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Abstract
Air qualitymodeling tools are largely used to assess air pollutionmitigation andmonitoring strategies.
While neural networks (NN)weremostly developed based on observations to derive statisticalmodels
at stations, the use of Eulerian chemistry transportmodels (CTMs)wasmainly devoted to air quality
predictions over large areas and the evaluation of emission reduction strategies. In this study, we
investigate deep learning architectures to create ametamodel of the process orientedCTMCHIMERE
and significantly reduce the computing times required for super-resolution simulations. The key
point is the selection of input variables and theway to implement them in theNN.Weperform a
quantitative evaluation of the proposed approaches on a real case-study. The bestNN architecture
displays very good performances in terms of prediction of pollutant concentrations observed at
stationswith respect to the raw super-resolutionCHIMERE simulation, with a correlation coefficient
above 0.95. The bestNN is also able to display better performances when compared to observations
than the rawhigh resolution simulation. Currently themodel is designed to be used for air quality
forecasting and requires improvement for the definition of air qualitymanagement strategies.

1. Introduction

Currently, about 55%of theworld’s population lives in urbanized areas, and this number is expected to increase
by 68%by 2050 [1]. Asmentioned in themost recent European Environment Agency annual report, around
25%of the European urban population is exposed to air quality exceeding the EuropeanUnion air quality
standards, and air pollution is the leading preventable risk factors for premature death in Europe, being
responsible for 400,000 deaths each year [2]. The simulation of AirQuality in urban areas remains amajor
challenge, in particular to assess the exposure of citizens to pollutants, identify the sources of pollution and adapt
the strategies to lower the air pollutant concentrations. Operationalmodeling tools are expected to bemore
robust and computationally-efficient to quickly simulate air quality and propose adequatemeasures tomonitor,
curb and control air pollution. At the regional scale, operational forecasting systemsmainly rely on deterministic
models that perform simulationswith average resolutions of 10 km in the case of a European domain and 3km
to 1 km for a regional to a urban domain. A chemistry transportmodel like CHIMERE [3] is suitable towork at
such resolutions. This type ofmodels is used inwell-known platforms such as theCOPERNICUS ensemble
forecast [4], the French national forecast PREV’AIR [5], or the regional forecasts of air qualitymonitoring
associations in France such as Airparif for the Paris region [6].

Machine learning techniques have also emerged as relevant solutions to forecast air quality at stations and
using observations (meteorology, concentrations, emissions, landcover, etc.) as predictor variables [7–15].
Recently, deep learning schemes based on neural networks (NN) [16] has becomemore andmore popular with
increasing computer power and training data availability. Novel approaches usingwavelet artificial network
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techniques have been recently used for short term air quality forecasting [17]. They seemnow relevant and
possible to use in the air quality community. These studies show the need to evaluate: (i) the influence of the
length of training data utilized on the overall NNmodel performance, (ii) the significance of the selected
predictors and utilizedmodel structure on the complexity and overall NNmodel performance, (iii) the links
between the selected data normalization scheme and transfer function used and (iv) the influence of the
initialization schemes for theweighting, bias and other training parameters on the overall NNmodel
performances.

Some very recent works propose to embedNN techniqueswithin CTMs, the objective being to get the best of
state-of-the-art physics on-boardCTMs andNNapproaches [18, 19]. For instance, in [18], neural network
schemeswere used and evaluated to emulate process-orientedmodeling outcomes. Especially, they designed a
simple recurrent 3-layerNN to reproduce dailymean concentrations of some pollutants over Europe as
predicted by theCMAQ (CommunityMultiscale AirQualitymodel)model. They found the trainedNNmay
estimate air pollutant concentrations several orders faster than the originalmodel andwith reasonably small
errors. They designed a simple recurrent 3-layerNN to reproduce dailymean concentrations of some pollutants
over Europe as simulated by theCommunityMultiscale AirQualitymodel (CMAQ). ConvolutionalNeural
Networks (CNN) have also been recently used for bias corrections to improve a 7 days air quality forecast issued
froma chemistry transportmodel [20]. Other recent works showed the possible use ofNN to act as drop-in
chemical solvers with orders-of-magnitude performance gain [21, 22], though error propagation over long time
periods needs to be addressed.

Following these previous works, this study proposes a novel approach to design aNN-based emulator of
high-resolution air pollution simulationswhich are highly time-consuming. In [23], they showed that a very
simple regressionwith an adequate selection of input variablesmay relevantly emulate aCTMandmimic the
behaviorwith identical performances. Though, this preliminary studywasmade on daily datasets over a large
period.Here, we introduce a newCTM-NN strategy and base the training on a shorter periodwith hourly data.
Comparedwith previous works, the novelty of our approach lies in the input data selection and the designedNN
architectures. The use of an hourly dataset is also new compared to the previous study allowing a shorter period
for the training phase and get a better representation of the evolution of dispersion conditions.We report a
quantitative evaluation on a representative test case, which demonstrates the relevance of the proposedCTM-
NNapproach. At this stage an evaluation on PM10, PM2.5 andNO2, ozone is not addressed and it will be in a
follow-up study by introducingmore physics in theNNapproach.We further discuss possible applications and
improvement for operational uses.

2.Methods

2.1. The original principles
In a previous study [23], ametamodel of the Chemistry TransportModel CHIMEREwas realized to downscale a
low 0.5o× 0.25o horizontal resolution simulation to a higher resolution of 0.1o× 0.05o . Using of air quality
models is highly computationally-demandingmainly because of theCFL (Courant-Friedrichs-Lewy) condition.
This condition ismandatory for convergence when partial differential equations are solved by finite
differencing. TheCFL for a grid box as presented in equation (1) is a ratio between themeanwind speed vxi

, the
time-stepΔt and the cell size in all three directions i asΔxi.More thewind speed is high,more the time-step has
to decrease. Thewind speed varying everyminute, the best way to optimize the numerical cost of a simulation is
to adapt the time-step.

( )å= D
D=

CFL t
v

x
1

i

x

i1

3
i

Thefirst version of thismethodologywas based on a training process over a 6-months period and applied
over the next 6months. This simple and straightforwardmethodology providedmeans to assess the extent to
which the proposed approach is able to capture themain spatial and temporal patterns of themain pollutants
daily concentrations. The gain in computing timewas very impressive because the costly step including all
physics and chemical processes was by-passed. The assessment of performances observations were close to those
obtainedwith the rawmodel high resolution simulationswithCHIMERE. In the following, uppercase letters
refer to variables at low/coarse resolution (LR) and lowercase for the high resolution simulation (HR). The bases
of themethodology is described hereafter.

In [23, 24], a given high resolution grid cell was assumed to behave as a ‘city’. Based on the atmospheric
diffusion theory, a simplemethodology have been hypothesized to evaluate urban increments of concentrations
due to a city [25]. Thus, under neutral atmospheric conditions, the vertical diffusion of a non-reactive pollutant
from a continuous point source is described in a general form through the relationship as follow in equation (2)
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assuming aGaussian dispersion in a boxmodel approach :

( )s =
kx

u

2
2z

2

with sz
2 indicating the variance of the vertical diffusion after a distance x from the source, k as the eddy diffusivity

and u as thewind speed.
As described in [23, 24], a generalization of this equation has been hypothetized to evaluate the

concentration differenceΔc between afine grid and a coarse grid simulation of a primary pollutant p
concentration influenced by low level sources of primary pollutants which can befinally expressed as:
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• c andC (μg m−3) are the concentrations at the high resolution (HR) and the low resolution (LR), respectively.
All concentrations are interpolated from the coarse grid to the fine grid.

• k is the verticalmixing coefficient (m2 s−1) over the finemesh.

• u is the 10 mhorizontal wind speed (ms−1) over thefinemesh.

• δX, δY, δx, δy are the coarse longitude, latitude and the fine longitude, latitude increments of themeshes (in
degree), respectively. In this study they are constant, butwe have considered them, because for other domains
they can vary.

• d andD are the characteristic lengths respectively derived from the previous parameters for the fine and coarse
meshes.

• e andE (μg m−2 s−1) are defined as the high and coarse resolution low-level emission fluxes interpolated over
thefine grid. The sumof primary PM2.5 and PM10 emissions is consideredwhile forNOandNO2 the total
NOx emissions is taken into account. The emissions of the twofirst levels (approximately below 30m) are
considered.

• α andβ are regression coefficients. They embed indirectlymissing geographical, physical and chemical
processes, partly lost during the simplification process. It is noteworthy thatβ here has not the samemeaning
than in [24, 25], it represents here a residual value issued from the regressionmethod and is expected close
to 0.

An illustration of this concept is displayed infigure 1. As explained in the next sections, the previous
equations list the relevant variables which are selected as inputs for theNN.

2.2. CHIMEREouputs as input for theNeuralNetworks
For this new study, theCHIMERE configuration used to create the input data for our neural network strategies is
briefly described here, and the reader can refer to the usual reference CHIMERE publications [3, 26–28] for
details. Particulatematter includes primary particulatematter, secondary inorganic species such as nitrate,
sulfate, ammonium and organic aerosol resulting from the oxidation of anthropogenic and biogenic precursors.
Gas-particle partitioning of the condensable oxidation products [28] is also taken into account. Biogenic
emissions are computedwith themodelMEGANversion 2.1 [29]. Sea-salt andmineral dust emissions issued
fromdesert and agricultural areas are also implementedwith recent parameterizations. Particle sizes range from
10nm to 40 μmover 10 bins.

TheWRF simulation (WRF3.7.1 version) used for themeteorology is nudgedwithNCEP (National Centers
for Environmental Prediction)final analysis fromGFS (Global Forecast System)meteorological fields at 1o× 1o.
The 6-hourly time resolution version is used at the coarsestmodel initial and domain boundaries (ds083.2
dataset [30]).

For this study, the set-up and domains are rigorously the same depicted in a previouswork aiming at
simulating the air quality atfine resolution over the FrenchAlps [31]providing CTMoutputs for the
meteorology and concentrations fields. Two different domains are defined as: (i)EUR01 covering a large part of
Western Europe and (ii) over ALP0033 for thewhole FrenchAlpswith detailed characteristics are detailed in
table 1. TheAlps domain (APL0033) encompasses an area from the Lyonmunicipality on theWest part to the
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Leman Lake on the north to the Piemonte region in Italy on the East Part with a resolution of about 3 km
(figure 2). Grenoble and the Arve valley fromGeneva toChamonix are known to be air pollution hot spots in
France due to their location in deep valleys with frequent stagnant coldmeteorological conditions inwintertime.
TheHR simulation is performed over the ALP0033 and the LR simulation over the EUR01 domain and
interpolated over the ALP0033 so that theALP0033meshwill be theworking grid for the neural networks. The
simulationwas performed from2013-11-15 01:00UTC to the 2021-12-21 00:00UTCwith a spin-up period
from the begin ofNovember to ensure a good initialization. Therefore 864 hours are available to train (432
hours) and evaluate (432 hours) the various neural network strategies. The available observation dataset for the
model evaluation is reported in [31] including only rural and urban background stations (figure 2).

2.3. NN-based architecture in this study
The basic concept of our approach is presented infigure 3.We aim to replace the high resolution simulationHR
by a neural-network-basedmodel to save computing time so that we could produce quick scenarios analyses or
air quality predictions. The key idea is to exploit the low resolution in the inputs of theNN to convey an

Figure 1. Illustration of the relation between high and low resolutions of all variables with theΔ concept. The presence of a city is
responsible of an increaseΔc of primary pollutant concentrations enhanced by localmeteorology and emissions. The coarse
resolution variables C andE as used in input for theNN are reinterpolated over thefinemeshAPL0033 here.

Table 1.Domain specifications for the Boundary Conditions (BOUN) and Initialization (INIT).

DomainName EUR01 ALP0033

Area Western Europe FrenchAlps

Coverage 11.85oW-33.25oN/33.85oE-60.85oN 4.417oE-44.317oN/7.783oE-46.583oN

Number of grid points 459 × 278 103 × 70

Resolution 1/10o×1/10o 1/30o × 1/30o

Number of CHIMERE levels 15 20

Chemical BOUN-INIT LMDzINCAGOCART EUR01

Met. BOUN-INIT NCEP/GFS EUR01

Met.Nudging Yes No

4
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information on chemistry and long range transport processes that are ofmajor importance for air pollution
issues.

In [23], the downscaling from coarse/low (LR) to high (HR) resolution is performed byN pixel-grid linear
regressions of the incrementΔc based on equation (3), whereN denotes the number of grid cells in theHR
target ALP0033. In this work, we consider an extension of this preliminaryworkwithmore sophisticated deep
learning-basedmodels.We aim to train asN location-specific independent super-resolution (SR) operators
Φ= {Φi}, i= 1,L ,Nwhere ( )= F Lc C ,i i i i ,

ci andCi respectively denote the estimation of the high and
coarse resolution (this latter been interpolated over the finemeshALP0033) in grid cell/pixel i, andΛi= (d,D, e,
E, k, u)i denotes as used in equation (3) the set of additional covariates at the same location over the high
resolutionmeshALP0033. Thefirst natural generalization of [23] is to involve independent pixel-gridmulti-
layers perceptron (MLP) for SR operatorΦ, see figure 4, instead of a linear regression.Here, we use aMLP
architecture with two hidden layers of 16 and 8 neuronswith ReLU (Rectified LinearUnit) activation and afinal
linearmapping to ci . Instead of constraining the inputs of the network to variable ( )-e d E D

ku

1 used in

the linear regression, the input data of theMLPwith all the potential covariates are namelyC, k, u, d,D, e andE
and let the training extract the relevant features through theweight parameters of the first two hidden layers of
theMLP. This choice providesmore flexibility. In this configuration, the number of parameters for each
submodelsΦi is 289. In the end, on the global 69x102ALP0033 domain, the total number of parameters is
2 033 982. The test case here differs from [23]where a 12months periodwas used for the training and validation
and only the daily values where exploited. In this new study a shorter period of 36 days is used and the training
and validation processes are performed on an hourly basis.

Because theworking frame is a two-dimensional fields discretized on a regular grid, additional optionsmay
be envisaged for SR operatorΦ by considering the use of convolutional neural networks (CNN) [16]. The
underlying idea is to exploit the potential spatial relationships within local neighborhoods to ease the learning of
Φwhichwill be a global SR operator and not an aggregation ofN independent pixel-grid SR operators. This
framework can be extended to spatio-temporal CNNeven thoughwe believe that for this super-resolution task,
a spatial formulation of the problem is satisfactory enough. This is still an interesting idea though if the same
work has to be achieved on datawith highmissing data rates, such as remote sensing and/or in situ dataset [32].
Here, a simple CNNarchitecture isfirst considered inwhich the inputs are the same covariates used in theMLP,
but stacked here in addition of the coarse resolutionC as supplementary channels. TheCNNarchitecture
comprises a first hidden layer with 128Conv2D 3× 3filters+ReLU activation (Rectified LinearUnit)with a
batch normalization, followed by a second hidden layer with 64 5× 5filters+ReLU activation. Thefinal layer
maps the outputs of the second hidden layer to the requiredHR resolution by a single linear Conv2D3× 3filter,
see figure 5. The total number of parameters for this CNN is 84 737.

We also draw from the learning-based super-resolution literature to evaluatemore sophisticatedCNN
architecture. Here, we consider theDeep Residual Channel AttentionNetworks (RCAN) architecture [33],
which is among the state-of-the-art deep learningmodels for the super-resolution of natural images. In this
setup, the so-called residual-in-residual (RIR) structures are the elementary building blocks of the deep neural
network architecture. RIR blocks are typicallymade up of several residual groups (RG)with long skip
connections, while each residual group itself contains a predefined number of residual cells with short skip
connections. The underlying idea lies in the fact that RIR blocks allows to bypass low-frequency information
throughmultiple skip connections, thus allowing themain network to focus on the learning of high-frequency
information. The RCANarchitecture also involves a channel attention-basedmechanism [34, 35] to rescale

Figure 2.The target domain over the Alps (ALP0033). Red triangle and square symbols are the locations of rural and urban air quality
monitoring sites used for the evaluation respectively. The dark blue color is used for the inlandwater bodies.
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Figure 3.Conceptual scheme of themethodology. Panel (A) at the top is the presentation of the usual concept of air qualitymodel with
two domains at low and high resolutions (LR andHR respectively). Panel (B) is the new concept using aNN to skip themost time
consumingHR-CTM simulation.

Figure 4.Pixel-independentMulti Layer Perceptron (MLP).

6

Environ. Res. Commun. 3 (2021) 085001 BBessagnet et al



channel-wise features through interdependencies among channels. The total number of parameters in our
RCANconfiguration is 299,393.

The so-calledback-propagation strategy to calculate thefitting coefficient of theNN is the essenceofneural
network training. It is the practice offine-tuning theweights of a neural net basedon the error rate (i.e. loss)obtained
in theprevious epoch (i.e. iteration). Proper tuningof theweights ensures lower error rates,making themodel reliable
by increasing its generalization.Regarding the trainingphase,weuse for all architectures as training loss function 
the rootmean squared error between the ‘true’high resolution (ci) and theoutput of theneural network ( ci ):

( )å= -
=

 

N
c c

1

i

N

i i
1

2

It is noteworthy that it could be interesting in future works to assess if other loss functions can be of interest, for
instance to constrain the SR operatorΦ to behave better during pollution episodes. Regarding the training
strategy, we use anAdamoptimizer with a batch size of 4 through 100 epochs on aMicrosoft Azure Virtual
Machine (VM) powered byNVIDIATesla K80with aGPUmemory of 12GiB. The training time of a singleMLP
is only of 15 seconds, butwithout any parallelization, thewhole training on the 7038 grid cells of the ALP0033
domain is about 26 hours. The same number of epochs is used forMLP, CNNandRCAN, though the RMSE loss
function stabilizes between 50 and 100 cycles depending of the architecture. Nomajor overfitting has been
observed for this number of epochs though this is the case if increasing the number of cycles up to 200. The
CNN-based architectures provide faster training procedureswith only 50minutes for the basic CNNand around
6 hours for RCAN. In the end, if the training time can significantly differ according to theNNarchitecture, their
application on newdatasets only takes a few seconds.We remind that it can take several hours for a full
computationwith a CTMat high resolution depending on the resolution and the domain size. All NNmodels
are implemented using keras framework [36].

3. Results

In this section, we report the results obtained forNO2 andPM2.5 with the threeNN-based super resolution
strategies.We use thefirst half of the dataset for training: 432 hours ranging from2013-11-15 01:00UTC to
2013-12-03 00:00UTC and the other half for validation, ending on 2013-12-21 00:00UTC.Complementary
results are provided in appendix A (figure A1, A2, A3 andA4) for PM10 and the evaluation on an hourly basis in
tables B1, B2 andB3 of appendix B. Figure C5 of appendix Cprovides an evaluation onΔc for eachNN. The
definition of evaluationmetrics is provided in appendixD.

Typical patternsofhigh concentrations areobserved along the road trafficnetworkandurbanized areaswith the
original high resolution (HR). PM2.5 concentrationsmaps are smoother sincePMemissions aremore spreadover rural
areas particularlydue towoodburning and long range transportof such species. Figures 6(a) and6(b) respectively show
theNO2andPM2.5meanconcentrationsover thevalidationperiod.CHIMEREhigh-resolution (top left panel) is the
target that the super resolutionNNoperator aimsat reconstructing, starting fromthecoarse resolution (top rightpanel)
andadditional covariates as inputdatasets.On thebottompanel, themapsobtainedwith the threeNN-based super
resolutionarchitectures aredisplayed: fromleft to rightMLP,CNNandRCAN.Theyall exhibit a significant
improvement as compared to the coarse simulation.Themainpatterns arewell reproducedby the threeNN

Figure 5.Convolutional NeuralNetwork (CNN) architecture.
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architectureswhile the coarse resolutionacts like a smootherofbothNO2andPM2.5pollution level in these areas of
interest.

Because thePM2.5 incrementof concentrationsbetween thehigh andcoarse resolutions is less easily explainedby
thehigh resolution emission covariates, the SRNNapplied toPM2.5 coarse resolution is slightly less efficient in
comparison to the results obtained forNO2. It is especially noticeable in the southeast quarter of thedomainwhere the
convolutional-based SRNNNO2downscaling is very similar to thehigh resolution.Meanwhile, it is not

Figure 6.NO2 (a) and PM2.5 (b)mean concentrations (μg m−3) over the validation period for CHIMEREhigh-resolution and coarse
resolution (top line) and 3NN-based super resolution architectures (bottom line): from left to right, pixel-based independentmulti-
layer perceptron (MLP), Convolutional neural network (CNN) andResidual channel attention network (RCAN).

8

Environ. Res. Commun. 3 (2021) 085001 BBessagnet et al



straightforward to say if themodificationsof thePM2.5 coarse resolutionproposedby the SRNNs really bring the
simulation closer to thehigh resolution in this areaof theALP0033domain.

If the gain provided by the super resolution solution presented here is obviouswhen looking at themaps, we
present infigure 7(a) and 7(b) error statistics between theHR simulations and the various neural networks as
Normalized RootMean Square Error as nRMSE (solid lines) and correlation (dashed lines). These statistics are
displayed on an hourly basis in order to identify whichNNarchitecture behaves best along the validation period.
Each grid point provide an hourlyHR ‘truth’ and SRmodeled output. CNNandRCANarchitectures seem to
increase the already significant gain of theMLP architecture. In terms of correlation, RCAN is slightly better than
the basic CNNarchitecture but theNO2 variability of the latter, see theCNN-based standard deviation on the
Taylor diagramprovided infigure 8(a), is closer to theHR truth. Correlations are usually higher than 0.95 for
NO2 concentrations for the threeNNarchitectures. The hourly frequency results B are similar with again the
best performances for the RCAN. It is noteworthy that even the evaluation onΔc for eachNN (Appendix C)
shows the ability of theNN tomimic theHRmodel for theΔcwith a correlation up to 0.95 forNO2 by the
RCANapproach. Regarding the statistics related to PM2.5 concentrations, they all indicate RCAN (see
figure 8(b)) is the best super resolution approach among the three architectures evaluated. On this specific
pollutant, it is also interesting to note that RCAN is the single super resolution architecture able to deal with the
abrupt change of performance of the coarse resolution in the last hours ofDecember 18 (seefigure 7(b)): even if
the nRMSE and correlationwithHRbecomeworse than earlier in the validation period, they are the best

Figure 7.NO2 (a) and PM2.5 (b)nRMSE and correlation time series (a) of coarse resolution, pixel-based independentmulti-layer
perceptron (MLP), Convolutional neural network (CNN) andResidual channel attention network (RCAN).

Figure 8.NO2 (a) and PM2.5 (b) summary statistics over the validation period as Taylor diagrams for low resolution simulation (LR),
multi-layer perceptron (MLP), Convolutional neural network (CNN) andResidual channel attention network (RCAN) versus the
high resolution (HR) considered as the ‘truth’.
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trade-off while both theMLP and in a lesser way theCNNdonot capture this singularity in the validation period.
The same conclusions hold for PM10 (see appendix A). Regarding this specific issue, the PM2.5mapping are also
provided infigure 9 on 2013-12-18 18:00UTC as complementary information. It is clear that the impact of the
emission covariates is here largely overestimated in this situationwith lowPM2.5 pollution levels along the roads.
This issue directly relates to the learning issue of optimizing theRMSE loss function in average over this training
period. Itmight bemore efficient to consider other loss functions and training datasets to address the issue of
learning how theHRbehaves in specific conditions for operational applications.

As in [23] it is interesting to compare theHR, LR and the threeNN simulation outputs with real observation
data. For the observations available in the ALP0033 domain along the validation period, we provide infigures 10
and 11 additional Taylor diagrams for the comparison ofHR, LR, and the three SRNN to daily-averaged rural
and urban observations. Complementary statistics (average bias, RMSE and correlation) are also given in
tables 10(c) and 11(c), as well as the original hourly statistics in appendix B: they lead to the same conclusions
except that theMLP architecturemight improve in terms of RMSE and correlation at the expense of a degraded
variability. Regarding theNO2, because the high-resolution behaves relatively poorly on the rural observations
with an average correlation lower than 0.25, it is not surprising to see the SRNNs doing the same. For urban
areas, we report a greater similarity to theHR ground truth for all NNmodels with an average correlation of 0.75
for SR-MLPmodel and slightly lower performance for SR-CNNand SR-RCANones (0.70 for the basic CNN
and 0.71 for RCAN). Regarding the poor concordance between rural observations and theHR ground truth, it
suggests the importance of using data assimilation in high-resolutionCTMs.On this particular issue, our SRNN
modelsmay be used as fast surrogate simulations in amodel-based ensemble data assimilation framework
[37–39]. They can also be extended to a fullyNN-based data assimilation scheme, where the end-to-end learning
strategy consists in using both the coarse resolution (with theHR covariates) and the observations to feed a
neural networkwhose target is the anomaly between the observations and the coarse resolution [32, 40]. Also,
these formulations have the advantage of addressing both interpolation, reconstruction and forecasting issues
where only a combination of LR andHR covariates, possibly irregularly-sampled, are available.

Performances on PM2.5 concentrations for theHR resolution at rural stations is better than forNO2with an
average correlation of 0.70 andRMSEof 5.62 μg m−3; for this pollutant, the CNN-based architectures are even
closer to the observations thanHRwith an improvement of the correlation up to 0.82with the basic CNNand a
similar RMSEwith RCAN. Even at urban sites, RCANbehaves better thanHRwith similar correlations but
lower RMSE and biases. This supports the use of such a super resolution approach as surrogatemodel in
operational applications.

Figure 9.PM2.5 concentrations on 2013-12-18 18:00UTC forCHIMEREhigh-resolution and coarse resolution (top line) and the
threeNN-based super resolution architectures (bottom line): from left to right, pixel-based independentmulti-layer perceptron
(MLP), Convolutional neural network (CNN) andResidual channel attention network (RCAN).
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4.Discussion

ThebestNNarchitectureRCAN is able to reproduce thebehavior of the rawHRsimulationwith satisfactory
performances. For somepollutants theNNmodel is even able toprovide better results probably by smoothing some
aberrant values calculatedby theCTMduring very stable situations leading tounrealistic concentrationpeaks.With
minor improvements onozone chemistry and theuse of observational data to constrain the systemsimilarly toMOS
(ModelOutput Statistic) techniques or using aCNNapproach for bias corrections [20], our approach canbequickly
deployed for air quality forecasting.Once the training is performed the forecasting chain could deliver a forecast in a
few second insteadof hours.Then, it shouldbe further investigated if a genericNN-basedmodel is sufficient or if it
has tobe adapted to specificmeteorological conditions. In the latter, a training strategymust be investigatedwith
probably amoving 15days or amonthly update of the learningprocess by taking the last 15 to 30days for instance.
Thiswouldhave the advantage of training theNNwith similarmeteorological conditions.

More interesting, expectations lie in thefieldof air qualitymodeling forpolicymaking and impact assessment.
TheseNNapproaches canbe complementaryof statistical analysis embedded in surrogatemodels like the Screening
forHighEmissionReductionPotential onAir—SHERPA [41, 42]developed to support thedesignof air qualityplans
in the context of theEUAirQualitydirective [43]by themember states. The approachproposed inSHERPA isbased
on the cell-per-cell relationships linking the concentration at a grid cell i to the emissions in the surrounding cells. It
builds on the conceptofGeographicallyWeightedRegression (GWR) asused in [44])or localmodeling approaches
[45], a family of approaches that uses ‘bell-shaped’kernel functions to establishweighted, local regressionsbetween
input andoutput variables. SHERPA isdesigned to evaluate the impact of an emission reduction for a given activity
sector and area to a selected location through themathematical representationof SourceReceptorRelationships (SRR).
TheSHERPAmodelworks so far onyearly and seasonaveraged concentrations.Workingover large time-averaged
periods smooths the results and limits the impact ofnon-linearities inducedbycomplexhigh-frequencyphenomena
and interactionsbetweenchemical species. SHERPArequires aminimumnumberof simulationswith targeted

Figure 10.NO2daily statistics of high resolution (HR), coarse resolution (LR), pixel-based independentmulti-layer perceptron
(MLP), Convolutional neural network (CNN) andResidual channel attention network (RCAN) for comparisonwith all rural
observations (a) and all urban observations (b) as Taylor diagrams summarized in table (c). Observations,model outputs, biases and
RMSE are expressed inμg m−3.
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emission reductions scenarios and the goal is to increase its resolution for abetter representationof the local scale.
Definitively, our approachpaves theway forproducing fast scenario simulations at high resolution to feed this typeof
models, but caremustbe taken to ensure that aminimumofphysics is embedded todealwithnon-linearities as
previouslymentioned. For instance, the caseofOzonebut also the formationof secondaryparticles like the
ammoniumnitrate canbehighlighted.Our approach could also inspirenewdevelopments in SHERPA-likemodels
benefiting frommore recentdevelopments inmachine learning techniqueson imageprocessing and analyses.
Moreover, ourdevelopments canbe easily adapted to anyotherCTMoutputs.

Futureworksmay focus onhow to integrate physical constraints in theneural network to improve thesefirst
encouraging results on a very complex areawith steep slopes enhancing local effects.However, this approach
deserved tobe testedover a larger domain and afinest resolutionwith verydifferent chemical andmeteorological
regimes. It is especially relevant forO3, in [23], a special treatment for such a secondarypollutant is proposedbasedon
the twomain equations of the ozone chemistry involvingNOxandOzone. If the correlations forNO2 are evenbetter
for theRCANarchitecture compared toCHIMERE versusobservations, the discrepancies in termsof bias canbe a
consequenceof the local interactionswithOzone that are not considered inourmethodology.This type of physical
processes canbe easily implemented in an efficientNN-based schemeas awayof forcing the consistencybetween the
super resolutionoutputs forNO2,NO,O3 andprobably theVolatileOrganicCompounds.This directly relates toone
of themainbranchofphysically-guidedneural networks that aims at designing specificNNarchitectures to embed
thephysics in themodeling system.Another optionwouldbe to keep similarCNNandattention-based architectures
proposed in thepaperwhile adding additional constraints on thephysics in the loss function: it is an activefieldof
research inwhat is called ‘physically-informedneural networks’ [46–48]. At last, theuse of satellite data like aerosol
optical depthwith groundobservations as inputdata for aNNallows to create an adequatemodel topredict Super-
ResolutionPM2.5 concentrations as it has been reportedoverBeijing [49, 50]. Introducingobservational data in our
approach is anotherway to improve a forecasting systembasedonametamodel.

Figure 11.PM2.5 daily statistics of high resolution (HR), coarse resolution (LR), pixel-based independentmulti-layer perceptron
(MLP), Convolutional neural network (CNN) andResidual channel attention network (RCAN) for comparisonwith all rural
observations (a) and all urban observations (b) as Taylor diagrams summarized in table (c). Observations,model outputs, biases and
RMSE are expressed inμg m−3.
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5. Conclusion

In this study, we have developed and evaluated the relevance of neural-network super-resolution approaches to
downscale coarse chemistry transportmodeling simulations focusing on three criteria air pollutants: NO2,
PM2.5 and PM10. These learning-based techniques take advantage of (i) fast coarse simulation outputs from the
CHIMERECTMembedding complexmathematical representations of physics and chemistry and particularly
the long-range transport of pollutants, and (ii)more local features which are retrieved by neural network
approaches. The reported quantitative and qualitative evaluation against both the high resolution reference
simulation and real observation datasets support the relevance of the neural-network-based downscaling for the
operationalmonitoring and forecasting of air quality. Future directions at short andmedium terms are
identified to use this kind of techniques handling non linearities related to secondary pollutants, interactions
between species and emission reduction strategies.

At last, let us remind that using neural network is complementary of developingmore andmore complex
physicalmodels. They are good instruments to simplify complexmodels for operational uses (by catching the
main patterns) and offering the possibility to developmore andmore sophisticated deterministicmodels
representing the ‘real world’.
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Figure A.1. PM10mean concentrations over the validation period for CHIMEREhigh-resolution and coarse resolution (top line) and
threeNN-based super resolution architectures (bottom line): from left to right, pixel-based independentmulti-layer perceptron
(MLP), Convolutional neural network (CNN) andResidual channel attention network (RCAN)

AppendixA. Error statistics and performances for PM10
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Figure A.2.PM10 nRMSE and correlation time series (a) of coarse resolution, pixel-based independentmulti-layer perceptron (MLP),
Convolutional neural network (CNN) andResidual channel attention network (RCAN) and summary statistics over the validation
period as Taylor diagrams (b).

Figure A.3. PM10 summary statistics over the validation period as Taylor diagrams for low resolution simulation (LR), multi-layer
perceptron (MLP), Convolutional neural network (CNN) andResidual channel attention network (RCAN) versus the high resolution
(HR) considered as the ‘truth’.
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Figure A.4. PM10 daily statistics of high resolution (HR), coarse resolution (LR), pixel-based independentmulti-layer perceptron
(MLP), Convolutional neural network (CNN) andResidual channel attention network (RCAN) for comparisonwith all rural
observations (a) and all urban observations (b) as Taylor diagrams summarized in table (c). Observations,model outputs, biases and
RMSE are expressed inμg m−3.
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Table B.1.NO2hourly statistics of high resolution (HR), coarse resolution (LR), pixel-based independentmulti-layer
perceptron (MLP), Convolutional neural network (CNN) andResidual channel attention network (RCAN).
Observations,model outputs, biases andRMSE are expressed inμg m−3.

Obs. Mod. Bias RMSE Cor.

Species Method Typology # stations

NO2 HR RUR 7 13.64 4.71 −8.92 11.12 0.35

LR 5.54 −8.09 10.82 0.16

MLP 4.54 −9.09 11.45 0.20

CNN 5.04 −8.59 10.88 0.33

RCAN 4.93 −8.70 11.07 0.25

HR URB 40 48.67 33.62 −15.05 19.67 0.65

LR 24.60 −24.06 26.90 0.61

MLP 30.27 −18.39 21.40 ,0.69

CNN 32.24 ,-16.42 20.07 0.69

RCAN 28.31 −20.36 23.23 0.68

Table B.2.PM2.5 hourly statistics of high resolution (HR), coarse resolution (LR), pixel-based independentmulti-
layer perceptron (MLP), Convolutional neural network (CNN) andResidual channel attention network (RCAN).
Observations,model outputs, biases andRMSE are expressed inμg m−3.

Obs. Mod. Bias RMSE Cor.

Species Method Typology # stations

PM2.5 HR RUR 3 13.20 7.95 −4.83 8.16 0.30

LR 6.35 −6.58 8.97 0.42

MLP 6.54 −6.52 8.86 0.46

CNN 6.85 −5.95 8.48 0.43

RCAN 7.91 −4.88 7.71 0.45

HR URB 12 36.65 24.84 −11.81 15.00 0.80

LR 21.71 −14.94 18.44 0.71

MLP 21.41 −15.23 18.31 0.76

CNN 21.70 ,−14.94 17.83 0.78

RCAN 25.96 −10.69 14.23 0.79

Table B.3.PM10 hourly statistics of high resolution (HR), coarse resolution (LR), pixel-based independentmulti-
layer perceptron (MLP), Convolutional neural network (CNN) andResidual channel attention network (RCAN).
Observations,model outputs, biases andRMSE are expressed inμg m−3.

Obs. Mod. Bias RMSE Cor.

Species Method Typology # stations

PM10 HR RUR 4 11.44 8.24 −3.20 6.24 0.25

LR 7.73 −3.71 6.75 0.18

MLP 4.84 −6.59 9.82 -0.12

CNN 8.30 −3.14 6.18 0.27

RCAN 8.42 −3.01 6.05 0.28

HR URB 35 44.87 23.95 −20.92 23.38 0.77

LR 20.41 −24.45 27.29 0.68

MLP 20.91 −23.96 26.60 0.73

CNN 22.51 ,-22.36 24.93 0.76

RCAN 23.41 −21.46 23.92 0.78

Appendix B. Comparisonwith the hourly observations
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FigureC.5. Scatterplots between the ‘true’ incrementHR-LR and the SR-based increments: from left to right,MLP-LR, CNN-LR and
RCAN-LR forNO2 (a), PM2.5 (b) and PM10 (c) expressed inμg m

−3.

AppendixC. Statistics onΔ
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AppendixD.Definition of error statistics

Themean bias (MB), Pearson correlation (R), the rootmean square error (RMSE) and its ‘normalized’ version
(nRMSE) are defined herebelow for n the number of data,M themodel predicted value andO the corresponding
observation orHR ‘truth’.
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