evaluation of the results
obtained over a small region [33◦ N, 43◦ N ; -65◦ W, -55◦ W
], part of the GULFSTREAM and mainly driven by energetic
mesoscale dynamics. Four 20 days long validation periods
are used along the one year NATL60 dataset.

3.1. Experimental setting

The Nature Run (NR) is the NATL60 high-resolution (1/60◦)
configuration [10] of the NEMO (Nucleus for European Mod-
eling of the Ocean) model, covering a one year period from
October 1st, 2012 to September 29th, 2013. The resolution of
the nature run is downgraded to 1/20◦. Two types of altimet-
ric datasets are combined as pseudo-observational data: their
generation is fully detailed in [1]. Last, The DUACS OI [11]
with 0.25◦ resolution is used as baseline.

3.2. Results

The daily nRMSE of AnDA, VE-DINEOF, FP-GENN and
Grad-GENN are displayed on Figure 2: Grad-GENN outper-
forms the other methods. In particular, the gain of the iterative
gradient-based solver over the fixed point algorithm used in
the previous work is significant. Let note that AnDA exhibits
better scores at both start and end of the four validation pe-
riod, which is explained by the strong persistence, thus good
analog forecasting operator, of the SSH mesoscale dynamics
over the region.

Fig. 2: Daily spatial nRMSE computed on the 80-days
non-continuous validation period for OI, (post-)AnDA, VE-
DINEOF, FP-ConvAE and FP-GENN. The spatial coverage
of along-track nadir and wide-swath SWOT data are provided
by the green-colored barplots

Table 1 displays global reconstruction score (R-score) for
the known SSH field areas (Ω), the interpolation performance
(I-score) for the missing data areas (Ω), and the reconstruc-
tion performance of the trained NN-based representation of
the SSH dynamics for FP-GENN and Grad-GENN when ap-
plied to gap-free SSH fields (AE-score). These scores are

computed for SSH (after application of a retrieving high-pass
filter to keep only the small scales information) and its gradi-
ent, using only the ten days long center window of each four
validation periods to exclude artificial overestimated perfor-
mance of AnDA. Once again, Grad-GENN brings something
new since AnDA and VE-DINEOF used to be better than
FP-GENN in terms of both SSH R-scores [1] and Gradient
SSH R/I-scores. Clearly, Grad-GENN motivates the use of
the end-to-end learning scheme because of its plug-and-play
implementation and high level of performance.

Model type R-score I-score AE-score

na
di

r+
SW

O
T OI 96.39 88.72

AnDA 96.23 90.85
VE-DINEOF 96.49 88.79

FP-GENN 96.69 90.91 99.27
Grad-GENN 97.68 92.90 99.42

na
di

r+
SW

O
T ∇OI 74.94 57.85

∇AnDA 80.25 64.46
∇VE−DINEOF 81.62 55.21
∇FP−GENN 78.90 63.56 91.27
∇Grad−GENN 86.51 70.18 93.54

Table 1: SSH and SSH gradient field R/I/AE-scores com-
puted on the four 20-days non-continuous validation period
for OI, (post-)AnDA, VE-DINEOF, FP-GENN and Grad-
GENN for joint assimilation/learning of along-track nadir
with wide-swath SWOT data

Fig. 3: Signal-to-noise ratio computed on the four 20-days
non-continuous validation period for OI, (post-)AnDA, VE-
DINEOF, FP-ConvAE and FP-GENN computed for joint as-
similation/learning with along-track nadir and wide-swath
SWOT data

Regarding the signal-to-noise score in the spectral domain
(Figure 3), Grad-GENN and AnDA have a closer spectrum
w.r.t the ground truth real spectrum, by catching up the sub-
mesoscale range up to 70km, if a threshold of 0.5 is used.
In addition, Grad-GENN seems to maintain a plateau up to
55km, which demonstrates the importance of the solver in our
architecture where the simplified fixed-point version does not
enable to improve the OI spectrum on this particular region.
To further enhance the vizualisation of the improvements
brought by the different interpolators, Figure 4 depict the
spatial SSH Gradient ground truth as well as its global re-
construction based on OI, (post-)AnDA, VE-DINEOF, FP-



GENN and Grad-GENN with joint use of along-track nadir
and wide-swath pseudo-observations on August 4, 2013.

(a) Ground Truth
(∇SSH)

(b) OI

(c) Post-AnDA (d) VE-DINEOF

(e) FP-GENN (f) Grad-GENN

Fig. 4: Global SSH gradient field reconstruction (August 4,
2013) obtained by OI, AnDA, VE-DINEOF, FP-GENN and
Grad-GENN for a joint assimilation/learning of along-track
nadir with wide-swath SWOT data

4. CONCLUSION

In this paper, we demonstrate how the new connection estab-
lished between variational data assimilation and end-to-end
joint learning of NN-based dynamical prior and solver leads
to a better reconstruction performance of SSH fields from
multi-mission altimeter datasets compared to the operational
product and a selection of other data-driven methodologies.
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