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ABSTRACT

Vision Transformers (ViT)-based models are witnessing
an exponential growth in the medical imaging community.
Among desirable properties, ViTs provide a powerful model-
ing of long-range pixel relationships, contrary to inherently
local convolutional neural networks (CNN). These emerg-
ing models can be categorized either as hybrid-based when
used in conjunction with CNN layers (CNN-ViT) or purely
Transformers-based. In this work, we conduct a comparative
quantitative analysis to study the differences between a range
of available Transformers-based models using controlled
brain tumor segmentation experiments. We also investigate
to what extent such models could benefit from modality in-
teraction schemes in a multi-modal setting. Results on the
publicly-available BraTS2021 dataset show that hybrid-based
pipelines generally tend to outperform simple Transformers-
based models. In these experiments, no particular improve-
ment using multi-modal interaction schemes was observed.

Index Terms— Vision Transformers, tumor segmenta-
tion, multi-modality, hybrid CNN-Transformers models

1. INTRODUCTION

Deep segmentation models derived from U-Net [1] have sig-
nificantly transformed the field of medical image segmenta-
tion due to their ability to learn complex local representations
at multiple spatial scales in a data-driven fashion [2, 3, 4]. Af-
ter having established new benchmark performances on im-
age classification tasks, Vision Transformers (ViT) models
[5] have recently emerged as the most popular option to re-
place or complement convolutional neural networks (CNN)
for computer vision applications [6]. Their popularity are
now also rapidly growing in medical image analysis [7], es-
pecially for medical image segmentation with an exponential
growth of related publications in the last year [8]. Depending
on the type of encoder used in these models, two categories
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can be identified: pure Transformers-based made of ViT lay-
ers only and hybrid-based models composed of both CNN
and ViT layers. The first category exploits the global context
modeling capability of Transformers to effectively encode the
relationships between spatially distant voxels. However, as
anatomical structures can substantially vary in scale, they can-
not be properly modelled using a set of fixed sub-regions of
the image [9]. For this reason, hybrid architectures combin-
ing the global context modeling ability of Transformers with
the CNN inductive bias are also popular [10, 11]. CNN layers
are used as multi-scale feature extractors, while Transformers
capture long-term dependencies among features that would be
potentially lost with purely convolutional models. Recently,
hierarchical ViT such as Swin Transformers [12, 13] have also
been introduced to overcome these challenges by extracting
features at different resolutions while saving the linear com-
putational complexity with respect to image size.

The advantages of pure Transformer-based models over
hybrid approaches in medical imaging are not yet clear as
of today. Moreover, the exploitation of cross-modality cor-
relations in these models did not receive much attention,
leaving aside potentially meaningful information for seg-
mentation purposes. The goal of this paper is therefore to
provide insights into the performances of various hybrid and
Transformers-based networks in the context of multi-modal
tumor segmentation with BraTS, a popular segmentation
challenge. The rest of the paper is organized as follows.
Sect.2 introduces both ViT and CNN-ViT architectures.
Sect.3 presents implementation details as well as the eval-
uation strategy. Sect.4 explains and discusses the results we
obtained. Conclusions and perspectives are given in Sect.5.

2. METHODS

2.1. CNN backbone

The hybrid models we consider in this work are made of
ResNet alike encoders at the shallower levels (Fig.1a) to
capture compact features at multiple scales, while deeper
levels are encoded with Transformer blocks to model long-
range dependencies in a more global manner. Given an
input X ∈ RC×H×W×D with spatial resolution H × W ,
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Fig. 1. Basic building blocks used to build the CNN backbone
encoder: (a) down- and (b) up-sampling ResNet blocks.

D as depth dimension (# of slices) and C channels (# of
modalities), down-sampling blocks gradually encode input
images into a low-resolution/high-level feature representa-
tion F ∈ RF×H

8 ×W
8 ×D

8 which is 1
8 of input dimensions

and where F represents the number of encoded feature maps
[11]. An extra max-pooling operation is applied to further
reduce the burden of computational complexity as input of
the Transformer blocks. Such backbone can be extended
to a multi-encoder-based framework, where independent
encoders learn intra-modality feature representations mean-
while the Transformer block carries out the inter-modality
fusion operation.

2.2. Transformer block

Since Transformers operate on 1D sequences, we reshape the
input X ∈ RC×H×W×D into a sequence of flattened uniform
non-overlapping patches xv ∈ RN×C×P 3

, where C can ei-
ther represent the number of modalities or features maps F ,
(P, P, P ) is the size of each patch and N = HWD/P 3 is the
resulting number of patches, which is also the effective input
length of the Transformer. Then, we distinguish three types of
Transformer blocks: vanilla ViT, single-stream ViT (Fig.2a)
and multiple-stream ViT (Fig.2b).

The vanilla ViT block (ViTv) follows the design proposed
in the original ViT paper [5]. First, a linear layer is used to
project the flattened patches into a K-dimensional embed-
ding space. Then, a 1D learnable patch position embedding
Epos ∈ RN×k is added to the projected embeddings to retain
positional information. L Transformer blocks are then further
stacked, comprising h multi-head attention and multi-layer
perceptron (MLP) sub-layers. On the other hand, single-
stream ViT (ViTs) layers collectively operate on a concatena-
tion of images modalities [14] by adding an extra modal-type
embedding to the learnable token-position and projected em-
beddings. This design enables early and unconstrained fusion
of cross-modal information. In multiple-stream ViT (ViTm)
[15], modalities are first handled by independent Transformer
blocks. The resulting representations are then fed to a co-
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Fig. 2. Two possible modality interaction schemes: (a)
single-stream (ViTs), (b) multiple-stream (ViTm) interactions.

attention Transformer layer where intra-modal interactions
are alternated with inter-modal interactions.

2.3. Multi-level feature aggregation decoder

Decoding towards the segmentation mask space is handled
using CNN up-sampling with multi-level feature aggregation.
The building decoding block is shown in Fig.1b. For hybrid
models, we first project back the output of the Transformer
block in the layer L, zL ∈ RN×k to k× H

16 ×
W
16 × D

16 . Then,
we apply a transpose 3D convolution to go back to the orig-
inal output of the CNN encoder k × H

8 × W
8 × D

8 . The up-
sampling blocks reduce the channel dimension of the decoder
to match with the dimension of the skip-connections coming
from the encoding part, decreasing computational complexity
at the same time. Lastly, we perform a progressive feature
up-sampling to gradually recover the full pixel-level segmen-
tation segmentation Y ∈ RH×W×D. On the other hand, the
ViT-based architecture follows the same decoder proposed in
[9] that only differs from the aforementioned one in the oper-
ation needed to reshape the features from the multiple resolu-
tions of the Transformers-based encoder.

2.4. Hybrid and Transformers-based architectures

The networks presented in this work follow a U-shaped de-
sign in which the extracted feature representations from en-
coder layers are fused with their decoder counterparts by con-
catenation for finer segmentation masks with richer spatial de-
tails through skip-connections. The proposed models are de-
noted as CNN+ViTτ -B/P, MCNN+ViTτ -B/P and ViTτ -B/P,
where the subscript τ represents the type of ViT block, B in-
dicates the base ViT model configuration, P the patch size
and M stands for multi-encoder based CNN. From the differ-
ent possible configurations, we derive a total of seven mod-
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Fig. 3. Hybrid CNN-Transformers models: (left) CNN+ViTv-B/P, (middle) MCNN+ViTτ -B/P, (right) ViTτ -B/P.

Hybrids Transformers-based
CNN+VITv-B/1 VITv-B/16

MCNN+VITv-B/1 VITs-B/16
MCNN+VITs-B/1 VITm-B/16
MCNN+VITm-B/1 UNETR[9]

Table 1. Hybrids and Transformers-based architectures em-
ployed for comparisons in brain tumor segmentation.

els: four hybrids and three Transformers-based. The different
models are illustrated in Fig.3 and summarized in Tab.1.

3. EXPERIMENTS

3.1. Imaging datasets

The magnetic resonance (MR) images used for this work are
from the BraTS2021 training dataset [16, 17, 18]. The related
BraTS challenge focuses on the evaluation of state-of-the-art
methods for the segmentation of intrinsically heterogeneous
brain glioblastomas. The training set contains 1251 subjects.
The 3D MR scans include four modalities: native (T1), post-
contrast T1-weighted (T1Gd), T2-weighted (T2) and T2 fluid
attenuated inversion recovery (T2-FLAIR). Annotations in-
clude Gadolinium-enhancing tumor region (ET), peritumoral
edematous/invaded tissues and the necrotic tumor core that
are combined to obtain three sub-regions: tumor core (TC),
whole tumor (WT) and enhanced tumor (ET). All 3D volumes
are skull-striped and resampled to 1mm3 isotropic resolution
with an input image size of 240× 240× 155 voxels.

3.2. Implementation details

We implemented our models using PyTorch and MONAI1.
Hybrid and Transformers-based models were trained using
Nvidia A6000 and Titan RTX GPUs. All models were trained
for a total of 150 epochs, with a batch size of 2 and NovoGrad

1https://monai.io/

Fig. 4. Visual segmentation results: (left) ground truth, (mid-
dle) UNETR [9] and (right) MCNN+ViTv-B/P. The green,
red and blue colors respectively correspond to WT, TC and
ET glioblastoma sub-regions.

as optimizer (learning rate = 0.002, weight decay = 0.05).
The training objective was the sum of Dice and cross-entropy
losses. The CNN feature maps F were set to 16, 32, 64 and
128 for all experiments. We used different patch resolutions
as inputs to the Transformer blocks depending on the model
implemented. For hybrid models, we used a patch size P of
1× 1× 1. Meanwhile, the patch size was set to 16× 16× 16
for Transformers-based models. The employed Transformer
blocks followed the ViT base configuration [5] with L = 12
layers, an hidden dimension of k = 768, a MLP = 3072 and
h = 12 heads. For inference, we used a sliding window ap-
proach with an overlap portion of 0.5. We did not use any
pre-trained weights, neither for the CNN nor the ViT blocks.
For a fair comparison, we followed both pre-processing and

https://monai.io/


Hybrid models (CNN-ViT)
CNN+ViTv-B/1 MCNN+ViTv-B/1 MCNN+ViTs-B/1 MCNN+ViTm-B/1

DSC ET WT TC Avg. ET WT TC Avg. ET WT TC Avg. ET WT TC Avg.
Fold1 0.893 0.918 0.900 0.904 0.886 0.925 0.912 0.908 0.889 0.924 0.906 0.907 0.895 0.920 0.920 0.911
Fold2 0.875 0.916 0.913 0.901 0.893 0.930 0.912 0.912 0.882 0.905 0.911 0.899 0.876 0.914 0.920 0.903
Fold3 0.879 0.909 0.919 0.902 0.878 0.929 0.924 0.910 0.890 0.928 0.931 0.916 0.889 0.927 0.937 0.918
Fold4 0.901 0.919 0.923 0.914 0.906 0.920 0.934 0.920 0.905 0.922 0.940 0.922 0.904 0.918 0.923 0.915
Fold5 0.853 0.920 0.893 0.889 0.877 0.928 0.915 0.907 0.870 0.916 0.917 0.901 0.867 0.920 0.909 0.898
Avg. 0.880 0.916 0.909 0.902 0.888 0.926 0.919 0.911 0.887 0.919 0.921 0.909 0.886 0.920 0.922 0.909

Transformers-based models (ViT)
ViTv-B/16 ViTs-B/16 VITm-B/16 UNETR [9]

Fold1 0.854 0.893 0.833 0.860 0.836 0.867 0.778 0.827 0.843 0.851 0.781 0.825 0.862 0.889 0.867 0.873
Fold2 0.840 0.902 0.827 0.856 0.838 0.850 0.811 0.833 0.841 0.870 0.815 0.842 0.857 0.896 0.862 0.872
Fold3 0.833 0.889 0.824 0.848 0.814 0.849 0.810 0.824 0.839 0.846 0.815 0.833 0.847 0.887 0.862 0.865
Fold4 0.874 0.898 0.839 0.870 0.852 0.844 0.810 0.835 0.839 0.852 0.782 0.824 0.875 0.903 0.889 0.889
Fold5 0.836 0.901 0.859 0.866 0.804 0.866 0.791 0.820 0.805 0.860 0.792 0.819 0.840 0.905 0.854 0.866
Avg. 0.848 0.896 0.836 0.860 0.829 0.855 0.800 0.828 0.833 0.856 0.797 0.829 0.856 0.896 0.867 0.873

Table 2. Five-fold cross-validation benchmark in terms of averaged Dice score for hybrid and Transformers-based models. ET,
WT and TC respectively denote enhancing tumor, whole tumor and tumor core. Best results are in bold.

data augmentation strategies employed in nnU-Net [2] for all
the implemented models.

3.3. Evaluation of predicted segmentation

We first splited the BraTS2021 training phase data with a 95:5
ratio to get both training and test sets. Over the new training
set, we used 5-fold cross-validation with fixed 80:20 split for
all experiments and evaluated the performance of our models
using averaged Dice (DSC) scores. The evaluation was carried
out using eight different models: four hybrids-based, three
Transformer-based and UNETR [9] as baseline. The results
of the cross-validation are summarized in Tab.2 meanwhile
Fig.4 illustrates qualitative segmentation results for the best
hybrid and Transformer-based models, over the test set.

4. RESULTS AND DISCUSSION

Results provided in Tab.2 show that MCNN+ViTv-B/1 a-
chieves the highest overall Dice score (0.911). However,
its MCNN+ViTs-B/1 and MCNN+ViTm-B/1 variants are
not far (0.909 for both). Concerning the tumor sub-regions,
MCNN+ViTv-B/1 is only outperformed by its multi-modal
variants for TC by 0.002 and 0.003 respectively, which indi-
cates no particular improvements from the use of modality in-
teraction schemes. For all folds, multi-encoder based frame-
works outperformed the single encoder approach by around
0.009. Another interesting finding is the fact that all the hy-
brids models outperformed the Transformers-based ones by
approximately 0.038. This suggests that ViT blocks learn
more helpful cross-modal representation when they rely on
previous image feature extraction through a CNN backbone.
The highest overall Dice score in the Transformers-based
model was obtained with UNETR (0.873), closely followed
by ViTv-B/16 (0.860). Both models have the same encoder
but they slightly differ in the decoding process as well as for

skip-connections. This difference may be due to the design of
the decoder, for which further studies out of the scope of the
present work should be performed. Surprisingly, ViTs-B/16
and ViTm-B/16 are the worst ranked models with Dice scores
of 0.828 and 0.829. This could be linked to the lack of multi-
scale information, making it hard for the modality interaction
schemes to discover meaningful cross-modal representations.

In these experiments, the hybrid MCNN+ViTv-B/1 model
achieved the best result. Learning modality-specific encoding
using multi-encoder-based frameworks improved delineation
performance (Fig.4) but at the expense of a higher computa-
tional cost, while pure ViTs-B/16 and ViTm-B/16 performed
worse, suggesting that current modality interaction strategies
may in fact be detrimental to model robustness when imple-
mented in a pure Transformers-based fashion.

5. CONCLUSION

In this work, we compared a variety of ViT and hybrid ViT-
CNN architectures in the context of multi-modal tumor seg-
mentation using the BraTS dataset. The major conclusion
of this preliminary work is that it seems better to take ad-
vantage of hybrid methods exploiting the local inductive
bias from CNN encoders at shallower levels but also self-
attention mechanisms able to capture longer-range dependen-
cies among features, rather than using pure Transformers-
based architectures. While single and multiple cross-modal
interaction models did not achieve the highest performances
in these experiments, future works will help us to better un-
derstand this issue, with the objective of achieving parameter-
efficient architectures in a multi-modal context. The pre-
sented results are preliminary, and more experiments are
indeed needed to generalize our conclusions to other datasets.
Investigating pre-trained models, robustness to varying data
regimes (from low- to high-) and hierarchical Transformers
should also deserve more in-depth investigations.
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