
HAL Id: hal-03709714
https://imt-atlantique.hal.science/hal-03709714

Submitted on 23 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Game design and didactic transposition of knowledge.
The case of progo, a game dedicated to learning

object-oriented programming
Fahima Djelil, Eric Sanchez

To cite this version:
Fahima Djelil, Eric Sanchez. Game design and didactic transposition of knowledge. The case of progo,
a game dedicated to learning object-oriented programming. Education and Information Technologies,
2022, �10.1007/s10639-022-11158-6�. �hal-03709714�

https://imt-atlantique.hal.science/hal-03709714
https://hal.archives-ouvertes.fr


Springer Nature 2021 LATEX template

Game Design and Didactic Transposition of

Knowledge. The case of Progo, a Game

Dedicated to Learning Object-Oriented

Programming

Fahima Djelil1* and Eric Sanchez2

1*IMT Atlantique, Lab-STICC, UMR CNRS 6285, Brest, 29238,
France.

2TECFA, University of Geneva, 40 Bd du Pont d’Arve, Geneva,
1211, Switzerland.

*Corresponding author(s). E-mail(s):
fahima.djelil@imt-atlantique.fr;

Contributing authors: eric.sanchez@unige.ch;

Abstract

Game based-learning have been widely promoted to overcome the difficul-
ties encountered by beginners to learn programming. However, there are
many issues to address for the implementation of game-based learning.
Indeed, game-based learning is not limited to adding game elements such
as rewards to a learning situation, but it rather consists of transforming
the learning situation so that it becomes playful. This work contributes to
computer science education research, especially to game design for learn-
ing programming. We design a novel environment dedicated to learning
object-oriented programming for beginners called Progo. It is based on a
metaphor of a three-dimensional (3D) construction and animation game.
We present an a priori analysis of the Progo environment on the basis of
a didactic transposition framework. The framework highlights the ludici-
sation and metaphorisation process by which educational content is inte-
grated into the game. This allows for the analysis of the transformation
of the computing knowledge by the game design, and to verify whether
analogies are maintained between the knowledge and what the learner
should experience through play. This work contributes to a framework
for the integration of educational content during learning game design.

1



Springer Nature 2021 LATEX template

2 Game Design and Didactic Transposition of Knowledge

Keywords: Game Design, Didactic Transposition, Metaphors, Ludicisation,
Programming Learning, Progo

1 Introduction

Learning and teaching programming to beginners is proven to be difficult, it
is considered as one of the major challenges in computer science education
(Bennedsen, 2008; Medeiros, Ramalho, & Falcão, 2018; Piteira & Costa, 2013).
Recent works focused on teaching and learning object-oriented programming,
which is one of the most difficult paradigm for beginners (Abbasi, Kazi, &
Khowaja, 2017; Abidin & Zawawi, 2020; Keung, Xiao, Mi, & Lee, 2018; Seng
& Yatim, 2014). The main difficulty that students face, lies in abstract basic
concepts, and they struggle to understand more complex concepts, when they
cannot grasp the basics.

Previous research emphasises that a curriculum may focus on the use
of concrete and visible objects, and games to motivate and engage stu-
dents to develop their computing competences (Webb et al., 2017). Many
works on introductory programming teaching are directed towards the use of
microworlds (Costa & Miranda, 2017; Michaelson, 2018; Woei, Othman, &
Man, 2015; Yukselturk & Altiok, 2017). Microworlds are visual and interac-
tive environments, that aim to help students to understand abstract concepts
through play and visible objects (Papert, 1980/2020). For instance, program-
ming microworlds such as Scratch (Resnick et al., 2009), Alice (Cooper, Dann,
& Pausch, 2000) and Greenfoot (Kölling, 2009) allow students to manipulate
visible and concrete objects and create their own game scenarios, leading to
playful and engaging learning activities.

Game-based learning consists of offering the learner to participate in a
playful situation, and to develop reflexivity towards his learning experience
(Sanchez, 2019). The design of such playful situation involves transforming a
learning situation in a way that allows the learner to adopt a playful atti-
tude (Sanchez, 2019). This process, called ludicisation (Genvo, 2011) is a
common implementation of programming microworlds, in which the concept
of metaphor is very apparent (Djelil, Albouy-Kissi, Albouy-Kissi, Sanchez, &
Lavest, 2016). Indeed, metaphors allow to describe abstract concepts in a more
comprehensible and concrete way for beginners, by providing analogies from
familiar domains (Lakoff & Johnson, 2008). Through these two properties, ludi-
cisation and metaphorisation, microworlds provide learning experiences that
aim, on the one hand, to make programming concepts concrete to be more
easily graspable by beginners, and on the other hand, to make programming
learning attractive to capture students’ attention and increase their motivation
and interest (Moskal, Lurie, & Cooper, 2004; Papert, 1980/2020).

In this paper, ludicisation and metaphorisation are approached from the
perspective of the didactic transposition framework (Colomb, 1986), as a pro-
cess by which academic knowledge is transformed to become learning objects,



Springer Nature 2021 LATEX template

Game Design and Didactic Transposition of Knowledge 3

allowing students to learn through experience. Thus, didactic transposition
serves as a framework for game design. In this framework, ludicisation implies
metaphorisation to reshape the concepts to be learned. This framework has
been displayed outside the French-speaking community, and applied for the
teaching of many disciplines (Bosch & Gascón, 2006). However, existing works
addressing the question of didactic transposition relate mainly to the domain
of mathematics and sciences and rarely to the domain of computer science
(Hazzan, Dubinsky, & Meerbaum-Salant, 2010). Indeed, in the didactics of
computer science, existing work (Orange, 1990) focuses more on the analysis
of learners’ skills and difficulties, than on the transposition of knowledge for
designing learning situations.

We, therefore, contribute with this paper to the growing research in the
field of computer science education, raising questions on how to make pro-
gramming learning attractive and effective to beginners. Our work relies on
the introduction of object-oriented principles for beginners and on ludicisation
for the design of a new environment called Progo. We refer to beginners by
novice students that are introduced to basic concepts of object-oriented pro-
gramming instead of advanced concepts. Based on the didactic transposition
framework, we analyse the Progo game design, to understand how the object-
oriented programming concepts are transformed in a playful situation through
a construction game metaphor, and how the meaning of these concepts is
maintained after transformation. Thus, the research questions we address are
the following: 1) How computing knowledge is transformed by game design ?
2) To what extent analogical relations are maintained between the computing
knowledge and the concrete and visible objects ?

The purpose of this paper is threefold, both theoretical, empirical and
policy relevant. First, we present a theoretical model of didactic transposition
for the design of learning situations, leading students to learn through discovery
and play. Then, we apply this model to the case of Progo. This empirical work
consists of an a priori analysis of the game design, and more specifically, of
how teaching knowledge is integrated into the game. Finally, we aim to bring
a broader contribution in terms of implications for learning game design in the
filed of computer science education.

In the following sections, we first trace previous work on the learning design
inherent to the objects-first approach for the introduction of object-oriented
principles for beginners, as well as on game-based programming learning. We
describe the didactic transposition model for game design which is based on the
concepts of ludicisation and metaphorisation. Then, we describe our method
used to analyse and discuss the Progo game with the lenses of the ludicisa-
tion framework. The last sections emphasize the limitations, conclusions and
implications of this work.



Springer Nature 2021 LATEX template

4 Game Design and Didactic Transposition of Knowledge

2 Related work

2.1 Objects-first approach for teaching object-oriented
programming to beginners

Programming is what allows a sequence of operations to be executed on a
computer. The goal of any program is to compute and return valid and reli-
able results. A program is defined as a sequence of actions that a computer
must perform in a finite time to resolve a problem (Dabancourt, 2008). These
operations are called instructions and are translated into a programming lan-
guage. The way a program is constructed constitutes a programming style or
a programming paradigm.

The concepts of object and class are the basic concepts that govern the
object-oriented paradigm. A class is often defined as a structure representing
a mould or a template for the object, while the object is an embodiment,
a reproducible copy of its class (Bersini, 2017). Different approaches exist
for teaching programming and the object-oriented paradigm (Roberts et al.,
2001). Objects-first approach focuses on the fundamentals of object-oriented
programming and design at the very beginning of curriculum. It is one of the
most quoted approach in the literature, reflecting its interest in practice and
its potential to overcome learning and teaching difficulties (Bennedsen, 2008;
Krugel & Hubwieser, 2018; Michaelson, 2018; Woei et al., 2015). For instance,
searching ”objects-first approach” in the ACM Digital Library returns 561,358
results (October, 2021).

Many authors described their experiences for the introduction of object-
oriented courses with respect to the object-first approach. The approach
described by Woodworth and Dann (1999) and Adams and Frens (2003),
guides the learner for the design and the use of programming abstractions, by
modelling properties of objects used in a previous problem-solving step. Buck
and Stucki (2000) argue on an approach that allows the students to start by
changing the computer code and later, designing parts of the object-oriented
system. Programming language concepts are introduced as needed during the
problem-solving tasks. Similarly, Becker (2001) describes a learning scenario
that consists of starting by instantiating and using objects and then extending
existing classes. Programming language fundamentals are introduced pro-
gressively. This learning scenario includes the use of the microworld Karel
(Xinogalos, Satratzemi, & Dagdilelis, 2006). Kölling and Rosenberg (2001)
suggest a set of guidelines for teaching introductory object-oriented program-
ming: Starting with objects from the beginning instead of a small program
in an imperative paradigm, modifying existing code, reading a well-structured
code, etc. This approach is implemented in the Greenfoot microworld (Kolling,
2015).

These experiences are very similar as they do not focus on programming
languages at the beginning of teaching, but rather on Object-Oriented con-
cepts, through problem-solving tasks using significant learning environments,
such as microworlds. This approach was further conceptualised on the basis



Springer Nature 2021 LATEX template

Game Design and Didactic Transposition of Knowledge 5

Fig. 1 Didactic engineering defining the objects-first approach.

of analysis of more than 200 contents in the literature (Bennedsen & Schulte,
2007), allowing the definition of three steps through which it is implemented
in practice:

1. Using objects: the learner uses objects defined before programming classes.
The focus is on the use of objects before their implementation (objects
interaction introduced before methods implementation). Once the learner
masters the concept of object, he moves onto the concept of classes.

2. Creating classes: the learner defines and implements classes and creates
instances of classes (data fields and methods). The focus is on writing and
using classes before algorithms. The concept of a class is often approached
in a concrete and creative programming way.

3. Concepts: the learner learns general principles of the object-oriented
paradigm, through the creation of models. The focus is on the conceptual
aspects of object-orientation. The objective is to learn to model a real world
as objects and to map these objects to classes of code.

It is worthy to consider the learning design (Brousseau, 2006) that defines
the objects-first approach to introduce the object-oriented paradigm to begin-
ners. Objects-first approach allows for the introduction of object-oriented
programming principles through the embedding of three categories of concepts
(Djelil, Montesinos, & Gilliot, 2020). At each level, the objective is to help
the beginner to focuse on a category of concepts, while the successive ones
are temporally hidden. The categories are embedded since they encapsulate
object-oriented concepts that are interdependent (objects, classes and design
principles) (Fig. 1). As a result, beginners are expected to progressively acquire
prerequisites before handling complex concepts, when they are involved in
modelling and coding object-oriented programs for problem-solving.

2.2 Game-based programming learning

According to Plass, Homer, and Kinzer (2015), game-based learning depends
on the alignment between the game characteristics and learning outcomes.



Springer Nature 2021 LATEX template

6 Game Design and Didactic Transposition of Knowledge

However this issue is relatively unaddressed. A meta-analysis published in
2016, highlighted only 8 articles out of 69 that explicitly addressed this issue
(Ke, 2016).

Yet, as soon as 2007, Habgood (2007) distinguished between games that
are described as extrinsic games, for which the game content and academic
exercises alternate (the game then appears to be a reward for having suc-
ceeded in the exercise), and intrinsic games, for which the targeted knowledge
is necessary to deal with the objectives of the game. Thus, using a game-based
approach to teach programming leads to integrating educational content with
playful aspects. This is what is referred to intrinsic metaphor for a successful
integration (Fabricatore, 2000).

In the field of computer science education, programming microworlds are
designed as intrinsic games, since they are based on playful learning situa-
tions rather than game rewards. In fact popular microworlds such as Scratch
(Resnick et al., 2009), Alice (Cooper et al., 2000) and Greenfoot (Kölling,
2009) are used to overcome difficulties in learning programming to beginners
through play and metaphors (Djelil et al., 2016).

2.2.1 Ludicisation and programming microworlds

Ludicisation allows for the design of learning situations that foster playful
attitude, leading students to use artefacts that are not necessarily games
(Genvo, 2011). Ludicisation differs from gamification, which provides students
with engaging activities through rewards and positive reinforcements (Genvo,
2012). Ludicisation is thus a way of designing playful and interactive learn-
ing situations. It is a common practice for programming learning (Combéfis,
Beresnevičius, & Dagienė, 2016; Seralidou & Douligeris, 2021).

Programming microworlds also implement ludicisation, e.g. Scratch
(Resnick et al., 2009), Alice (Cooper et al., 2000) and Greenfoot (Kölling,
2009) aim, from one hand, to allow students to develop autonomously, through
personal discovery and exploration, complex and abstract knowledge (Kafai,
2006; Papert, 1980/2020). The learning situation induced using these envi-
ronments also involves problem-solving. As a principle of the constructionism
paradigm (Harel & Papert, 1991; Perkins, 2013), this allows for exploring a
domain in a rich and meaningful way (Rieber, 1996). From another hand,
the goal consists of providing students with engaging learning situations that
allow for intrinsically motivating learning activities connected with learners’
expectations through play (Papert, 1980/2020). These environments provide
meaningful experiences for learning programming, by offering students the
opportunity to design and develop their own games. They allow students to
create game scenarios by designing programs, leading to playful learning situ-
ations. Ludicisation is therefore an essential design principle for programming
microworlds.



Springer Nature 2021 LATEX template

Game Design and Didactic Transposition of Knowledge 7

2.2.2 Metaphors and programming learning

Programming microworlds use metaphors to make abstract concepts more
easily graspable by beginners (Xinogalos et al., 2006). In such environments,
programming concepts are experienced in a graphical scene as a narrative, an
animation or a significant phenomenon (Cooper et al., 2000; Kölling, 2009;
Resnick et al., 2009).

In computer science, the most important computing concepts are funded
on metaphors. Therefore, explicit metaphors are often used to teach beginner
students how to code computer programs (McConnell, 2004). According to
Travers (1996), computation itself is a structuring metaphor and programming
models are built on metaphors. This includes the object-oriented paradigm, in
which computational objects are depicted metaphorically in terms of physical
and social objects (Travers, 1996): As physical objects, they have properties
and state. As social objects, they communicate and interact.

Metaphors enable the formalisation and communication of new knowledge
in an understandable way for learners, and provide students with analogies that
foster learning (Carroll & Mack, 1999). Indeed, metaphors make programming
tangible and provide students with means to understand the abstract opera-
tions of the computer in terms borrowed from more familiar domains (Travers,
1996). This is very useful for learning concepts that cannot be directly per-
ceived. In this sense, a metaphor is defined as a way to structure and transform
the knowledge from one domain through mapping concepts and relations to
build another domain that is already familiar. This new domain is expected
to enabling learning since the ”essence of metaphor is understanding and
experiencing one kind of thing in terms of another” (Lakoff & Johnson, 2008).

This transformation of knowledge consists of didactic transposition. In
the following, we describe the didactic transposition framework in which
programming knowledge is transformed using a metaphor in the game design.

2.3 Didactic transposition and game design

Didactic transposition is defined by a process by which knowledge (academic
knowledge) is transformed to become learning objects (knowledge to teach)
(Botet, 2008; Colomb, 1986). The process does not only consist of the simpli-
fication of knowledge but rather to significantly change academic knowledge
to be taught and learned. Didactic transposition is a process of deconstruction
and rebuilding of academic knowledge with the aim of making it teachable
(Bosch & Gascón, 2006). This process includes two main steps, including how
the scholarly knowledge is shaped to become knowledge to be taught, and how
the teacher contextualises the knowledge to be taught into meaningful learning
situations.

Bonnat, Sanchez, Paukovics, and Kramar (n.d.) proposed a framework as
an alternative to the classical model of didactic transposition. In this model,
didactic transposition is approached from the perspective of ludicisation and
metaphors. A metaphor is an implicit analogy that operates a transfer of



Springer Nature 2021 LATEX template

8 Game Design and Didactic Transposition of Knowledge

Fig. 2 Didactic transposition framework (Bonnat et al., n.d.).

meaning from an abstract target domain to a concrete source domain, in other
words, it allows a target domain to be understood from a source domain. Thus,
the didactic transposition corresponds to a conversion of a target situation into
a source situation (Fig. 2). The target situation is the target abstract learning
domain, and the source situation is the concrete learning situation provided
to the learner.

According to this model, learning is defined as the ability for the learner
to identify analogies and relationships between the source and the target sit-
uations (Hofstadter & Sander, 2013). The metaphor is a figurative meaning
of the teaching domain. As a result, there is an isotopy, a common meaning,
between the elements of the source situation (the game) and the elements of
the target situation (the concepts to be learnt). Nevertheless, to perceive this
isotopy, the learner must follow an interpretative path that will allow him
to deconstruct the metaphor. This de-metaphorisation takes place during the
debriefing carried out by the instructor after the game session (Bonnat et al.,
n.d.).

3 Method

In this paper, we aim to analyse the didactic transposition by which the aca-
demic computing knowledge is contextualised in a new game-based learning
environment called Progo. This analysis is conducted from two perspectives:
(1) the design inherent to the objects-first approach for the introduction of
object-oriented principles to beginners, and (2) the didactic transposition with
the metaphorisation and ludicisation processes that operates in the game
design. Our main objective is to characterise how the object-oriented concepts
are transformed and reshaped in the Progo game design and the resulting
learning situation. This analysis aims to evaluate the distance between the
target situation (the knowledge to be taught) and the source situation (the
game situation induced by Progo). Although several empirical studies have
been conducted to analyse the use of Progo and its learning effectiveness
(Djelil, Albouy-Kissi, Albouy-Kissi, Sanchez, & Lavest, 2015; Djelil, Muller,



Springer Nature 2021 LATEX template

Game Design and Didactic Transposition of Knowledge 9

& Sanchez, 2019; Djelil, Sanchez, Albouy-Kissi, & Albouy-Kissi, 2017), we do
not focus in this study on the analysis of the learning experience, but we rather
aim to analyse the game design based on the didactic transposition model.

Our method relies, on the one hand, on an analysis of the curriculum in
order to identify the knowledge to be taught and, on the other hand, on an
a priori analysis of the Progo game. This a priori analysis (Artigue, 1988),
consists of determining in what way the choices made in the design of the
game (didactic transposition) are expected to impact the learners’ behaviour
and the learning process. The a priori analysis is based on the identification
of the different elements of the game, the tasks they provide with and the
knowledge mobilised by these tasks. This analysis aims to describe the source
situation and thus to characterise the transformation of knowledge during the
design of the game (RQ 1) and the analogical relations between the source
situation and the target situation (RQ 2). The a priori analysis has close
connections with conjecture mapping (W. Sandoval, 2014), a design method
developed for design-based research. The close analysis of a learning device
allows for the identification of design conjectures i.e. ”conjectures about how to
support learning in a specific context, that are themselves based on theoretical
conjectures of how learning occurs in particular domains” (W.A. Sandoval
& Bell, 2004). Design conjectures are implemented as design elements that
are expected to produce specific effects on the learning process. The a priori
analysis is performed by the authors of this article: a game-based learning
scholar and a computer science education scholar.

4 Analysis of the Progo game design

4.1 Analysis of academic curricula for teaching
object-oriented basics

In higher education and more particularly in the French educational sys-
tem, computer science curricula include object-oriented programming from the
beginning of cycle 1, and often during the core curricula (before specialisa-
tion, e.g. object-oriented design and programming courses in Universities and
Engineering Schools (Roberts et al., 2001), National Pedagogical Programme
of the computer science undergraduate degree). Computing curricula generally
include courses which are spread over several weeks, due to a large number
of concepts and knowledge to be taught. Object-oriented programming intro-
duction courses come often after the course ”introduction to programming
and algorithms”. Instructors choose to use programming languages that are
widespread in industries, such as Java and C++. Students therefore have some
programming skills, but very often they are beginners on object-orientation
and its programming languages.

According to the didactic transposition framework, the target situation
consists of the object-oriented programming basics as defined in computer
science curricula. We have analysed the academic curricula according to the



Springer Nature 2021 LATEX template

10 Game Design and Didactic Transposition of Knowledge

Table 1 Object-oriented fundamentals embedded within three didactic steps.

Didactic step Programming concept

1) Using objects 1.1. Relationship between an object and a class: an object results
from a class instantiation.
1.2. Object characteristics: an object is characterised by
attributes and methods.
1.3. Object state: attribute values and method calls.

2) Creating classes 2.1. Class role: a class allows for the description of object
properties. It is a new data type.
2.2. Class encapsulation: hiding internal data and methods from
the outside of a class.
2.3. Class constructor: function of a class that allows creating and
initialising new objects of that class.

3) Design principles 3.1. Association: relationship between classes of objects. Each
Object is connected to another, knowing its reference.
3.2. Aggregation: symmetric association between classes repre-
senting a ”ensemble/element” relationship. Both the entities can
exist individually.
3.3. Composition: form of aggregation in which two entities are
highly dependent on each other, representing a ”part-of” rela-
tionship. The composed object can not exist without the other
entity.
3.4. Inheritance: represent a relationship between classes, where
an inherited class is a subclass of its parent class or super class.
An object created through inheritance acquires all the properties
of the super class.

objects-first approach, to describe the target situation. We describe the object-
oriented basics with respect to the didactic engineering of the objects-first
approach that embeds the fundamental concepts within the three didactic
steps: 1) using objects, 2) creating classes and 3) design principles. Table
1 lists, for each didactic step, the corresponding object-oriented basics with
respect to the academic curricula.

These programming concepts are the target learning concepts, i.e. the
knowledge to be taught (or learning outcomes). In what follows, we analyse
how these concepts are transformed and how their meaning is preserved by
the analogical relationships between the target and the source situations.

4.2 Knowledge transformation in the Progo game design

The didactic transposition framework defines a target situation and a source
situation: In our context, the target situation is the object-oriented program-
ming paradigm (design and coding principles), the source situation is the Progo
environment, which is based on a metaphor of construction and animation (Fig
3).

The Progo interface comprises a three-dimensional (3D) scene, which allows
the learner to design his own constructions by assembling, colouring and
rotating 3D components. The interface also comprises a code editor, entirely



Springer Nature 2021 LATEX template

Game Design and Didactic Transposition of Knowledge 11

Fig. 3 Didactic transposition model applied to the Progo game.

Fig. 4 3D constructions realised by students when playing with Progo.

synchronised with the 3D scene. The learner can interact with the 3D com-
ponents by viewing and entering code. Therefore, the game-play consists in
building and animating robots or 3D mechanical structures (Fig 4).

The 3D components visible at the user interface and the interactions they
provide allow to shape object-oriented basics through metaphorisation and
ludicisation. The design of Progo embeds object-oriented concepts through
three steps: 1) using objects, 2) creating classes and 3) design principles. In
the following, we describe how ludicisation and metaphorisation reshape the
object-oriented concepts in a meaningful and playful way, with regard to the
three didactic steps (RQ 1). We also describe the analogical relationships
between the source situation and the target situation (RQ 2). We first con-
sider the analogy between using existing 3D components in the Progo game
with the didactic step using objects. Second, we consider the analogy between
the creation of a new 3D construction and the didactic step creating classes.
Finally, we consider the analogy between 3D constructions with the didactic
step using design principles.



Springer Nature 2021 LATEX template

12 Game Design and Didactic Transposition of Knowledge

Fig. 5 Modifying attribute values and making method calls, both in the 3D scene and in
the code editor.

4.2.1 Using existing 3D components

During the first didactic step, the learner starts with manipulating objects. As
a result, he experiences the following concepts: 1) The relationship between
an object and its class, 2) The setting object attributes, 3) The modification
of attribute values and method calls (Table 1).

The Progo interface makes visible the concept of a class through a 3D
graphical model. Each time a model is instantiated, an interactive object is
created. When an object is created, its visual appearance is similar to its class.

The characteristics of an object are expressed through its appearance and
behaviour. The appearance includes the object position (its location relatively
to another object), its colour and its rotation angle. These characteristics are
the object attributes. The behaviour of an object includes the ability to be
assembled with another object to build a more complex structure, the ability
to change its colour and/or the ability to rotate for a given duration. These
characteristics are object methods.

The learner can change an object appearance by modifying the values of
its attributes or making method calls. This is what defines an object state.

The learner experiences these concepts both with the 3D scene and the code
editor (Fig 5). Once the learner has finished his construction, he is invited to
create a new class with his realisation in a second phase.



Springer Nature 2021 LATEX template

Game Design and Didactic Transposition of Knowledge 13

Fig. 6 Generated declaration code of a new class called Robot.

4.2.2 Creating a new 3D construction

During the second didactic step, the learner moves to the concept of class, com-
prising: 1) the class role, 2) the class encapsulation, and 3) the class constructor
(Table 1).

With the Progo interface, the learner can name and save each new 3D
construction as a new class which can be instantiated and visualised in the
3D scene. This new graphical model gathers all the properties and behaviours
of the objects chosen beforehand by the learner during the previous didactic
step. Therefore, the player experiences the class role.

Once a new class is created, the learner can visualise new tabs displaying
two codes in C++ programming language, the declaration of the new class
(”*.hpp” file), and the definition of this class (”*.cpp” file) in the code editor.
The learner can therefore experience the concept of encapsulation by observing
the codes and by trying to manipulate new instances of this new class in a new
”main()” function. The learner may notice that some of the attributes and
methods of the new class are ”private” (preceded by the keyword ”private”)
and others are ”public” (preceded by the keyword ”public”). The learner also
has the opportunity to make calls to the public methods in the ”main()”
function as well as in the 3D scene, but not in the private ones.

The new class also has a constructor which allows an object to be initialised
as soon it is created. When observing the constructor code, the learner may
notice that the constructor is preceded by the keyword ”public”, has the same
name as its class, and does not have a return type (Fig. 6).

4.2.3 3D constructions as object-oriented systems

During the third didactic step, the learner is introduced to the design principles
of the object-oriented paradigm. In the academic curricula, this mainly com-
prises the principles of association, aggregation, composition and inheritance
(Table 1).



Springer Nature 2021 LATEX template

14 Game Design and Didactic Transposition of Knowledge

Fig. 7 UML Class diagram modelling a Progo 3D construction.

In the Progo environment, the building of each 3D construction uses classes
of objects which are connected to each others. Therefore, relationships between
classes of objects manipulated by students when playing, are consistent with
the object-oriented design principles. In this didactic step, the instructor can
ask students to analyse the design principles that are illustrated in the 3D
constructions.

Regarding the object-oriented paradigm, each 3D construction is an object-
oriented system, that can be modelled using the Unified Modeling Language
(UML) (Muller & Gaertner, 2000), which is a very widespread formalism used
in the french academic curricula to introduce object-oriented design princi-
ples. UML allows to describe in a formal way the object-oriented relationships
between the different classes used to build a 3D construction in Progo (Fig 7).

The classes of objects in the Progo construction game are modelled as
follows:

1. The ”3DConstruction” class: This class is a model of the final realisation
of a student. It is a composition (part-of relationship) of all the classes



Springer Nature 2021 LATEX template

Game Design and Didactic Transposition of Knowledge 15

used by the students during the game. It defines two main methods: the
method ”animate()” that gathers all the animation operations programmed
by the student, and the method ”reinitialise()”, that allows to set a 3D
construction to its initial state.

2. Abstract classes that are not visible at the interface, but allow to model
the visible ones as graphical components having some characteristics. They
are modelled as follows:

• The ”3DComponent” class: models all the graphical components, having
the attribute ”color”, and the methods ”connect()”, and ”colorForaDu-
ration()”, allowing respectively to connect an object to another, and to
colour an object during a period of time (animation effect).

• The class ”ActiveComponent”: This class models all the graphical compo-
nents, having additional characteristics comparatively with the precedent
class. They are called active components since they are able to perform
a movement as a result of a rotation during a period of time. This leads
to animation effect. This class is inherited from the ”3DComponent”
class, and defines the new attribute ”rotationAngle”, and the method
”turnForaDuration()”.

3. Visible classes at the interface are classes that the students can directly
manipulate when playing (Fig 8). They are inherited from the abstract
classes, either from the class ”3DComponent” such as ”Base”, ”Cube”,
”YBifurcation” and ”Spring”, or from the class ”ActiveComponent”, such
as ”Wheel” and ”Gear”. The class ”Base” has a unique instance as a con-
struction basis. It is visible in the 3D scene when launching the Progo
environment, inviting students to start playing.

Finally, in addition to these different classes, the Progo construction game
enables the introduction of three distinct design principles from the academic
curricula (see Table 1) :

1. Inheritance: relationships between each of the classes,

• ”Base”, ”Cube”, ”YBifurcation”, ”Spring” and ”ActiveComponent” with
the class ”3DComponent”.

• ”Wheel” and ”Gear”, with the class ”ActiveComponent”.

2. Aggregation: the ensemble/element relationship between all the instances
of the class ”3DComponents”, since each component is connected to each
other, but removing some components doesn’t impact others.

3. Composition: relationship between the ”3DConstruction” class with the
”3DComponent” class from one hand, and the ”Base” class from another
hand. The composed 3D construction cannot exist without the composing
entities.



Springer Nature 2021 LATEX template

16 Game Design and Didactic Transposition of Knowledge

Fig. 8 3D graphical components representing classes of objects.

5 Discussion

The concept of ludicisation, as a form of didactic transposition (Balacheff,
1994; Bonnat et al., n.d.), allows to distinguish between a target situation (in
the sense of a learning target), which integrates the knowledge to be taught,
and a source situation (in the sense of a learning source), that refers to the
learning situation in which this knowledge is contextualised in the form of
playful problems to be solved, tasks to be carried out or even objects to be
manipulated.

In our work, knowledge is integrated into a learning situation through a
metaphor of a construction game dedicated to the creation and animation of
3D objects. This metaphor transforms the characteristics of object-oriented
programming concepts (target situation), into graphical 3D objects to be
manipulated in a construction game (source situation).

The process of didactic transposition has captured the essence of the target
situation similarly to a literary metaphor. Indeed, the metaphor is a refined
form of the target situation, aiming to allow learners focusing their attention
on the core concepts of this situation. In our case, the core situation comprises
key concepts of object-oriented programming (e.g. the concepts of objects, class
and relationship between the object and class are represented by visible and
interactive 3D graphics, which are instances of 3D graphical models, setting
attribute values and making method calls are illustrated by colouring, rotating
or connecting graphics).

The construction metaphor embedded in the game is a well known and
intuitive conceptual domain (the source situation), which is projected on the
conceptual domain to be learned (the target situation). This allows the learner
to move from concrete and visible concepts (3D graphics and their character-
istics) to more abstract and opaque concepts (objects, classes, methods, etc.)
(Botet, 2008). In other words, the learner moves from the experience of the
construction game to the computing concepts to be learned.

There is an analogical relationship between the situation implied by the
Progo environment (source situation) and the object-oriented concepts (target
situation). Indeed, the construction metaphor embedded in the Progo game
allows the description of object-oriented basics in a reliable and accurate way
(objects, classes and design principles). This is in line with Hofstadter and



Springer Nature 2021 LATEX template

Game Design and Didactic Transposition of Knowledge 17

Sander (2013), who assumes that learning does not result from a purely inter-
pretative logic, but rather from a process that leads the learner to identify
analogical relationships between different situations.

Therefore, the analysis we have carried out allow us to answer the research
questions (RQ 1 and RQ 2). Contextualisation of computing knowledge in
the game Progo is a result of a transformation process, that maintained
an analogical relationship between the knowledge concerned and the game
metaphor.

6 Limitations

This work highlights how didactic transposition operates on the design of
the Progo environment through metaphorisation and ludicisation. However,
our analysis doesn’t take into consideration the reverse process, which con-
sists of de-metaphorisation. In practice, this takes the form of a debriefing
conducted by the teacher, also referred to as knowledge institutionalisation
(Brousseau & Balacheff, 1998). A student who plays with Progo develops
knowledge which needs to become communicable and transferable to other
situations. Indeed, the French language recognises a difference between “sit-
uational knowledge” (connaissance) and “institutional knowledge” (savoir)
(Plumettaz-Sieber, Bonnat, & Sanchez, 2019). A student who plays Progo
develops knowledge which is implicit, subjective and situated. For example,
the concept of object is not explicit within the Progo environment. This con-
cept is only reflected through the tasks performed by the player. It means that,
although the player learns how to use an object by playing Progo, he is not
able to explain what an object is, in computing terms. Warfield (2013) uses the
expression “to be familiar with” to describe the knowledge gained by students
involved in an autonomous activity such as Progo. This situational knowledge
is not formalised and tied to a specific context (i.e, the learning context). The
transfer of this knowledge implies a transformation called institutionalisation
(Brousseau, 1997), and this occurs during debriefing (Plumettaz-Sieber et al.,
2019). Institutionalisation, relates to the change of the status of knowledge.
The implicit, subjective and situated knowledge becomes explicit, objective
and context-free (institutional knowledge). Warfield (2013) uses the expression
“to know a fact” to stress that institutionalisation consists of a metacogni-
tive process. This transformation of knowledge is under the responsibility of
the teacher. During debriefing the game is over, the players become learners,
and, through questions and discussions, the concepts experienced when play-
ing the game are named, explained and validated. In addition, future usages
of the knowledge are considered. Thus, institutionalisation of knowledge and
debriefing are the counter parts of metaphorisation and ludicisation. While
metaphorisation and ludicisation occur on the design of the game, institution-
alisation occurs during the debriefing which follows the time dedicated to play
the game. However, both processes are essential.



Springer Nature 2021 LATEX template

18 Game Design and Didactic Transposition of Knowledge

7 Conclusions and implications

In this paper we performed an a priori analysis of the game Progo, a new
environment dedicated to learning object-oriented programming basics to
beginners. Our analysis relies on the didactic transposition framework, which
allows, on the one hand, to highlight how computing knowledge is trans-
formed and reshaped to be ”played” as more intuitive and graspable objects,
and from another hand, to verify whether analogies between the computing
knowledge and the manipulated objects are maintained during this transfor-
mation process. The didactic transposition framework allows to distinguish
between a target situation (target knowledge, abstract and opaque concepts,
i.e. the object-oriented programming basics) and a source situation (concrete
and visible objects, i.e. the game play induced by Progo), and highlights a
transformation process between these two situations as a result of metapho-
risation and ludicisation process (i.e. the Progo construction and animation
game metaphor).

Moreover, in order to be able to describe the target situation in a com-
prehensible way, we based our analysis on the objects-first approach. This
approach embeds object-oriented concepts in three didactic steps that help
beginners to progressively master the targeted concepts. This approach is part
of the Progo game design and provides a means for the description of the
programming concepts as defined in computer science curricula. An a priori
analysis of the game, allowed to describe in an effective way, how each pro-
gramming concept is transformed in the game, through a construction and
animation metaphor, in terms of 3D objects and learner’s interactions fos-
tered by this transformation (e.g. a visible and interactive 3D component is
a metaphor of a computing object, colouring or rotating a 3D component is
a metaphor of a method call, ...). The choices made through this metaphor,
aim to trigger a play situation when learners interact with the construction
game (i.e. the source situation). This analysis showed clear analogies between
the source and target situations, and the meaning of the considered concepts
is maintained.

This work is a contribution to computer science didactic and game design.
Indeed, didactic transposition approached from the perspective of metaphori-
sation and ludicisation, revealed a powerful tool for game design analysis in
the case of object-oriented programming learning. In addition, debriefing was
identified as an essential element in the didactic transposition process. Indeed,
debriefing is the reverse process of metaphorisation. It provides students with
a means to take a step backward after the game session and to identify the
knowledge embedded in the metaphor, and, by doing so, to be able to transfer
the gained knowledge to other situations. Indeed, if this paper describes the
process of contextualising knowledge in a metaphorical and playful learning
situation, this process needs to be reversed by another process that allows the
conversion of subjective and implicit knowledge into explicit knowledge. Both
processes consist of important and needed transformations of knowledge that
educators should take into consideration.



Springer Nature 2021 LATEX template

Game Design and Didactic Transposition of Knowledge 19

This work open new perspectives for understanding how game-based learn-
ing occurs. In particular, it motivate future work about the role of debriefing to
helping students to understand the analogical relationships between the source
and the target situation. For example, it could be relevant to study whether
students establish links between the object-oriented programming concepts
and the properties of the graphical objects they see and manipulate with the
Progo interface, and how this can be enhanced by debriefing. It would be also
interesting to analyse to what extent students are able to transfer what they
learn to other similar situations. Indeed, we consider that game-based learn-
ing does not only results from gaming. Game-based learning results from a
metacognitive process on the gaming experience which allows for the transfer
of knowledge.

References

Abbasi, S., Kazi, H., Khowaja, K. (2017). A systematic review of learning
object oriented programming through serious games and programming
approaches. 2017 4th ieee international conference on engineering
technologies and applied sciences (icetas) (pp. 1–6).

Abidin, Z.Z., & Zawawi, M.A.A. (2020). Oop-ar: Learn object oriented pro-
gramming using augmented reality. International Journal of Multimedia
and Recent Innovation, 2 (1), 60–75.

Adams, J., & Frens, J. (2003). Object centered design for java: teaching ood
in cs-1. Proceedings of the 34th sigcse technical symposium on computer
science education (pp. 273–277).

Artigue, M. (1988). Ingénierie didactique. Recherches en didactique des
mathématiques, 9 (3), 281–308.

Balacheff, N. (1994). La transposition informatique. note sur un nouveau
problème pour la didactique. Vingt ans de didactique des mathématiques
en France, 2 , 132–138.

Becker, B.W. (2001). Teaching cs1 with karel the robot in java. Proceed-
ings of the thirty-second sigcse technical symposium on computer science
education (pp. 50–54).

Bennedsen, J. (2008). Teaching and learning introductory programming: a
model-based approach.



Springer Nature 2021 LATEX template

20 Game Design and Didactic Transposition of Knowledge

Bennedsen, J., & Schulte, C. (2007). What does” objects-first” mean? an
international study of teachers’ perceptions of objects-first. Proceedings
of the seventh baltic sea conference on computing education research-
volume 88 (pp. 21–29).

Bersini, H. (2017). La programmation orientée objet. Editions Eyrolles.

Bonnat, C., Sanchez, E., Paukovics, E., Kramar, N. (n.d.). Didactic trans-
position and learning game design. proposal of a model integrating
ludicization, and test in a school visit context in a museum. Didactics
in a Changing World. European Perspectives on Teaching, Learning and
the Curriculum: EERA Book Series (in press).

Bosch, M., & Gascón, J. (2006). Twenty-five years of the didactic transposi-
tion. ICMI bulletin, 58 (58), 51–65.

Botet, S. (2008). Petit traité de la métaphore, un panorama des théories
modernes de la métaphore. Presses universitaires de Strasbourg.

Brousseau, G. (1997). Theory of didactical situations in mathematics (n.
balacheff, m. cooper, r. sutherland & v. warfield: Eds. and trans.).
Dordrecht: Kluwer.

Brousseau, G. (2006). Theory of didactical situations in mathematics: Didac-
tique des mathématiques, 1970–1990 (Vol. 19). Springer Science &
Business Media.

Brousseau, G., & Balacheff, N. (1998). Théorie des situations didactiques:
Didactique des mathématiques 1970-1990. La pensée sauvage Grenoble.

Buck, D., & Stucki, D.J. (2000). Design early considered harmful: gradu-
ated exposure to complexity and structure based on levels of cognitive
development. ACM SIGCSE Bulletin, 32 (1), 75–79.

Carroll, J.M., & Mack, R.L. (1999). Metaphor, computing systems, and active
learning. International Journal of Human-Computer Studies, 51 (2),
385–403.

Colomb, J. (1986). Chevallard (yves).—la transposition didactique: du savoir
savant au savoir enseigné. Revue française de pédagogie, 76 (1), 89–91.



Springer Nature 2021 LATEX template

Game Design and Didactic Transposition of Knowledge 21

Combéfis, S., Beresnevičius, G., Dagienė, V. (2016). Learning programming
through games and contests: overview, characterisation and discussion.
Olympiads in Informatics, 10 (1), 39–60.

Cooper, S., Dann, W., Pausch, R. (2000). Alice: a 3-d tool for introductory
programming concepts. Journal of computing sciences in colleges, 15 (5),
107–116.

Costa, J.M., & Miranda, G.L. (2017). Relation between alice software and
programming learning: A systematic review of the literature and meta-
analysis. British Journal of Educational Technology , 48 (6), 1464–1474.

Dabancourt, C. (2008). Apprendre à programmer: algorithmes et conception
objet. Editions Eyrolles.

Djelil, F., Albouy-Kissi, A., Albouy-Kissi, B., Sanchez, E., Lavest, J.-M.
(2016). Microworlds for learning object-oriented programming: Con-
siderations from research to practice. Journal of Interactive Learning
Research, 27 (3).

Djelil, F., Albouy-Kissi, B., Albouy-Kissi, A., Sanchez, E., Lavest, J.-M.
(2015). Towards a 3d virtual game for learning object-oriented pro-
gramming fundamentals and c++ language theoretical considerations
and empirical results. International conference on computer supported
education.

Djelil, F., Montesinos, M.T.S., Gilliot, J.-M. (2020). Une approche didac-
tique pour l’introduction de la programmation orientée-objet en classe.
Didapro-8.

Djelil, F., Muller, P.-A., Sanchez, E. (2019). Investigating learners’ behaviours
when interacting with a programming microworld. D. Passey, R. Bottino,
C. Lewin, & E. Sanchez (Eds.), Empowering learners for life in the digital
age (pp. 67–76). Cham: Springer International Publishing.

Djelil, F., Sanchez, E., Albouy-Kissi, B., Albouy-Kissi, A. (2017). Acqui-
sition de connaissances de programmation en fonction des stratégies
d’apprentissage: une étude empirique du micromonde progo. Eiah 2017
(pp. 41–52).

Fabricatore, C. (2000). Learning and videogames: An unexploited synergy.



Springer Nature 2021 LATEX template

22 Game Design and Didactic Transposition of Knowledge

Genvo, S. (2011). Penser les phénomènes de ludicisation du numérique: pour
une théorie de la jouabilité. Revue des sciences sociales (Strasbourg)(45).

Genvo, S. (2012). La théorie de la ludicisation: une approche anti-essentialiste
des phénomènes ludiques. Journée d’études Jeu et jouabilité à l’ère
numérique.

Habgood, M.P.J. (2007). The effective integration of digital games and learning
content (Unpublished doctoral dissertation). University of Nottingham
Nottingham.

Harel, I.E., & Papert, S.E. (1991). Constructionism. Ablex Publishing.

Hazzan, O., Dubinsky, Y., Meerbaum-Salant, O. (2010). Didactic transposition
in computer science education. ACM Inroads, 1 (4), 33–37.

Hofstadter, D.R., & Sander, E. (2013). Surfaces and essences: Analogy as the
fuel and fire of thinking. Basic books.

Kafai, Y.B. (2006). Playing and making games for learning: Instructionist and
constructionist perspectives for game studies. Games and culture, 1 (1),
36–40.

Ke, F. (2016). Designing and integrating purposeful learning in game play: A
systematic review. Educational Technology Research and Development ,
64 (2), 219–244.

Keung, J., Xiao, Y., Mi, Q., Lee, V.C. (2018). Bluej-uml: Learning
object-oriented programming paradigm using interactive programming
environment. 2018 international symposium on educational technology
(iset) (pp. 47–51).

Kölling, M. (2009). Introduction to programming with greenfoot. Pearson
Education, Upper Saddle River, New Jersey, USA.

Kolling, M. (2015). Introduction to programming with greenfoot: Object-
oriented programming in java with games and simulations. Pearson.

Kölling, M., & Rosenberg, J. (2001). Guidelines for teaching object orientation
with java. ACM SIGCSE Bulletin, 33 (3), 33–36.



Springer Nature 2021 LATEX template

Game Design and Didactic Transposition of Knowledge 23

Krugel, J., & Hubwieser, P. (2018). Strictly objects first: A multipurpose
course on computational thinking. Computational thinking in the stem
disciplines (pp. 73–98). Springer.

Lakoff, G., & Johnson, M. (2008). Metaphors we live by. University of Chicago
press.

McConnell, S. (2004). Code complete. Pearson Education.

Medeiros, R.P., Ramalho, G.L., Falcão, T.P. (2018). A systematic literature
review on teaching and learning introductory programming in higher
education. IEEE Transactions on Education, 62 (2), 77–90.

Michaelson, G. (2018). Microworlds, objects first, computational thinking
and programming. Computational thinking in the stem disciplines (pp.
31–48). Springer.

Moskal, B., Lurie, D., Cooper, S. (2004). Evaluating the effectiveness of
a new instructional approach. Proceedings of the 35th sigcse technical
symposium on computer science education (pp. 75–79).

Muller, P.-A., & Gaertner, N. (2000). Modélisation objet avec uml (Vol. 514).
Eyrolles Paris.

Orange, C. (1990). Didactique de l’informatique et pratiques sociales de
référence. Bulletin de l’EPI (Enseignement Public et Informatique)(60),
151–161.

Papert, S.A. (1980/2020). Mindstorms: Children, computers, and powerful
ideas. Basic books.

Perkins, D.N. (2013). Knowledge as design. Routledge.

Piteira, M., & Costa, C. (2013). Learning computer programming: study of
difficulties in learning programming. Proceedings of the 2013 interna-
tional conference on information systems and design of communication
(pp. 75–80).

Plass, J.L., Homer, B.D., Kinzer, C.K. (2015). Foundations of game-based
learning. Educational Psychologist , 50 (4), 258–283.

Plumettaz-Sieber, M., Bonnat, C., Sanchez, E. (2019). Debriefing and
knowledge processing an empirical study about game-based learning for
computer education. International conference on games and learning



Springer Nature 2021 LATEX template

24 Game Design and Didactic Transposition of Knowledge

alliance (pp. 32–41).

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond,
E., Brennan, K., . . . others (2009). Scratch: programming for all.
Communications of the ACM , 52 (11), 60–67.

Rieber, L.P. (1996). Seriously considering play: Designing interactive learning
environments based on the blending of microworlds, simulations, and
games. Educational technology research and development , 44 (2), 43–58.

Roberts, E., et al. (2001). Computing curricula 2001.

Sanchez, E. (2019). Game-based learning. In A. Tatnall (Ed.), Encyclopedia
of education and information technologies (pp. 1–9). Cham: Springer
International Publishing. Retrieved from https://doi.org/10.1007/978-
3-319-60013-039 − 2 10.1007/978-3-319-60013-0 39-2

Sandoval, W. (2014). Conjecture mapping: An approach to systematic
educational design research. Journal of the learning sciences, 23 (1),
18–36.

Sandoval, W.A., & Bell, P. (2004). Design-based research methods for studying
learning in context: Introduction. Educational psychologist , 39 (4), 199–
201.

Seng, W.Y., & Yatim, M.H.M. (2014). Computer game as learning and teach-
ing tool for object oriented programming in higher education institution.
Procedia-Social and Behavioral Sciences, 123 , 215–224.

Seralidou, E., & Douligeris, C. (2021). Learning programming by creating
games through the use of structured activities in secondary education in
greece. Education and Information Technologies, 26 (1), 859–898.

Travers, M.D. (1996). Programming with agents new metaphors for thinking
about computation (Unpublished doctoral dissertation). Massachusetts
Institute of Technology.

Warfield, V.M. (2013). Invitation to didactique (Vol. 30). Springer Science &
Business Media.



Springer Nature 2021 LATEX template

Game Design and Didactic Transposition of Knowledge 25

Webb, M., Davis, N., Bell, T., Katz, Y.J., Reynolds, N., Chambers, D.P.,
Sys lo, M.M. (2017). Computer science in k-12 school curricula of the 2lst
century: Why, what and when? Education and Information Technologies,
22 (2), 445–468.

Woei, L.S., Othman, I.H., Man, C.K. (2015). Learning programming using
objects-first approach through folktales. Jurnal Teknologi , 75 (3).

Woodworth, P., & Dann, W. (1999). Integrating console and event-driven
models in cs1. ACM SIGCSE Bulletin, 31 (1), 132–135.

Xinogalos, S., Satratzemi, M., Dagdilelis, V. (2006). An introduction to
object-oriented programming with a didactic microworld: objectkarel.
Computers & Education, 47 (2), 148–171.

Yukselturk, E., & Altiok, S. (2017). An investigation of the effects of
programming with scratch on the preservice it teachers’ self-efficacy per-
ceptions and attitudes towards computer programming. British Journal
of Educational Technology , 48 (3), 789–801.


	Introduction
	Related work
	Objects-first approach for teaching object-oriented programming to beginners
	Game-based programming learning
	Ludicisation and programming microworlds
	Metaphors and programming learning

	Didactic transposition and game design

	Method
	Analysis of the Progo game design
	Analysis of academic curricula for teaching object-oriented basics
	Knowledge transformation in the Progo game design
	Using existing 3D components
	Creating a new 3D construction 
	3D constructions as object-oriented systems


	Discussion
	Limitations
	Conclusions and implications

