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Abstract. Air quality modeling tools are largely used to assess air pollution

mitigation and monitoring strategies. While neural networks (NN) were mostly

developed based on observations to derive statistical models at stations, the use

of Eulerian chemistry transport models (CTMs) was mainly devoted to air quality

predictions and the evaluation of emission reduction strategies. In this study, we

investigate deep learning architectures to create a surrogate model of the CTM

CHIMERE and significantly reduce the computing times required for high resolution

simulations. The key point is the selection of input variables and the way to implement

them in the NN. We perform a quantitative evaluation of the proposed approaches on

a real case-study. The best NN architecture displays very good performances in terms

of prediction of pollutant concentrations observed at stations w.r.t. high-resolution

CHIMERE groundtruth, with a correlation coefficient above 0.95. The best NN is also

able to display better performances when compared to observations than the raw high

resolution simulation.

Keywords: Air Pollution, Deep Learning, Modeling, Multi-Layer Perceptron,

Convolutional Neural Network
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1. Introduction

Nowadays, around 55% of the world’s population lives in urban areas, and this number

is expected to increase by 68% by 2050 [1]. AS stated in the European Environment

Agency annual report, around 25% of the European urban population is exposed to

air quality exceeding the European Union air quality standards, and air pollution is

the leading preventable risk factors for premature death in Europe, being responsible

for 400,000 deaths per year directly or indirectly [2]. The simulation of Air Quality in

urban areas remains a major challenge, in particular to assess the exposure of citizens

to pollutants, identify the sources of pollution and adapt the strategies to improve the

situation. Operational models are expected to be more robust and computationally-

efficient to quickly simulate air quality and propose adequate measures to monitor, curb

and control air pollution. On the regional scale, operational forecasting system mainly

rely on deterministic models that perform simulations with average resolutions of 10km

in the case of a European domain and 3km to 1km for a regional domain. A chemistry

transport model like CHIMERE [3] is suitable to work at such resolutions. This type of

models is used in well-known platforms such as the COPERNICUS ensemble forecast

[4], the French national forecast PREV’AIR [5], the regional forecasts of air quality

monitoring associations in France Airparif [6].

Machine learning techniques have also emerged as relevant solutions to forecast

air quality at stations and using observations (meteorology, concentrations, emissions,

landcover, etc.) as predictor variables [7, 8, 9, 10, 11, 12, 13]. Recently, deep learning

schemes based on neural networks (NN) [14] has become more and more popular with

increasing computer power and training data availability. They seem now relevant

and possible to use in the air quality community. These studies show the need to

evaluate: (i) the influence of the length of training data utilized on the overall NN model

performance,(ii) the significance of the selected predictors and utilized model structure

on the complexity and overall NN model performance, (iii) the links between the selected

data normalization scheme and transfer function utilized and (iv) the influence of the

adapted initialization schemes for the weighting, bias and other training parameters on

the overall NN model performance.

Some very recent works propose to embed NN techniques with CTM models, the

objective being to get the best of state-of-the-art physics on-board CTMs and NN

approaches [15, 16]. For instance, in [15], neural network schemes were tested to emulate

process-oriented modeling outcomes. Especially, they esigned a simple recurrent 3-

layer NN to reproduce daily mean concentrations of some pollutants over Europe as

simulated by the Community Multiscale Air Quality model (CMAQ). The trained NN

may estimate air pollutant concentrations several orders faster than the original model

and with reasonably small errors. They designed a simple recurrent 3-layer NN to

reproduce daily mean concentrations of some pollutants over Europe as simulated by

the Community Multiscale Air Quality model (CMAQ).

Following these previous works, this study proposes a novel approach to design a
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NN-based emulator of high-resolution air pollution simulations [17], which are highly

time-consuming. In [17], we showed that a very simple regression with an adequate

selection of input variables may relevantly emulate a CTM and mimic the behavior with

identical performances. Though, this preliminary study was made on daily datasets and

complementary developments still have to be made on hourly datasets and domains with

intricate downscaling from coarse to high resolution. Here, we introduce a new CTM-NN

strategy. Compared with previous works, the novelty of our approach lies in the input

data selection and the designed NN architectures. We report a quantitative evaluation

on a representative test case, which demonstrates the relevance of the proposed CTM-

NN approach. We further discuss possible applications and improvement for operational

uses.

2. Methods

2.1. The original principles

In a previous study [17], a surrogate model of the CTM CHIMERE was designed to

downscale a low 0.50.25 horizontal resolution simulation to a higher 0.093750.046875

resolution. The use of air quality models is highly computionnally-demanding mainly

because of the CourantFriedrichsLewy (CFL) condition. The CFL condition is a

necessary condition for convergence when partial differential equations are numerically

solved by finite differencing. This condition imposes to adopt an adaptive time step. For

the advection, the time step is proportional to the grid size for the horizontal transport

involving in some cases a dramatic increase of the span of simulation.

The first version of this methodology was based on a training process over a 6-

months period and applied over the subsequent 6 months with an evaluation against

the performances and results of the raw CHIMERE simulation at high resolution.

This simple methodology provided means to assess the extent to which the proposed

approach capture the main patterns and evolution of daily concentrations for the main

pollutants, and the gain in computing time was very important since the costly step

of the simulation process is by-passed. Performances based on an evaluation against

observations were similar to those obtained with the raw model simulations with

CHIMERE at high resolution. In the following uppercase letter refer to variables at

low/coarse resolution (LR) and lowercase for the high resolution simulation (HR), the

bases of the methodology is described hereafter.

In [18, 17], a given high resolution grid cell was assumed to behave as a ”city”.

Based on atmospheric diffusion theory, potential determinants of urban increments and

functional forms of their relationships have been hypothesized [19] as follows. Thus,

under neutral atmospheric conditions, the vertical diffusion of a non-reactive pollutant

from a continuous point source can be described in general form through the following

relationship assuming a Gaussian dispersion in a box model approach:

σ2
z =

2kx

u
(1)
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with σ2
z indicating the variance of the vertical diffusion after a distance x from the

source, k as the eddy diffusivity and u as the wind speed.

As described in [18, 17], a generalization of this equation has been hypothetized

to evaluate the concentration difference ∆c between a fine grid and a coarse grid

simulation of a primary pollutant p concentration influenced by low level sources of

primary pollutants which can be finally expressed as:

c = C + ∆c (2)

∆c = α
1√
ku

(
e
√
d− E

√
D
)

+ β (3)

d ∝
√
δxδy (4)

D ∝
√
δXδY (5)

• c and C (µg m−3) are respectively the concentrations at the high resolution (HR)

and the low resolution (LR) interpolated from the coarse grid to the fine mesh, k is

the vertical mixing coefficient (m2 s−1) at the fine grid, u is the 10m horizontal wind

speed (m s−1) at the fine grid, δX, δY, δx, δy are respectively the coarse longitude,

latitude and the fine longitude, latitude increments of the grids (in degree). In our

study they are constant, but they can vary and for each fine grid cell an average

value of the surrounding coarse grids can be used.

• d and D are characteristic lengths respectively for the fine and coarse meshes, they

correspond here to an average of the grid cells size.

• e and E (µg m−2 s−1) are respectively high resolution and coarse resolution low-level

emission fluxes at the fine grid point. E is interpolated from the coarse grid. For

the PM2.5 and PM10 concentrations, the sum of the primary emissions is considered

while for NO and NO2 the NOx emissions are considered. In the methodology, the

emissions of the two first level (sum of emissions approximately below 30 m) of

CHIMERE are taken into account.

• α and β are regression coefficients embedding geographical, physical and chemical

processes for which details are lost during the simplification process, they also

account for unit changes. Note that β here has not the same meaning than in

[18, 19], it represents here the residual value of the regression method and would

be expected to be close to 0.

An illustration of this concept is displayed in Figure 1. As explained in the next

sections, the previous equations list the relevant variables which are selected as inputs

for the NN.

2.2. CHIMERE ouputs as input for the Neural Networks

The CHIMERE configuration used to create the input data for our neural network

strategies is summarized here, but the reader can refer to the reference CHIMERE
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Figure 1: Illustration of the relation between high and low resolutions of all variables

with the ∆ concept. The presence of a city is responsible of an increase ∆c of primary

pollutant concentrations enhanced by local meteorology and emissions. The coarse

resolution variables C and E as used in input for the NN are reinterpolated over the fine

mesh APL0033 here.

publications [3, 20, 21, 22] for details on the corresponding model components and

references as well as non user-specific model characteristics. The gas-phase chemical

mechanism is MELCHIOR2, which consists of a simplified version (more than 40

species and 120 reactions) of the full chemical mechanism based on the concept of

chemical operators. Modeled particulate matter includes primary particulate matter,

and secondary inorganic (nitrate, sulfate, ammonium based on the ISORROPIA

thermodynamic equilibrium model) and organic aerosol resulting from the oxidation of

the relevant anthropogenic and biogenic precursors and gas-particle partitioning of the

condensable oxidation products [22]. Biogenic emissions are computed with MEGAN

version 2.1 [23], sea-salt and mineral dust emissions from desert and agricultural areas

are also considered. Particle sizes range from 10nm to 40µm over 10 bins. SIA, SOA,

OM, EC, DUST, SALT, PPM respectively referred as Secondary Inorganic Aerosol

(sum of nitrate, sulfate and ammonium), Secondary Organic Aerosols (anthropogenic

and biogenic in origins), Organic Matter, Elemental Carbon, natural mineral dust,
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sea salt and Primary Particle Matter (primary anthropogenic carbonaceous and non-

carbonaceous species) are considered for the PM composition. For the meteorology, the

WRF 3.7.1 version is used. The WRF simulation has been nudged with NCEP (National

Centers for Environmental Prediction) final analysis meteorological fields GFS (Global

Forecast System) at 1x1o and 6-hourly time resolution at the coarsest model initial and

domain boundaries (ds083.2 dataset, [24]).

Table 1: Domain specifications (BOUN: Boundary conditions, INIT: Initialization)

Domain Name EUR01 ALP0033

Area Western Europe French Alps

Coverage 11.85oW-33.25oN/33.85oE-

60.85oN

4.417oE-44.317oN/7.783oE-

46.583oN

Number of grid points 459 × 278 103 × 70

Resolution 1⁄10o×1⁄10o 1⁄30o×1⁄30o

Number of CHIMERE levels 15 20

Chemical BOUN-INIT LMDzINCA GOCART EUR01

Met. BOUN-INIT NCEP/GFS EUR01

Met. Nudging Yes No

For this study, the set-up and domains are rigorously the same depicted in a previous

work aiming at simulating the air quality at fine resolution over the French Alps [25]

providing CTM outputs for the meteorology and concentrations fields. Two different

domains are defined as: (i) EUR01 covering a large part of Western Europe and (ii)

over ALP0033 for the whole French Alps with detailed characteristics are detailed in

Table 1. The Alps domain (APL0033) encompasses an area from the Lyon municipality

on the West part to the Leman Lake on the north to the Piemonte region in Italy on

the East Part with a resolution of about 3km (Figure 2). Grenoble and the Arve valley

from Geneva to Chamonix are known to be air pollution hot spots in France due to

their location in deep valleys with frequent stagnant cold meteorological conditions in

wintertime. The HR simulation is performed over the ALP0033 and the LR simulation

over the EUR01 domain and interpolated over the ALP0033 so that the ALP0033 mesh

will be the working grid for the neural networks. The simulation was performed from

2013-11-15 01:00 UTC to the 2021-12-21 00:00 UTC with a spin-up period from the

begin of November to ensure a good initialization. Therefore 864 hours are available to

train (432 hours) and evaluate (432 hours) the various neural network strategies. The

available observation dataset for model evaluation is reported in [25] with rural and

urban background stations (Figure 2).
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Figure 2: The target domain over the Alps (ALP0033). Red triangle and square symbols

are respectively the locations of rural and urban air quality monitoring sites used for

the evaluation. Dark blue color is used for water bodies.

2.3. NN-based architecture in this study

The basic concept of our approach is presented in Figure 3. We aim to replace the high

resolution simulation HR by a neural-network-based model to save computing time so

that we could produce quick scenarios analyses or air quality predictions. The key

idea is to exploit the low resolution in the inputs of the NN to convey an information

on chemistry and long range transport processes that are of major importance for air

pollution issues.

In [17], the downscaling from coarse/low (LR) to high (HR) resolution is performed

by N pixel-grid linear regressions of the increment ∆c based on Eq.3, where N denotes

the number of grid cells in the HR target ALP0033. In this work, we consider an

extension of this preliminary work with more sophisticated deep learning-based models.

We aim to train as N location-specific independent super-resolution (SR) operators

Φ = {Φi}, i = 1, · · · , N where c?i = Φi(Ci,Λi), c
?
i and Ci respectively denote the

estimation of the high and coarse resolution (this latter been interpolated over the

fine mesh ALP0033) in grid cell/pixel i, and Λi = (d,D, e, E, k, u)i denotes as used

in Eq.3 the set of additional covariates at the same location over the high resolution

mesh ALP0033. The first natural generalization of [17] is to involve independent pixel-

grid multi-layer perceptron (MLP) for SR operator Φ, see Figure 4, instead of a linear

regression. Here, we use a MLP architecture with two hidden layers of 16 and 8 neurons

with ReLU (Rectified Linear Unit) activation and a final linear mapping to c?i . Instead

of constraining the inputs of the network to variable 1√
ku

(
e
√
d− E

√
D
)

used in the

linear regression, we simply feed the MLP with all the potential covariates, namely C,

k, u, d, D, e and E and let the training extract the relevant features through the weight

parameters of the first two hidden layes of the MLP. This choice provides more flexibility.

In this configuration, the number of parameters for each submodels Φi is 289. In the
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Figure 3: Conceptual scheme of the methodology. Panel (A) at the top is the

presentation of the usual concept of air quality model with two domains at low and

high resolutions (LR and HR respectively). Panel (B) is the new concept using a NN

to skip the most time consuming HR-CTM simulation

end, on the global 69x102 ALP0033 domain, the total number of parameters is 2033982.

The test case here differs from [17] where a 12 months period was used for the training

and validation and only the daily values where exploited. In this new study a shorter

period of 36 days is used and the training and validation processes are performed on an

hourly basis.

Because the working frame is a two-dimensional fields discretized on a regular

grid, additional options may be envisaged for SR operator Φ by considering the use
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Figure 4: Pixel-independent Multi Layer Perceptron (MLP)

of convolutional neural networks (CNN) [14]. The underlying idea is to exploit the

potential spatial relationships within local neighborhoods to ease the learning of Φ

which will be a global SR operator and not an aggregation of N independent pixel-grid

SR operators. This framework can be extended to spatio-temporal CNN even though

we believe that for this super-resolution task, a spatial formulation of the problem is

satisfactory enough. This is still an interesting idea though if the same work has to

be achieved on data with high missing data rates, such as remote sensing and/or in-

situ dataset [26]. Here, a simple CNN architecture is first considered in which the

inputs are the same covariates used in the MLP, but stacked here in addition of the

coarse resolution C as supplementary channels. The CNN architecture comprises a first

hidden layer with 128 Conv2D 3x3 filters + ReLU activation (Rectified Linear Unit)

with a batch normalization, followed by a second hidden layer with 64 5x5 filters +

ReLU activation. The final layer maps the outputs of the second hidden layer to the

required HR resolution by a single linear Conv2D 3x3 filter, see Figure 5. The total

number of parameters for this CNN is 84737.

x0 =(LR, d, D, e, E, k, u)

BN–RelU–Conv2D
x1 (128 filters)

BN–RelU–Conv2D
x2 (64 filters)

BN–RelU–Conv2D
HR

Figure 5: Convolutional Neural Network (CNN) architecture

We also draw from the learning-based super-resolution literature to evaluate more
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sophisticated CNN architecture. Here, we consider the Deep Residual Channel At-

tention Networks (RCAN) architecture [27], which is among the state-of-the-art deep

learning models for the super-resolution of natural images. In this setup, the so-called

residual-in-residual (RIR) structures are the elementary building blocks of the deep neu-

ral network architecture. RIR blocks are typically made up of several residual groups

(RG) with long skip connections, while each residual group itself contains a predefined

number of residual cells with short skip connections. The underlying idea lies in the

fact that RIR blocks allows to bypass low-frequency information through multiple skip

connections, thus allowing the main network to focus on the learning of high-frequency

information. The RCAN architecture also involves a channel attention-based mechanism

[28, 29] to rescale channel-wise features through interdependencies among channels. The

total number of parameters in our RCAN configuration is 299,393.

Figure 6: Deep Residual Channel Attention Networks (RCAN) architecture, picture

adapted from [27]

The so-called back-propagation strategy to calculate the fitting coefficient of the

NN is the essence of neural net training. It is the practice of fine-tuning the weights

of a neural net based on the error rate (i.e. loss) obtained in the previous epoch (i.e.

iteration). Proper tuning of the weights ensures lower error rates, making the model

reliable by increasing its generalization. Regarding the training phase, we use for all

architectures as training loss function L the root mean squared error between the ”true”

high resolution (ci) and the output of the neural network (c?i ):

L =
1

N

N∑
i=1

(c?i − ci)
2

It is noteworthy that it could be interesting in future works to assess if other loss

functions can be of interest, for instance to constrain the SR operator Φ to behave better

during pollution episodes. Regarding the training strategy, we use an Adam optimizer

with a batch size of 4 through 200 epochs on a Microsoft Azure Virtual Machine (VM)

powered by NVIDIA Tesla K80 with a GPU memory of 12GiB. The training time of a
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single MLP is only of 15 seconds, but without any parallelization, the whole training

on the 7038 grid cells of the ALP0033 domain is about 26 hours. The CNN-based

architectures provide faster training procedures with only 50 minutes for the basic CNN

and around 6 hours for RCAN. In the end, if the training time can significantly differ

according to the NN architecture, their application on new datasets only takes a few

seconds. All NN models are implemented using keras framework.

3. Results

In this Section, we report the results obtained for NO2 and PM2.5 with the three NN-

based super resolution strategies. We use the first half of the dataset for training: 432

hours ranging from 2013-11-15 01:00 UTC to 2013-12-03 00:00 UTC and the other half

for validation, ending on 2013-12-21 00:00 UTC. Complementary results are provided in

Appendix A for PM10 and the evaluation on an hourly basis in Appendix B. Appendix

C provides an evaluation on δC for each NN. The definition of evaluation metrics is

provided in Appendix D.

Typical patterns of high concentrations are observed along the road traffic network

and urbanized areas with the original high resolution (HR). PM2.5 concentrations maps

are smoother since PM emissions are more spread over rural areas particularly due to

wood burning and long range transport of such species. Figure 7a and 7b respectively

show the NO2 and PM2.5 mean concentrations over the validation period. CHIMERE

high-resolution (top left panel) is the target that the super resolution NN operator aims

at reconstructing, starting from the coarse resolution (top right panel) and additional

covariates as input datasets. On the bottom panel, the maps obtained with the three

NN-based super resolution architectures are displayed: from left to right MLP, CNN

and RCAN. They all exhibit a significant improvement as compared to the coarse simu-

lation. The main patterns are well reproduced by the three NN architectures while the

coarse resolution acts like a smoother of both NO2 and PM2.5 pollution level in these

areas of interest.

Because the PM2.5 increment of concentrations between the high and coarse

resolutions is less easily explained by the high resolution emission covariates, the SRNN

applied to PM2.5 coarse resolution is slightly less efficient in comparison to the results

obtained for NO2. It is especially noticeable in the southeast quarter of the domain

where the convolutional-based SRNN NO2 downscaling is very similar to the high

resolution. Meanwhile, it is not straightforward to say if the modifications of the PM2.5

coarse resolution proposed by the SRNNs really bring the simulation closer to the high

resolution in this area of the ALP0033 domain.

If the gain provided by the super resolution solution presented here is obvious when

looking at the maps, we present in Figure 8a and 8b error statistics between the HR

simulations and the various neural networks as Normalized Root Mean Square Error as
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(a) NO2

(b) PM2.5

Figure 7: NO2 (a) and PM2.5 (b) mean concentrations (µg m−3) over the validation

period for CHIMERE high-resolution and coarse resolution (top line) and 3 NN-based

super resolution architectures (bottom line): from left to right, pixel-based independent

multi-layer perceptron (MLP), Convolutional neural network (CNN) and Residual

channel attention network (RCAN)

nRMSE (solid lines) and correlation (dashed lines). These statistics are displayed on an

hourly basis in order to identify which NN architecture behaves best along the validation

period. Each grid point provide an hourly HR ”truth” and SR modeled output. CNN

and RCAN architectures seem to increase the already significant gain of the MLP

architecture. In terms of correlation, RCAN is slightly better than the basic CNN
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architecture but the NO2 variability of the latter, see the CNN-based standard deviation

on the Taylor diagram provided in Figure 9a, is closer to the HR truth. Correlations

are usually higher than 0.95 for NO2 concentrations for the three NN architectures. The

hourly frequency results B are similar with again the best performances for the RCAN.

It is noteworthy that even the evaluation on ∆c for each NN (Appendix C) show the

ability of the NN to mimic the ∆c of the HR model with a correlation up to 0.95 for

NO2 by the RCAN approach. Regarding the statistics related to PM2.5 concentrations,

they all indicate RCAN (see Figure 9b) is the best super resolution approach among

the three architectures evaluated. On this specific pollutant, it is also interesting to

note that RCAN is the single super resolution architecture able to deal with the abrupt

change of performance of the coarse resolution in the last hours of December 18 (see

Figure 8b): even if the nRMSE and correlation with HR become worse than earlier in

the validation period, they are the best trade-off while both the MLP and in a lesser way

the CNN do not capture this singularity in the validation period. The same conclusions

hold for PM10 (see Appendix A). Regarding this specific issue, the PM2.5 mapping are

also provided in Figure 10 on 2013-12-18 18:00 UTC as complementary information. It

is clear that the impact of the emission covariates is here largely overestimated in this

situation with low PM2.5 pollution levels along the roads. This issue directly relates to

the learning issue of optimizing the RMSE loss function in average over this training

period. It might be more efficient to consider other loss functions and training datasets

to address the issue of learning how the HR behaves in specific conditions for operational

applications.

(a) NO2 (b) PM2.5

Figure 8: NO2 (a) and PM2.5 (b) nRMSE and correlation time series (a) of coarse

resolution, pixel-based independent multi-layer perceptron (MLP), Convolutional neural

network (CNN) and Residual channel attention network (RCAN).
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(a) NO2 (b) PM2.5

Figure 9: NO2 (a) and PM2.5 (b) summary statistics over the validation period as

Taylor diagrams for low resolution simulation (LR), multi-layer perceptron (MLP),

Convolutional neural network (CNN) and Residual channel attention network (RCAN)

versus the high resolution (HR) considered as the ”truth”.

Figure 10: PM2.5 concentrations on 2013-12-18 18:00 UTC for CHIMERE high-

resolution and coarse resolution (top line) and the three NN-based super resolution

architectures (bottom line): from left to right, pixel-based independent multi-layer

perceptron (MLP), Convolutional neural network (CNN) and Residual channel attention

network (RCAN).

As in [17] it is interesting to compare the HR, LR and the three NN simulation

outputs with observation data. For the observations available in the ALP0033 domain

along the validation period, we provide in Figures 11 and 12 additional Taylor diagrams

for the comparison of HR, LR, and the three SRNN to daily-averaged rural and urban

observations. Complementary statistics (average bias, RMSE and correlation) are also

given in Tables 11c and 12c, as well as the original hourly statistics in Appendix B: they

lead to the same conclusions except that the MLP architecture might improve in terms
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of RMSE and correlation at the expense of a degraded variability. Regarding the NO2,

because the high-resolution behaves badly/relatively poorly(?) on the rural observations

with an average correlation lower than 0.25, it is not surprising to see the SRNNs doing

the same. For urban areas, we report a greater similarity ot the HR groundtruth for all

NN models with an average correlation of 0.75 for SR-MLP model and slightly lower

performance for SR-CNN and SR-RCAN ones (0.70 for the basic CNN and 0.71 for

RCAN). This raises the legitimate issue of data assimilation in CTM high-resolution

simulation for which SRNN models open new avenue because they can provide a plug-

and-play surrogate models in a classic data assimilation framework [30, 31, 32]. They

can also be extended to a fully NN-based data assimilation scheme, where the end-to-end

learning strategy consists in using both the coarse resolution (with the HR covariates)

and the observations to feed a neural network whose target is the anomaly between

the observations and the coarse resolution [33, 26]. Also, these formulations have the

advantage of addressing both interpolation, reconstruction and forecasting issues where

only a combination of LR and HR covariates, possibly irregularly-sampled, are available.

Performances on PM2.5 concentrations for the HR resolution at rural stations is

better than for NO2 with an average correlation of 0.70 and RMSE of 5.62 µg m−3; for

this pollutant, the CNN-based architectures are even closer to the observations than HR

with an improvement of the correlation up to 0.82 with the basic CNN and a similar

RMSE with RCAN. Even at urban sites, RCAN behaves better than HR with similar

correlations but lower RMSE and biases. This supports the use of such a super resolution

approach as surrogate model in operational applications.

4. Discussion

The best NN architecture RCAN is able to reproduce the behavior of the raw HR sim-

ulation with satisfactory performances. For some pollutants the NN model is even able

to provide better results probably by smoothing some aberrant values calculated by the

CTM during very stable situations leading to unrealistic concentration peaks. With

minor improvements on ozone chemistry and the use of observational data to constrain

the system similarly to MOS (Model Output Statistic) techniques, our approach can be

quickly deployed for air quality forecasting. Once the training is performed the forecast-

ing chain could deliver a forecast in a few second instead of hours. Then, it should be

further investigated if a generic NN-based model is sufficient or if it has to be adapted to

specific meteorological conditions. In the latter, a training strategy must be investigated

with probably a moving 15 days or a monthly update of the learning process taking the

last 15 to 30 days for instance. This would have the advantage of training the NN with

similar meteorological conditions.

More interesting, expectations lie in the field of air quality modeling for policy

making and impact assessment. These NN approaches can be complementary of sta-

tistical analysis embedded in surrogate models like the Screening for High Emission
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(a) All rural (b) All urban

Obs. Mod. Bias RMSE Cor.
Species Method Typology # stations

NO2

HR

RUR 7 13.10

4.73 -8.37 10.06 0.24

LR 5.54 -7.56 9.76 -0.01

MLP 4.19 -8.91 10.83 -0.12

CNN 4.81 -8.29 10.07 0.13

RCAN 4.58 -8.53 10.23 0.19

HR

URB 40 47.83

33.37 -14.46 16.19 0.75

LR 24.45 -23.39 24.79 0.61

MLP 30.16 -17.67 18.85 0.77

CNN 31.14 -16.69 18.35 0.70

RCAN 29.78 -18.05 19.47 0.71

(c) Daily statistics

Figure 11: NO2 daily statistics of high resolution (HR), coarse resolution (LR),

pixel-based independent multi-layer perceptron (MLP), Convolutional neural network

(CNN) and Residual channel attention network (RCAN) for comparison with all rural

observations (a) and all urban observations (b) as Taylor diagrams summarized in table

(c). Observations, model outputs, biases and RMSE are expressed in µg m−3.

Reduction Potential on Air - SHERPA [34, 35] developed to support the design of air

quality plans in the context of the EU Air Quality directive [36] by the member states.

The approach proposed in SHERPA is based on the cell-per-cell relationships linking

the concentration at a grid cell i to the emissions in the surrounding cells. It builds

on the concept of Geographically Weighted Regression (GWR) as used in [37]) or local

modeling approaches [38], a family of approaches that uses bell-shaped kernel functions

to establish weighted, local regressions between input and output variables. SHERPA

is designed to evaluate the impact of an emission reduction for a given activity sector

and area to a selected location through the mathematical representation of Source Re-

ceptor Relationships (SRR). The SHERPA model works so far on yearly and season

averaged concentrations. Working over large time-averaged periods smooths the results

and limits the impact of non-linearities induced by complex high-frequency phenomena

and interactions between chemical species. SHERPA requires a minimum number of
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(a) All rural (b) All urban

Obs. Mod. Bias RMSE Cor.
Species Method Typology # stations

PM2.5

HR

RUR 3 12.48

7.85 -4.49 5.62 0.70

LR 6.30 -6.06 7.15 0.60

MLP 6.49 -5.89 6.95 0.67

CNN 6.72 -5.64 6.33 0.82

RCAN 7.75 -4.58 5.62 0.72

HR

URB 12 35.68

24.30 -11.36 13.29 0.87

LR 21.30 -14.37 16.82 0.78

MLP 21.03 -14.64 16.70 0.84

CNN 21.34 -14.32 16.21 0.86

RCAN 25.44 -10.23 12.31 0.87

(c) Daily statistics

Figure 12: PM2.5 daily statistics of high resolution (HR), coarse resolution (LR),

pixel-based independent multi-layer perceptron (MLP), Convolutional neural network

(CNN) and Residual channel attention network (RCAN) for comparison with all rural

observations (a) and all urban observations (b) as Taylor diagrams summarized in table

(c). Observations, model outputs, biases and RMSE are expressed in µg m−3.

simulations with targeted emission reductions scenarios and the goal is to increase its

resolution for a better representation of the local scale. Definitively, our approach paves

the way for producing fast scenario simulations at high resolution to feed this type of

models, but care must be taken to ensure that a minimum of physics is embedded to

deal with non-linearities as previously mentioned. For instance, the case of Ozone but

also the formation of secondary particles like the ammonium nitrate can be highlighted.

Our approach could also inspire new developments in SHERPA-like models benefiting

from more recent developments in machine learning techniques on image processing and

analyses. Moreover, our developments can be easily adapted to any other CTM outputs.
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5. Conclusion

In this paper, we developed and evaluated the relevance of the neural-network

super-resolution approaches to downscale coarse CTM simulations focusing on three

regulatory pollutants: NO2, PM2.5 and PM10. These learning-based techniques

take advantage of fast coarse simulation outputs from CTM embedding complex

mathematical representations of physics and chemistry and particularly the long-range

transport of pollutants, with local features which can be retrieved by NN approaches.

The reported quantitative and qualitative evaluation for both simulation and real

observation datasets support the relevance of the neural-network-based downscaling

for the operational monitoring and forecasting of air quality.

Future works may focus on how to integrate physical constraints in the neural net-

work to improve these first encouraging results on a very complex area with steep slopes

enhancing local effects. It is especially relevant for O3, in [17], a special treatment for

such a secondary pollutant is proposed based on the two main equations of the ozone

chemistry involving NOx and Ozone. If the correlations for NO2 are even better for the

RCAN architecture compared to CHIMERE versus observations, the discrepancies in

terms of bias can be a consequence of the local interactions with Ozone that are not con-

sidered in our methodology. This type of physical processes can be easily implemented

in an efficient NN-based scheme as a way of forcing the consistency between the super

resolution outputs for NO2, NO and O3. This directly relates to one of the main branch

of physically-guided neural networks that aims at designing specific NN architectures to

embed the physics in the modeling system. An other option would be to keep similar

CNN and attention-based architectures proposed in the paper while adding additional

constraints on the physics in the loss function: it is an active field of research in what

is called physically-informed neural networks [39, 40].

At last, let us remind that using neural network is complementary of developing

more and more complex physical models. They are good instruments to simplify complex

models for operational uses (by catching the main patterns) and offering the possibility

to develop more and more sophisticated deterministic models representing the ”real

world”.
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Appendices

A. Error statistics and performances for PM10

Figure A.1: PM10 mean concentrations over the validation period for CHIMERE

high-resolution and coarse resolution (top line) and three NN-based super resolution

architectures (bottom line): from left to right, pixel-based independent multi-layer

perceptron (MLP), Convolutional neural network (CNN) and Residual channel attention

network (RCAN)

Figure A.2: PM10 nRMSE and correlation time series (a) of coarse resolution, pixel-

based independent multi-layer perceptron (MLP), Convolutional neural network (CNN)

and Residual channel attention network (RCAN) and summary statistics over the

validation period as Taylor diagrams (b)
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Figure A.3: PM10 summary statistics over the validation period as Taylor diagrams for

low resolution simulation (LR), multi-layer perceptron (MLP), Convolutional neural

network (CNN) and Residual channel attention network (RCAN) versus the high

resolution (HR) considered as the ”truth”.

(a) All rural (b) All urban

Obs. Mod. Bias RMSE Cor.
Species Method Typology # stations

PM10

HR

RUR 4 11.24

8.15 -3.09 5.01 0.30

LR 7.66 -3.58 5.83 0.09

MLP 4.93 -6.31 8.78 -0.24

CNN 8.18 -3.06 5.01 0.31

RCAN 8.31 -2.93 4.99 0.28

HR

URB 35 43.75

23.52 -20.23 21.97 0.82

LR 20.13 -23.62 25.75 0.72

MLP 20.59 -23.15 25.05 0.79

CNN 22.25 ,-21.50 23.40 0.80

RCAN 23.00 -20.75 22.49 0.83

(c) Daily statistics

Figure A.4: PM10 daily statistics of high resolution (HR), coarse resolution (LR),

pixel-based independent multi-layer perceptron (MLP), Convolutional neural network

(CNN) and Residual channel attention network (RCAN) for comparison with all rural

observations (a) and all urban observations (b) as Taylor diagrams summarized in table

(c). Observations, model outputs, biases and RMSE are expressed in µg m−3.
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B. Comparison with the hourly observations

Obs. Mod. Bias RMSE Cor.
Species Method Typology # stations

NO2

HR

RUR 7 13.64

4.71 -8.92 11.12 0.35

LR 5.54 -8.09 10.82 0.16

MLP 4.54 -9.09 11.45 0.20

CNN 5.04 -8.59 10.88 0.33

RCAN 4.93 -8.70 11.07 0.25

HR

URB 40 48.67

33.62 -15.05 19.67 0.65

LR 24.60 -24.06 26.90 0.61

MLP 30.27 -18.39 21.40 ,0.69

CNN 32.24 ,-16.42 20.07 0.69

RCAN 28.31 -20.36 23.23 0.68

Table B.1: NO2 hourly statistics of high resolution (HR), coarse resolution (LR), pixel-

based independent multi-layer perceptron (MLP), Convolutional neural network (CNN)

and Residual channel attention network (RCAN). Observations, model outputs, biases

and RMSE are expressed in µg m−3.

Obs. Mod. Bias RMSE Cor.
Species Method Typology # stations

PM2.5

HR

RUR 3 13.20

7.95 -4.83 8.16 0.30

LR 6.35 -6.58 8.97 0.42

MLP 6.54 -6.52 8.86 0.46

CNN 6.85 -5.95 8.48 0.43

RCAN 7.91 -4.88 7.71 0.45

HR

URB 12 36.65

24.84 -11.81 15.00 0.80

LR 21.71 -14.94 18.44 0.71

MLP 21.41 -15.23 18.31 0.76

CNN 21.70 ,-14.94 17.83 0.78

RCAN 25.96 -10.69 14.23 0.79

Table B.2: PM2.5 hourly statistics of high resolution (HR), coarse resolution (LR), pixel-

based independent multi-layer perceptron (MLP), Convolutional neural network (CNN)

and Residual channel attention network (RCAN). Observations, model outputs, biases

and RMSE are expressed in µg m−3.
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Obs. Mod. Bias RMSE Cor.
Species Method Typology # stations

PM10

HR

RUR 4 11.44

8.24 -3.20 6.24 0.25

LR 7.73 -3.71 6.75 0.18

MLP 4.84 -6.59 9.82 -0.12

CNN 8.30 -3.14 6.18 0.27

RCAN 8.42 -3.01 6.05 0.28

HR

URB 35 44.87

23.95 -20.92 23.38 0.77

LR 20.41 -24.45 27.29 0.68

MLP 20.91 -23.96 26.60 0.73

CNN 22.51 ,-22.36 24.93 0.76

RCAN 23.41 -21.46 23.92 0.78

Table B.3: PM10 hourly statistics of high resolution (HR), coarse resolution (LR), pixel-

based independent multi-layer perceptron (MLP), Convolutional neural network (CNN)

and Residual channel attention network (RCAN). Observations, model outputs, biases

and RMSE are expressed in µg m−3.
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C. Statistics on ∆

(a) NO2

(b) PM2.5

(c) PM10

Figure C.5: Scatterplots between the ”true” increment HR-LR and the SR-based

increments: from left to right, MLP-LR, CNN-LR and RCAN-LR for NO2 (a), PM2.5

(b) and PM10 (c) expressed in µg m−3.
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D. Definition of error statistics

The mean bias (MB), Pearson correlation (R), the root mean square error (RMSE)

and its ”normalized” version (nRMSE) are defined herebelow for n the number of data,

M the model predicted value and O the corresponding observation or HR ”truth”. O

denotes the mean value of the HR truth along the validation period.

V̄ =
1

n

n∑
i=1

Vi V = O,M (6)

MB =
1

n

n∑
i=1

(Mi −Oi) (7)

RMSE =

√√√√ 1

n

n∑
i=1

(Mi −Oi)2 (8)

nRMSE =

√∑n
i=1(Mi −Oi)2√∑n
i=1(Oi − Ō)2

(9)

R =

∑n
i=1(Mi − M̄)(Oi − Ō)√∑n

i=1(Mi − M̄)2
√∑n

i=1(Oi − Ō)2
(10)


