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Abstract1

Decoding cognitive processes from recordings of brain activity has been an active topic in2

neuroscience research for decades. Traditional decoding studies focused on pattern classification in3

specific regions of interest and averaging brain activity over many trials. Recently, brain decoding4

with graph neural networks has been shown to scale at fine temporal resolution and on the full brain,5

achieving state-of-the-art performance on the human connectome project benchmark. The reason6

behind this success is likely the strong inductive connectome prior that enables the integration of7

distributed patterns of brain activity. Yet, the nature of such inductive bias is still poorly understood.8

In this work, we investigate the impact of the inclusion of multiple path lengths (through high-order9

graph convolution), the homogeneity of brain parcels ( graph nodes), and the type of interactions10

(graph edges). We evaluate the decoding models on a large population of 1200 participants, under 2111

different experimental conditions, acquired from the Human Connectome Project database. Our12

findings reveal that the optimal choice for large-scale cognitive decoding is to propagate neural13

dynamics within empirical functional connectomes and integrate brain dynamics using high-order14

graph convolutions. In this setting, the model exhibits high decoding accuracy and robustness against15

adversarial attacks on the graph architecture, including randomization in functional connectomes and16

lesions in targeted brain regions and networks. The trained model relies on biologically meaningful17

features for the prediction of cognitive states and generates task-specific graph representations18

resembling task-evoked activation maps. These results demonstrate that a full-brain integrative model19

is critical for the large-scale brain decoding. Our study establishes principles of how to effectively20

leverage human connectome constraints in deep graph neural networks, providing new avenues to21

study the neural substrates of human cognition at scale.22

23

Keywords: fMRI, cognitive decoding, graph convolutional networks, human connectome24
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1. Introduction25

Modern imaging techniques, such as functional magnetic resonance imaging (fMRI), provide an26

opportunity to map the neural substrates of cognition in-vivo, and to decode cognitive processes non-27

invasively. Brain decoding has been an active topic since Haxby and colleagues first proposed the28

idea of using fMRI brain responses to predict the category of visual stimuli presented to a subject29

(Haxby et al., 2001). Nowadays, a variety of computational models have been proposed in the field,30

including multi-voxel pattern recognition (Haxby et al., 2014; Poldrack, 2011), linear regression31

models (Huth et al., 2012; Nishimoto et al., 2011), as well as nonlinear models such as deep artificial32

neural networks (Li and Fan, 2019; Wang et al., 2020). These decoding studies have been mainly33

focused on distinguishing the spatial patterns of brain activation within a small region of interest34

modulated by a few experimental tasks. Such brain decoders have gained many successes when35

tackling unimodal cognitive processes, in particular vision (Schrimpf et al., 2020), and focusing on36

specific brain regions, for example in the ventral visual stream network (Haan and Cowey, 2011). We37

recently proposed a graph neural network (GNN) model to decode high-order cognitive functions38

using distributed neural activity across large-scale brain networks (Zhang et al. 2021). This GNN39

model relied on a fixed human connectome as a static graph, embedded task-evoked brain activity as40

dynamic signal s on the graph, and integrated within-network context of spatiotemporal dynamics41

underlying cognitive processes through deep graph convolutions. We have shown that GNN can42

successfully decode a variety of cognitive tasks in a large population of healthy subjects, achieving43

high decoding performance on the Human Connectome Project (HCP) task benchmark (Zhang et al.,44

2021). However, it remains unclear how the choices of connectome priors and the interactions at45

different scales impact on large-scale cognition decoding.46

Here, we investigate a form of graph convolution called ChebNet, which has the ability to propagate47

information over a relatively larger neighborhood on the graph and integrate neural activity in a48

multiscale manner, ranging from segregated brain activity from local areas (K=0), to information49

integration within the same brain circuit/network (K=1) as well as between multiple networks (K>1),50

and eventually towards the full brain. We propose a multi-domain decoding model using ChebNet51
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graph convolutions and investigate how to implement human connectome constraints in the decoding52

pipeline, i.e. the implementation of multiscale functional integration and the construction of a proper53

graph architecture. The connectome constraints start with a brain parcellation, which divides the54

whole brain into hundreds of brain regions, and a brain graph that captures hierarchical and modular55

structures in brain organization. A variety of parcellation schemes have been proposed in the literature,56

see the review paper by (Eickhoff et al., 2018), which subdivide the entire cortex into non-57

overlapping regions based on connectivity profiles derived from diffusion tractography (Fan et al.,58

2016), functional organization (Yeo et al., 2011; Schaefer et al., 2018), or multimodal imaging59

features (Glasser et al., 2016). As the abstract representation of human connectome, a brain graph60

captures the network organization of the brain structure and function, by using anatomical and61

functional connectivity, in both healthy and diseased populations (Bassett and Bullmore, 2009;62

Bullmore and Sporns, 2009; Bullmore and Bassett, 2011). Brain atlas and connectivity are the two63

key components to define the nature of interactions in GNN, with the scale of functional interactions64

between areas specified by the path length of information propagation, i.e. K-order in ChebNet.65

Studies have shown that the edge-sparsified graphs achieved superior performance on graph learning66

benchmarks (Ye and Ji, 2021). Whether the edge-sparsified graphs outperform densely connected67

human connectomes in the field of large-scale cognitive decoding remains unknown.68

In the current study, we evaluate the ChebNet decoding model on a large population of 120069

participants, under 21 different experimental conditions, acquired from the task-fMRI database from70

the Human Connectome Project (HCP). We explore the optimal choices of functional integration and71

graph architectures on this decoding benchmark, including the resolution or homogeneity of brain72

parcels (nodes), the type of interactions (edges), the inclusion of multiple path lengths on graphs73

(graph convolutions), and the sparsity of brain graphs. Moreover, we assess the robustness of brain74

decoding by introducing perturbations on the graph architecture, for instance network75

misspecifications due to random rewiring and node attacks. Lastly, we visualize the contributing76

salient neuroimaging features and the learned graph representations (i.e. activations of the last77

ChebNet layer) of the decoding model and compare them to the findings in the neuroscience literature.78
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2. Material and methods79

2.1. fMRI Datasets and Preprocessing80

We used the block-design task-fMRI dataset from the Human Connectome Project S1200 release81

(https://db.humanconnectome.org/data/projects/HCP_1200). The minimal preprocessed fMRI data in82

both NIFTI and CIFTI formats were selected. The preprocessing pipelines includes two steps (Glasser83

et al., 2013): 1) fMRIVolume pipeline generates “minimally preprocessed” 4D time-series (i.e.84

“.nii.gz” file) that includes gradient unwarping, motion correction, fieldmap-based EPI distortion85

correction, brain-boundary-based registration of EPI to structural T1-weighted scan, non-linear86

(FNIRT) registration into MNI152 space, and grand-mean intensity normalization. 2) fMRISurface87

pipeline projects fMRI data from the cortical gray matter ribbon onto the individual brain surface and88

then onto template surface meshes (i.e. “dtseries.nii” file), followed by surface-based smoothing using89

a geodesic Gaussian algorithm. Further details on fMRI data acquisition, task design and90

preprocessing can be found in (Barch et al., 2013; Glasser et al., 2013). The task fMRI database91

includes seven cognitive domains, which are emotion, gambling, language, motor, relational, social,92

and working memory. In total, there are 23 different experimental conditions. Considering the short93

event design nature of the gambling trials (1.5s for button press, 1s for feedback and 1s for ITI) which94

constrain the temporal resolution of our brain decoding pipeline (i.e. using a 10s time window), in the95

following experiments, we excluded the two gambling conditions and only reported results on the96

remaining 21 cognitive states. The detailed description of the tasks used in this study can be found in97

(Barch et al., 2013; Zhang et al., 2021) and is also listed in Table 1.98

2.2. Decoding brain activity using graph convolution99

As a representative model for brain organization, brain graph has been widely used in the100

neuroscience literature by associating nodes with brain regions and defining edges via anatomical or101

functional connections (Bullmore and Sporns, 2009). Graph Laplacian and graph convolution102

provides a generalized framework to analyze data defined on irregular domains, for instance social103

networks and brain networks. Thus, a non-linear embedding of brain activity can be learned to project104
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the brain graph onto a low-dimensional representational space (Ortega et al., 2018), for instance105

mapping the gradients of brain organization (Margulies et al., 2016). We recently found that the106

convolutions on brain graph encoded the within-network interactions of neural dynamics in cognitive107

tasks (Zhang et al., 2021). In this study, we applied a generalized form of graph convolution by using108

high-order Chebyshev polynomials and explored the impact of the following factors: 1) high-order109

interactions to encode both within- and between-network interactions; 2) different graph architectures,110

ranging from local regions (spatial graph), to neural circuits (anatomical graph) and to functional111

networks (functional graph); 3) different brain atlases at various resolutions.112

Table 1. Scanning parameters and experimental designs of HCP task-fMRI dataset.113

The entire dataset includes in total 21 cognitive states and 14,895 functional runs across the six114

cognitive domains. By using a 10s-time window (i.e. 15 functional volumes at TR=0.72s), we cut115

long task trials into multiple data samples and resulted in 138,662 data samples of fMRI signals.116

These data samples constituted the whole dataset for model training and evaluation. Each functional117

run may contain multiple data samples of fMRI time-series depending on the number of task trials in118

the fMRI paradigm as well as the duration of each experimental condition. For instance, using a 10s-119

time window, we generated 10 data samples from one motor functional run (10 trials with one sample120

per trial) and 16 data samples from one working-memory functional run (8 trials with two samples per121

trial).122

Task Domains #Subjects #Runs #Volumes
per run

#Effective
Sample
size

#Con
d

Min duration
per block (sec)

Motor 1083 2 284 21,670 5 12

Language 1051 2 316 36,164 2 10

Emotion 1047 2 176 10,470 2 18

Social
cognition

1051 2 274 21,020 2 23

Working-
memory

1085 2 405 34,736 8 25
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Relational
processing

1043 2 232 14,602 2 16

2.2.1. Step 1: construction of brain graph123

The decoding pipeline started with a weighted graph , where is a parcellation of124

cerebral cortex into regions, is a set of connections between each pair of brain regions, with its125

weights defined as . Many alternative approaches can be used to build such brain graph , for126

instance using different brain parcellation schemes and constructing various types of brain127

connectomes. Here, we investigated multiple choices in both aspects. First, different parcellation128

schemes were used, including 1) functional subdivision of the cortical surface derived from resting-129

state functional networks (Yeo et al., 2011); 2) anatomical parcellation of both cortical and subcortical130

cortex derived from diffusion tractography (Fan et al., 2016); 3) a multimodal cortical parcellation131

bounded by sharp changes in cortical architecture, function, connectivity, and topography (Glasser et132

al., 2016); 4) a multi-scale atlas, consisting of brain parcels at different resolutions (Schaefer et al.,133

2018). Here, we used Glasser’s atlas as the default parcellation scheme, which achieved the highest134

performance on decoding 21 task states (see Results section). Second, we investigated various types135

of brain connectivity, i.e. edges between brain parcels, including 1) resting-state functional136

connectivity (RSFC); 2) anatomical connectivity (AC) derived from whole-brain tractography; 3)137

structural covariance (SC) of cortical thickness; 4) spatially adjacency (SP) in brain topology. Among138

which, the graph architecture derived from the anatomical and functional connectivity indicate139

biological or connectome constraints, while the spatial and structural graphs represent topological and140

morphological constraints respectively.141

2.2.2. Step 2: mapping of brain activity onto the graph142

After the construction of brain graph (i.e. defining brain parcels and edges), for each functional run143

and each subject, we mapped the preprocessed task-fMRI data (e.g. “dtseries.nii” file for cortical144

parcellation, and “.nii.gz” file for volume parcellation) onto the set of brain parcels, resulting in a 2-145

dimensional time-series matrix. We created a task label with the same length as the fMRI time-series146
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based on the experimental designs, e.g. task onsets and durations. Then, we used these task labels to147

extract a short series of fMRI responses from each functional run, by first splitting the entire run into148

multiple task blocks and then cutting the blocks into the chosen window sizes (discarding shorter time149

windows). To be noted that, each functional run usually contains multiple task blocks and each block150

is split into multiple bins of short time windows. As a result, we generated various numbers of fMRI151

time-series for each cognitive task, i.e. a short time-series with duration of for each of brain152

parcels, , along with a unique task label for each time-series. In total, the entire dataset153

includes 14,895 functional runs across the six cognitive domains and over 1000 subjects for each154

domain, and results in 138,662 data samples of fMRI signals when using a 10s time155

window (i.e. 15 functional volumes at TR=0.72s), and 3,586,670 data samples when using a single-156

volume prediction.157

2.2.3. Step 3: spatiotemporal graph convolutions using ChebNet158

Graph convolution relies on the graph Laplacian, which is a smooth operator characterizing the159

magnitude of signal changes between adjacent nodes. The normalized graph Laplacian is defined as:160

(1)161

where � is a diagonal matrix of node degrees, � is the identity matrix, and � is the weight matrix162

which is specified by either multimodal brain connectivity (weighted graph) or the spatial adjacency163

in brain topology (binary graph). The eigendecomposition of Lapalcian matrix is defined as � =164

�∆�� , where � = �0, �1, ⋯��−1 is the matrix of Laplacian eigenvectors and is also called graph165

Fourier modes, and ∆ = ���� �0, �1, ⋯��−1 is a diagonal matrix of the corresponding eigenvalues,166

specifying the frequency of the graph modes. In other words, the eigenvalues quantify the smoothness167

of signal changes on the graph, while the eigenvectors indicate the patterns of signal distribution on168

the graph.169

For a signal defined on graph, i.e. assigning a feature vector to each brain region, the convolution170

between the graph signal and a graph filter based on graph , is defined as171

their element-wise Hadamard product in the spectral domain, i.e.:172

(2)173
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where �� = ����(����) and � indicate a parametric model for graph convolution �� , � =174

�0, �1, ⋯��−1 is the matrix of Laplacian eigenvectors and ��� is actually projecting the graph175

signal onto the full spectrum of graph modes. Equation (2) provided an easy way of calculating the176

graph convolution through a series of operations of matrix multiplication. To avoid calculating the177

spectral decomposition of the graph Laplacian, ChebNet convolution (Defferrard et al., 2016) uses a178

truncated expansion of the Chebychev polynomials, which are defined recursively by:179

(3)180

Consequently, the graph convolution is defined as:181

(4)182

where �� = 2�
����−�

is a normalized version of graph Laplacian with ���� being the largest eigenvalue,183

�� is the model parameter to be learned at each order of the Chebychev polynomials.184

2.3. Brain-decoding pipeline185

The proposed ChebNet decoding model (as shown in Figure 1) consists of 6 graph convolutional186

layers with 32 graph filters at each layer, followed by a flatten layer and 2 fully connected layers (256,187

64 units). The model takes in a short series of fMRI volumes as input, maps the fMRI data onto the188

predefined brain graph and results in a 2-dimensional time-series matrix , i.e. a short189

time-series with duration of � for each of � brain parcels. The first ChebNet layer learns various190

shapes of temporal convolution kernels by treating multiple time steps as input channels (�0, …, �� )191

and propagates such temporal dynamics within (K=1) and between (K>1) brain networks. As a result,192

a set of “brain activation” maps are generated and passed on to the second ChebNet layer for higher-193

order information integration, and so on. The learned graph representations at the last ChebNet layer194

(as shown in Fig. 9-S1c) are then imported into a 2-layer multilayer perceptron (MLP) for195

classification.196

The entire dataset includes in total 21 cognitive states and 14,895 functional runs across the six197

cognitive domains. By using a 10s-time window (i.e. 15 functional volumes at TR=0.72s), we cut198
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long task trials into multiple data samples and resulted in 138,662 data samples of fMRI signals.199

These data samples constituted the whole dataset for model training and evaluation. The dataset was200

split into training (64%), validation (16%), test (20%) sets stratified by subject, which ensures that all201

fMRI data from the same subject was assigned to one of the three sets. Approximately, the training set202

includes fMRI data from 700 unique subjects (depending on data availability for different cognitive203

tasks ranging from 1043 to 1085 subjects in total), with 174 subjects for validation set and 218204

subjects for test set. Specifically, the training set was used to train/update model parameters at each205

training epoch, the validation set was used to evaluate the model performance at the end of each206

training epoch, and the best model with the highest prediction score on the validation set was saved207

after 100 training epochs. The saved decoding model was then evaluated on the test set and reported208

the final decoding performance. We used Adam as the optimizer with an initial learning rate of 0.0001209

on all cognitive domains. Additional l2 regularization of 0.0005 on weights was used to control model210

overfitting and the noise effect of fMRI signals. Dropout of 0.5 was additionally applied to the211

neurons in the last two fully connected layers. The implementation of the ChebNet graph convolution212

was based on PyTorch 1.1.0, and was made publicly available in the following repository:213

https://github.com/zhangyu2ustc/gcn_tutorial_test.git .214

215

Figure 1. Pipeline of brain decoding using graph convolution network.216
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We used a similar network architecture as proposed in our previous paper (Zhang et al., 2021) except217

for a more sophisticated form of graph convolution, namely ChebNet graph convolution, along with218

different brain graph architectures derived from various resolutions of brain atlas (nodes), and219

different types of brain connectivity (edges). The decoding model consists of six ChebNet graph220

convolutional layers with 32 graph filters at each layer, followed by a flatten layer and a two-layer221

Multilayer Perceptron (MLP, consisting of 256-64 units). Specifically, for a short series of fMRI222

volumes, the measured brain activity is first mapped onto a predefined brain atlas consisting of223

hundreds of brain regions (e.g. 246 regions from Brainnetome atlas (Fan et al., 2016)) and resulted in224

a 2D time-series matrix. Then, a brain graph indicating the edges between each pair of brain regions is225

constructed via either tractography of fiber projections using diffusion-weighted images (DWI), or226

functional correlation of low-frequency fluctuations in fMRI, or structural covariance of cortical227

thickness or gray matter density across a large population. Next, both the time-series matrix and brain228

graph are imported into the graph convolutional network (b). The model learns a new representation229

of task-evoked neural activity by stacking multiple graph convolutional layers, which takes into230

account both brain activity of each region (functional segregation) and the interactions within and231

between brain networks (functional integration). Finally, the learned graph representations are passed232

through a two-layer MLP and softmax function in order to predict the cognitive state associated with233

each input time window. The implementation of the ChebNet graph convolution was based on234

PyTorch 1.1.0, and was made publicly available in the following repository:235

https://github.com/zhangyu2ustc/gcn_tutorial_test.git .236

2.4. Effects of K-order in ChebNet237

As stated in equation (4), the graph convolution can be rewritten as follows at different K-orders:238

�∗��� = {�0� �0� + �1��� �0� + �1��� + �2��2� � = 0 � = 1 � = 2 (5)239

where �� is a normalized version of graph Laplacian and �� �=1,2,..� are model parameters to be240

learned. Specifically, ChebNet graph convolution with K=0 indicates a global scaling factor on the241

input signal by treating each node independently; graph convolution with K=1 indicates information242

integration between the direct neighbors on graphs, i.e. integrating neural activity within the same243
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brain network; graph convolution with K=2 indicates large-scale functional integration within a two-244

step neighborhood on graphs, i.e. integrating the context of neural activity from local areas, within-245

and between brain networks. Thus, the choice of K-order controls the scale of the information246

integration on graphs. Generally speaking, when K>1, the graph convolution integrates information247

flow within a K-step neighborhood by propagating graph signals not only within the same network but248

also among inter-connected networks. A simulation experiment shown in Figure 2-S1 illustrates that249

the propagation rate at all brain graphs converges to a similar level after K>10. For cognitive decoding,250

we explored different choices of K-order in ChebNet spanning over the list of [0,1,2,5,10] and found a251

significant boost in decoding performance by using high-order graph convolutions (K>1) instead of252

integrating within the network (K=1) especially on high-order cognition.253

2.5. Definition of edges: brain connectivity254

Graph architecture is another factor that impacts the propagation of information flow in the brain. We255

explored different types of edges (or brain connectivity) for brain decoding, including 1) local256

architecture indicating spatially adjacency in the cortical surface (spatial-graph); 2) community257

architecture representing neural circuits derived from whole-brain tractography (diffusion-graph); 3)258

hierarchical network architecture indicating functional correlation of low-frequency fluctuations in259

BOLD signals (functional-graph); 4) morphological networks derived from structural covariance of260

cortical thickness across a large population of subjects. These brain graphs were all calculated based261

on Glasser’s multimodal parcellation (Glasser et al., 2016). Specifically, for each pair of brain parcels262

in the atlas, the spatial-graph was evaluated by calculating the spatial adjacency matrix with each263

element indicating whether two brain parcels shared one or more triangles in the cortical surface by264

using the “wb_commond -cifti-label-adjacency” command from Connectome Workbench software.265

The diffusion-graph was generated from the whole-cortex probabilistic diffusion tractography based266

on HCP diffusion-weighted MRI data collected from 1065 subjects, with each element in the267

connectivity matrix indicating the average proportion of fiber tracts (streamlines) between the seed268

and target parcels (Rosen and Halgren, 2021). The functional-graph was calculated based on minimal269

preprocessed resting-state fMRI data from 1080 HCP subjects, by using the ‘tangent’ method for270
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group-wise connectivity estimation with the ConnectivityMeasure method in nilearn (Varoquaux et al.,271

2010), and then averaged the connectivity matrices across all subjects. The structural-graph was272

generated by calculating structural covariance of cortical thickness based on the HCP structural MRI273

database across 1096 subjects. To be noted that, for spatial and structural graphs, only one brain graph274

was generated from the entire group. For the anatomical and functional graphs, we used the group275

averaged connectivity matrix and fixed the graph architecture for all subjects. Moreover, considering276

that the sparsification of graph is the key to superior performance on many graph learning benchmarks277

(Ye and Ji, 2021), a k-nearest-neighbour (k-NN) graph was built for each brain connectome by only278

connecting each brain region to its neighbours with the highest connectivity strength, resulting in an279

edge-sparsified brain graph. We have also explored how the sparsity of brain graphs impact brain280

decoding and compared them with the original densely-connected brain connectomes.281

2.6. Definition of nodes: brain atlas282

The parcellation scheme controls the scale of the graph. A variety of parcellation schemes have been283

proposed in the literature by using different imaging modalities and features (see the review paper by284

(Eickhoff et al., 2018)). We then investigated different parcellation schemes that have been widely285

used in the literature, with variable resolutions and connectivity information (e.g. functional,286

anatomical or multimodal connectivity information). For functional parcellation, considering the high287

correspondence between resting-state functional networks and patterns of task-evoked brain responses288

across multiple subjects, sessions, and cognitive tasks (Gordon et al., 2017; Gratton et al., 2018), we289

evaluated functional networks, for instance Yeo’s 7 and 17 resting-state networks consisting of 50 and290

112 spatially continuous parcels in the cerebral cortex (Yeo et al., 2011), and functional parcellation at291

multiple resolutions, for instance Schaefer’s multiresolution brain parcellation, consisting of 100, 200,292

400 and 1000 cortical parcels respectively (Schaefer et al., 2018). For anatomical parcellation, we293

chose the Brainnetome atlas that delineates the differences in connectivity profiles derived from294

diffusion tractography and consists of 246 brain regions in the cortical and subcortical areas (Fan et al.,295

2016). For parcellation with multimodal information, we chose the Glasser’s atlas that consists of 360296

areas in the cerebral cortex, bounded by sharp changes in cortical architecture, function, connectivity,297
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and topography (Glasser et al., 2016). For each parcellation map, we evaluated the functional298

homogeneity by calculating the averaged pairwise Pearson correlations within each brain parcel. We299

further investigated the relationship between the parcel size and functional homogeneity as well as the300

decoding performance among all parcellation maps.301

2.7. Randomized brain graphs: edge rewiring302

The robustness of the decoding model was investigated by introducing randomizations on both graph303

architectures and brain parcels. In order to evaluate whether the decoding model was impact by small304

fluctuations on the graph architecture, we generated a series of randomized null models that involves305

rewiring of the functional-graph by swapping a proportion of connections such that local degree is306

preserved while the global graph architecture is randomized (Sporns, 2018). These randomized null307

models can preserve graph attributes from the original graph, including local node measures, spatial308

locations, and wiring cost, and has been widely used as generative null models of the empirical data in309

network neuroscience literature, for instance (Betzel and Bassett, 2017). We explored different ratios310

of random swapping spanning over the list of [0, 0.1, 0.2, 0.5], where ratio=0.5 indicates that half of311

edges in the functional-graph were rewired. The randomized graphs to some degree represent the312

inherent mismatch between individuals or task-specific brain organization at a low ratio (e.g. 0.1), and313

may simulate disconnections in brain networks due to brain disorders by using a high ratio (Hearne et314

al., 2021; Sporns, 2011; Suárez et al., 2021). These randomized graphs were then compared with the315

original functional-graph in terms of decoding accuracy at different K-orders.316

2.8. Randomized brain graphs: node attack and network attack317

In order to evaluate whether the decoding model was robust to random or targeted attacks, we318

manually “silenced” a small portion of nodes (i.e. set their values to zero) and evaluated the reduction319

in the prediction accuracy by using pre-trained models. This procedure has been commonly used to320

simulate lesions due to brain injury or neurological disorders (Alstott et al., 2009; Honey and Sporns,321

2008). For random node attack, we removed brain responses from randomly chosen nodes, ranging322

from 10% to 80% of brain parcels and repeated the process for 100 times. The vulnerability of each323
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brain region was evaluated by associating the lesion state (i.e. lesion or normal) with the decays in324

brain decoding. For targeted or network attacks, we removed nodes associated with one intrinsic325

network at a time, identified by Yeo’s 7 or 17 resting-state functional networks (Yeo et al., 2011).326

Only brain regions with at least 30% areas affected were considered as lesions by silencing their327

activities in the following analysis. The vulnerability of each brain network was measured by the328

decay of decoding accuracy after applying network lesions as compared to the original decoding329

model.330

2.9. Saliency map of graph convolutions331

The saliency map analysis aims to locate which discriminative features in the brain help to332

differentiate between different cognitive tasks. There are several ways to visualize a deep neural333

network, including visualizing layer activation (Springenberg et al., 2014) and heatmaps (Selvaraju et334

al., 2020). Here, we chose the first method due to its easy implementation and generalization to graph335

convolutions (Springenberg et al., 2014). The basic idea is that if the input from a brain parcel is336

relevant to the prediction output, a little variation on the input signal will cause high changes in the337

layer activation. This can be characterized by the gradient of the output given the input, with the338

positive gradients indicating that a small change to the input signals increases the output value.339

Specifically, for the graph signal of layer and its gradient , the overwritten gradient can340

be calculated as follows:341

(6)342

In order to generate the saliency map, we started with a pre-trained model and used the above chain343

rule to propagate the gradients from the output layer until reaching the input layer. This guided-344

backpropagation approach can provide a high-resolution saliency map with the same dimension as the345

input data. We further calculated a heatmap of saliency maps by taking the variance across the time346

steps for each parcel, considering that the variance of the saliency curve provides a simplified way to347

evaluate the contribution of task-evoked hemodynamic response. To make it comparable across348

subjects, the saliency value was additionally normalized to the range [0,1], with its highest value at 1349

(a dominant effect for task prediction) and lowest at 0 (no contribution to task prediction).350
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3. Results351

3.1. Decoding cognitive states with fine temporal resolution and high accuracy352

We proposed a multi-domain decoding pipeline based on ChebNet graph convolution (Figure 1). The353

ChebNet decoding model was evaluated using the cognitive battery of HCP task-fMRI dataset354

acquired from 1200 healthy subjects. Using a 10-second window, the 21 cognitive states were355

identified with an average test accuracy of 93% (mean=93.43%, STD=0.44% by using 10-fold cross-356

validation with shuffle splits stratified by subject). The temporal resolution of the decoding model can357

go down to a single fMRI volume (720 ms of duration), with a prediction accuracy well above chance358

level (60%, chance level=4.8%). The accuracy of single-volume state annotation was highly improved359

(reaching 76%) after taking into account the delay effect of hemodynamic response function in BOLD360

signals, i.e. excluding fMRI volumes within 6s after the onset of each task trial from both training and361

test sets. We have also evaluated other baseline approaches including multi-class support vector362

machine classification (SVC) with linear and nonlinear kernels, random forest and a multilayer363

perceptron (MLP, consisting of two fully connected layers) on the same dataset. The results with a 10-364

second time window demonstrated that high-order ChebNet model outperformed all the other linear365

and nonlinear decoding models by a wide margin (see Table 2). ChebNet also showed a significant366

improvement over GCN which relies on first-order graph convolution.367

3.2. Low misclassification rate within and between cognitive domains368

In order to clarify the nature of errors made by the ChebNet brain decoder, we examined the369

confusion matrix on the test set, which indicates the proportion of true and false predictions given a370

cognitive task state or domain. When using a 10-second time window, the confusion matrix showed a371

clear block diagonal architecture (see Figure 2a), where the majority of experimental tasks were372

accurately identified for all task conditions (e.g. cross-domain misclassification rate<2%). Mistakes373

were found in tasks with similar cognitive processes, for instance, between relational processing and374

pattern matching conditions, as well as 0back vs 2back WM tasks. After summarizing the confusion375

matrix according to the six cognitive domains (Figure 2b), each cognitive domain was identified with376
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an accuracy greater than 95%. Among the six cognitive domains, the language tasks (story vs math)377

and motor tasks (left/right hand, left/right foot and tongue) were the most easily recognizable378

conditions by showing the highest precision and recall scores (average F1-score = 98% and 97%,379

respectively for two language conditions and five motor conditions). Even higher scores were380

achieved when decoding a smaller number of experimental conditions restricted to a specific381

cognitive domain (Figure 2-S1), i.e. using task-fMRI data exclusively from a single cognitive domain382

during model training and evaluation. For instance, the model achieved near-perfect decoding on383

other high-order cognitive functions, including working-memory (94.51%, classifying 8 conditions384

using 25s) and social cognition (96.58%, classifying 2 conditions using 23s), as opposed to 92.6% and385

92.9% for the two domains when decoding on 30s of fMRI data (Li and Fan, 2019).386

387

Figure 2. Confusion matrices of decoding 21 cognitive states and 6 cognitive domains.388

We calculated the confusion matrix of cognitive decoding for the predicting cognitive states using389

every 10s of fMRI signals. We used the ChebNet-K5 model on a functional graph derived from390

Glasser’s atlas in this analysis. The majority of misclassifications were found within the same391

cognitive domain rather than between domains. A clear block diagonal architecture of the confusion392

matrix, which indicates the majority of the cognitive tasks or domains were accurately identified, was393
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shown for both 21 task conditions (a) and 6 cognitive domains (b). For the visualization purpose, a394

threshold of 0.02 was applied to the confusion matrix in (a), which indicates a low misclassification395

rate between domains (<2%). The averaged F1-score for each domain was shown in (c), which was396

calculated by averaging the scores within each cognitive domain based on the number of samples.397

Among the six cognitive domains, the Language tasks (in dark violet) and Motor tasks (in magenta)398

were the most easily recognizable conditions. Note: the six cognitive domains include relational399

processing (RELATIONAL), working memory (WM), social cognition (SOCIAL), facial emotional400

processing (EMOTION), body movements (MOTOR), and language comprehension (LANGUAGE).401

402

Table 2: Comparison of cognitive decoding by using linear and nonlinear models.403

We reported the best performance for the baseline models after a grid search of the hyperparameters.404

For SVC approaches, we used the one-vs-rest (‘ovr’) decision function to handle multi-classes and405

reported the highest accuracy after the grid search for the hyper-parameter (C =406

[0.0001,0.001,0.1,1,10,100]). For Random Forest, we reported the highest accuracy after evaluating407

different settings of the classifier including depth of trees: [4,16,64,256,1024] and number of trees:408

[100,2000]. For MLP (multilayer perceptron), GCN (using first-order graph convolution, (Zhang et al.,409

2021)) and ChebNet (using 5-order graph convolution), we reported the mean and standard deviation410

of the decoding accuracies among 10-fold cross-validation with shuffle splits stratified by subject.411

Models Train Accuracy Validation Accuracy Test Accuracy

SVC-linear 67.2% 63.3% 64.1%

SVC-rbf 99.7% 73.5% 73.8%

Random Forest 100% 48.0% 47.5%

MLP(256-64) 87.9%(+/-1.83%) 83.2%(+/-3.28%) 76.1%(+/-0.41%)

GCN 96.3%(+/-0.42%) 90.2%(+/-0.21%) 90.7%(+/-0.20%)

ChebNet 96.91%(+/-0.18%) 92.73(+/-0.12%) 93.43(+/-0.44%)
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3.3. Order K in ChebNet controls the propagation rate on the graph412

At each ChebNet graph convolutional layer, the context of brain activity is propagated within a K-step413

neighborhood on the graph. As illustrated in Figure 2-S1, both the choices of K-order and graph414

architectures significantly impact the propagation rate of information flow in the brain, estimated by415

the expected first arrival time. We first investigated the impact of K-order on the decoding model by416

spanning over the list of [0,1,2,5,10], where K=0 indicates a global scaling factor on the input417

features by treating each node independently; K=1 indicates the integration of brain activity for each418

node and its direct neighbors, while K>1 indicates the integration not limited to a region of interest or419

within a specific brain network, but instead expanding among inter-connected brain networks.420

Our results (see Figure 3) showed that the decoding performance gradually improved by increasing421

the �-order and reached a plateau when � ≥5. For example, when using a functional graph (Figure422

3a), the ChebNet- �1 model (i.e. ChebNet with � = 1) showed lower decoding accuracy than high-423

order models (91.67% vs 93.22%, respectively for � = 1 and � > 1), but was substantially higher424

than the � = 0 model (83.72%). When � ≥ 5, the training curves (indicated by the validation425

accuracy at the end of each training epoch) generally followed the same behaviors and the overall426

prediction accuracy plateaued approximately at the same level. We evaluated the sensitivity to the K-427

order for each cognitive domain, which demonstrated a strong domain-specific effect. For instance,428

when using functional-graph (Figure 3e), the decoding on the Motor and Language tasks showed little429

impact by the K-order, which indicates that decoding on the two tasks was driven by functional430

interactions within the same functional network. On other hand, the decoding on the Working-431

memory and Relational-processing tasks showed high sensitivity to the choice of K-order and were432

continuously improved as increasing K, implying that the inter-network functional interactions might433

play an important role in the high-order cognitive functions. Similar findings were observed using the434

spatial-graph as well (Figure 3f), except that all cognitive tasks benefitted from high-order graph435

convolutions including Language tasks, which involve spatially distributed brain networks for436

language comprehension and numerical processing.437
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3.4. Communities and brain networks accelerate information propagation on brain graph438

There are multiple ways of capturing the network organization of human brain, using either spatial439

constraints (e.g. spatial adjacency in the geometry of brain surface (spatial-graph)), brain morphology440

(structural covariance of cortical thickness across a population of subjects (structural-graph)), or441

connectivity information (e.g. functional correlation of low-frequency fluctuations in BOLD signals442

(functional-graph) and tractography of fiber projections using diffusion-weighted images (diffusion-443

graph)), and others. Here, we mainly investigated these four types of brain graphs (Figure 4). Among444

which, the spatial graph featured local geometric structures by connecting each parcel to its spatial445

neighbors on the cortical surface mesh. By contrast, modular and community structures have been446

widely demonstrated in the diffusion and functional brain graphs (Betzel and Bassett, 2017; Bullmore447

and Sporns, 2009). The structural graph (i.e. structural covariance of cortical thickness) somewhat448

resembles the functional graphs (Clos et al., 2014; Zielinski et al., 2010), but was contaminated by449

random noise effects (as shown in Figure 4c).450

The training curves on all brain graphs followed a similar trend as increasing the K-order (see Figure451

3 a-d) and showed similar behaviors when using a high propagation rate (i.e. K=5, as shown in Figure452

4a), except for the structural-graph which showed slightly lower performance than other graphs.453

Besides, we observed a significant interaction between the K-order and choices of brain graphs, such454

that the best decoding accuracy, evaluated on the test set after the entire training process, was455

achieved on the functional graph with a high-order model (Figure 4b). When using spatial-graph (also456

shown in Figure 3b), a gap in the decoding performance was detected between the low and high457

propagation groups (90.36% vs 92.4% for K≤2 and K>2, respectively) and reached a stable range458

after K>5 (93%). A much smaller impact of the K-order was shown in the functional-graph (Figure459

3a), with a smaller gap in brain decoding appearing at K=1 (92.52% vs 93.22%, respectively for K=1460

and K>1). Diffusion-graph showed very similar behaviors as the functional-graph at all propagation461

rates (92.19% vs 93.04%, respectively for K=1 and K>1) and eventually converged to the same level462

of decoding performance when using a sufficiently high propagation rate (Figure 3c). This is probably463

because the spatial-graph is only composed of short-distance connections, which restricts the464
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integration of brain activity to a small local area. In order to reach out for the spatially distributed465

functional networks and even multiple brain systems, the model requires a relatively high K-order or a466

high path length, i.e. taking multiple walks on the graph. However, even with a high-order model, the467

spatial-graph still showed lower decoding performance compared to the diffusion and functional468

graphs (Figure 4b). Our results indicated that the connectome-constrained graph architecture469

accelerates the propagation of information flow in the brain by integrating the neural dynamics470

through long-range connections. Moreover, considering that the sparsification of graph is the key to471

superior performance on graph learning benchmarks (Ye and Ji, 2021), we investigated functional472

graphs with different sparsity levels in brain decoding and found that, compared the original densely-473

connected brain connectomes, highly sparsified graphs performed much better at all K-orders (Fig.2-474

S2).475

476

Figure 3. Effect of the K-order in ChebNet on four brain graphs and six cognitive domains.477
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We evaluated four different types of brain graphs in the construction of ChebNet, including478

functional-graph computed using resting-state functional connectivity (a), spatial-graph representing479

spatial adjacency in the cortical surface (b), diffusion-graph estimated from whole-brain diffusion480

tractography (c), and structural-graph derived from structural covariance of cortical thickness across481

subjects (d). We first evaluated the effect of K-order on each brain graph in terms of the training curve,482

i.e. evaluating the model performance on the validation set at the end of each training epoch. We483

found a significant boost in decoding performance by using high-order graph convolutions (K>1)484

instead of integrating within the network (K=1) on all brain graphs. We also evaluated the impact of485

K-order on each cognitive domain by calculating the averaged F1-score on the test set and compared486

the effects across six cognitive domains and different brain graphs, e.g. the functional graph (e) and487

spatial graph (f). These results indicate that the decoding of high-order cognitive functions relies more488

on high-level interactions in the brain and this effect is more dramatic when using a graph architecture489

purely based on the topological organization of human brain.490

491

Figure 4. ChebNet decoding at different K-orders and using different brain graphs.492

We evaluated four different types of brain graphs for the multi-domain brain decoder, with the493

corresponding brain graph architecture shown in (c). We observed a strong interaction effect between494

brain graphs and K-orders (b) such that the decoding performance gradually improved by increasing495
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the K-order for all brain graphs, but the graph architecture also had a big impact on the decoding496

performance. When fixing the K-order, for example using the ChebNet-K5 model (a), the functional497

(RSFC, in red) and diffusion graphs (AC, in purple) showed similar performance during model498

training, followed by the spatial graph (SP, in green) showing slightly lower decoding accuracy. The499

structural graph (SC, in blue) showed the lowest performance during the entire training process.500

Overall, the best decoding model was using ChebNet-K5 on the functional-graph (test501

accuracy=93.43%). To be noted that the baseline K=0 model, which was invariant to the structure of502

brain graphs by treating each node independently, achieved much lower decoding performance on the503

same dataset (test accuracy=83.72%). Moreover, if we removed the graph convolutional layers from504

the decoding model, i.e. using a two-layer multilayer perceptron (MLP) with 256 and 64 neurons505

respectively, the decoding performance was further reduced (test accuracy=76.1%). These results506

indicate that high-order functional integration as well as the proper graph architectures are critical507

steps towards high-performing cognitive decoding.508

3.5. Functional homogeneity and small parcel size promotes local information processing509

Another factor that significantly impacts the decoding model is the scale of the graph, i.e. number of510

brain parcels. Generally speaking, finer-scale atlases (smaller parcel size) will have higher internal511

homogeneity (Figure 5-S2 d) and result in less information loss after data projecting and averaging.512

Consequently, the decoding model using smaller parcels achieves better prediction of cognitive states513

and eventually reaches the plateau with a balance of model complexity and local homogeneity (Figure514

5-S1 and S2). In order to investigate this effect, we have tested four different brain atlases derived515

from different modalities or human connectomes, including Yeo’s 7 and 17 functional networks (Yeo516

et al., 2011) (50 and 112 spatially continuous brain parcels), Brainnetome atlas (Fan et al., 2016)517

derived from diffusion tractography (246 brain parcels), and Glasser’s multi-model atlas (Glasser et518

al., 2016) (360 brain parcels), as well as brain atlases at multiple resolutions, e.g. Schaefer’s519

multiresolution brain parcellation (consisting of 100, 200, 400 and 1000 parcels respectively)520

(Schaefer et al., 2018). For each of the chosen atlases, we constructed the functional graph by521

calculating the resting-state functional connectivity based on 1080 subjects from the HCP database522
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and evaluated the functional homogeneity of each brain parcel by calculating pairwise correlations of523

the connectivity patterns between all vertex within a parcel (Schaefer et al., 2018; Urchs et al., 2019).524

Coinciding with the literature that smaller parcels have higher functional homogeneity, we further525

demonstrated that finer-scale atlas results in higher decoding performance across different parcellation526

schemes (Figure 4-S2). Our results indicated that smaller parcel size resulted in higher functional527

homogeneity and better decoding performance (Figure 5-S2). As shown in Figure 5a, the decoding528

performance started with a relatively low accuracy, for instance, 80.78% when using 50 spatially529

continuous regions derived from Yeo’s 7 network, and quickly improved by simply increasing the530

resolution of brain atlas, e.g. 85.23% when using 112 regions derived from the 17 network. Small531

improvement was detected when using around 300 regions or more (92.16% vs 93.43%, respectively532

for the Brainnetome atlas and Glasser’s atlas). Moreover, we observed that, on all brain atlases, the533

decoding performance gradually improved as increasing the K-order and reached the stable534

performance at K=5 (Figure 5b).535

We also evaluated Schaefer’s multiresolution brain parcellation (Schaefer et al., 2018), consisting of536

100, 200, 400 and 1000 parcels respectively. As shown in Figure 6, we found that higher resolution537

(smaller parcel size) improved the decoding performance at all K-orders and more dramatic538

improvement was detected at a small K-order than high-order models (e.g. K=1 vs K=5 in A and B,539

respectively). For instance, when using the ChebNet-K5 model, the decoding performance plateaued540

at 400 parcels with no further improvement by using higher resolutions, e.g. 1000 parcels. It’s worth541

noting that, compared to the Glasser’s atlas, the Schaefer’s atlas showed slightly lower performance at542

all resolutions and K-orders (e.g. 91.35% vs 93.43%, respectively for Schaefer’s (400 parcels) and543

Glasser’s atlas (360 parcels)). This is probably due to imperfect matching of cortical surface templates544

between different populations and consequently having much lower functional homogeneity when545

projecting Schaefer atlas onto the surface of HCP subjects (Figure 5-S1). The relationship of parcel546

size, functional homogeneity, and decoding accuracy was systematically investigated in Figure 5-S1.547

Our results indicate that the size and functional homogeneity of brain parcels significantly impact the548

decoding model. By contrast, how the brain atlas was constructed, for instance, using different549

imaging modalities or various types of connectome information, show little impact.550
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551

Figure 5. ChebNet decoding at K-orders and using different brain atlases.552

We evaluated different brain atlases at various resolutions for the construction of brain graph,553

including Yeo’s 7 and 17 functional networks (50 and 112 spatially continuous brain parcels,554

respectively), Brainnetome atlas derived from diffusion tractography (246 brain parcels), and555

Glasser’s multi-model atlas (360 brain parcels). For each brain atlas, we constructed the functional556

graph by evaluating the region-wise functional connectivity based on resting-state fMRI data (c). We557

trained separated decoding models at different K-orders and found that the Glasser’s atlas achieved558

the best decoding performance, followed by the Brainnetome atlas, and Yeo’s 17 and 7 functional559

atlases (b). When fixing the K-order, for example using the ChebNet-K5 model (a), we found560

significant advantages in model training by using finer-scale brain atlases (i.e. more brain regions and561

smaller parcel size) regardless of the information used for brain parcellation, e.g. functional, diffusion562

or multi-modal human connectomes.563

3.6.High-order ChebNet adapts to network misspecification564

The robustness of the decoding model was first evaluated by using randomized brain graphs (as565

shown in Figure 7c), which were generated by randomly swapping a proportion of edges in the566

functional graph while keeping the node degrees unchanged. This procedure has been widely used as567

null models in network neuroscience literature, for instance (Betzel and Bassett, 2017; Sporns, 2018).568
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Here we found that the network misspecifications only impact ChebNet decoding models with small569

Ks but barely influence the decoding performance when using high-order graph convolutions (Figure570

7b). Specifically, when using a low random ratio (e.g. 0.1), the model achieved very similar decoding571

performance as the original functional-graph when � ≥ 2 (93.15% vs 93.22%, respectively for the572

randomized and functional graphs). When using a relatively high random ratio (e.g. 0.5), the decoding573

performance started with a low prediction accuracy and gradually improved by increasing the K-order574

(86.95% vs 91.52%, respectively for � < 2 and � ≥ 2 ), consistently lower than the original575

functional-graph at all K-orders. Besides, during model training, the randomized graphs showed much576

lower convergence speed than the original functional-graph and were prone to getting stuck in local577

minima, especially when only a small set of subjects were available (as shown in Figure 7-S1).578

Moreover, as stated before, structural-graph also exhibits some random effects (Figure 3d), which579

resembles the behaviors of random graphs with the random ratio between 0.1 to 0.2 (91.13% vs580

91.53%, respectively for � < 2 and � ≥ 2).581

582
Figure 6. Brain decoding using functional brain parcellation at multiple resolutions.583

We evaluated different brain atlases derived from Schaefer’s multiresolution brain parcellation584

(Schaefer et al., 2018), consisting of 100, 200, 400 and 1000 brain parcels respectively. For each585

parcellation scheme, we constructed a functional graph by evaluating the region-wise functional586

connectivity based on resting-state fMRI data (c). We found that brain parcellation at higher587
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resolutions (smaller parcel size or more regions) improved the performance of cognitive decoding,588

especially at a small K-order (e.g. K=1 in a). By contrast, when using a high-order model (e.g. K=5 in589

b), the model plateaued at 400 parcels with no further improvement on higher resolutions. However,590

we still observed improvements at small resolutions. It’s worth noting that, compared to the Glasser’s591

and Brainnetome atlases, both of which defined based on HCP subjects, the Schaefer’s atlas (derived592

from a different population) showed slightly lower performance (91.11% vs 92.16% vs 93.43%,593

respectively for Schaefer’s (400 parcels), Brainnetome (246 parcels) and Glasser’s atlas (360 parcels)594

when using the ChebNet-K5 model), probably due to imperfectly matching between surface templates595

across populations which consequently impacts the functional homogeneity of brain parcels (see596

Figure 5-S2).597

598

Figure 7. ChebNet decoding using random graphs derived from the functional graph.599

We generated three sets of randomized brain graphs by randomly swapping a portion of edges in the600

functional graph while keeping the node degree unchanged. The graph structures at different random601

ratios (e.g. 0.1, 0.2, 0.5) were shown in (c). When fixing the K-order, for example using the ChebNet-602

K5 model (a), the functional graph (RSFC, in red) and its low randomness copy (Rand0.1, in purple)603

showed very similar performance during model training, followed by the moderately (Rand0.2, in604

green) and highly randomized graph (Rand0.5, in blue). We observed a strong interaction effect605

between randomness ratios and the K-orders (b) such that the decoding performance on randomized606
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graphs started with a low prediction accuracy and gradually improved when increasing the K-orders,607

consistently lower than the original functional-graph at all K-orders. The impact of graph608

randomization was more dramatic at a small K-order (e.g. K=1) and smaller impact was detected609

when using high-order models. The best performance was achieved by using a high-order model on610

the functional graph or its low random copies.611

3.7. Robustness to random attacks in brain regions and networks612

The robustness of the decoding model was also evaluated under random attacks, by removing brain613

responses from a small set of regions in the brain. This procedure has been commonly used to614

simulate brain lesions due to brain injury or neurological disorders (Alstott et al., 2009; Honey and615

Sporns, 2008). Here, we mainly focused on two types of attacks, either using randomly chosen616

regions or targeted regions from a specific brain network. Our results demonstrated that the proposed617

ChebNet graph convolution was resilient to random attacks on regions but not networks. Specifically,618

lesions on a small set of randomly chosen brain regions, e.g. 40 parcels or less, did not affect the619

decoding performance (median decay in the decoding accuracy: 1.2%). More severe decays were620

detected as more regions were affected by lesions (median decay: 2.8%, 15.3% and 40.4%621

respectively for 72, 180 and 288 affected regions). This pattern of performance decay was not related622

to the betweenness or centrality of targeted regions (r=0.091, p=0.08), but rather associated with their623

involvement in task-related brain activations. For instance, the decay in the decoding of WM tasks624

was mostly driven by areas in the ventral visual stream, including PH, VVC and V8, as well as625

frontoparietal network regions, including PFm, MFG and area 6r, as revealed by a correlation analysis626

between the decay of decoding performance and the infection of each brain region (as shown in627

Figure 8a). These regions have been reported to be engaged in the process of WM tasks (Christophel628

et al., 2012; Harrison and Tong, 2009; Mayer et al., 2007) with a similar pattern revealed by the629

saliency map analysis (as shown in Figure 9). On the other hand, much larger decays were observed630

when switching to network attacks (around 10%), with most severe cases found in the limbic,631

frontoparietal network (FPN) and attention networks (consisting of 60, 82, 104 affected parcels,632

respectively). A similar pattern of decays was observed when using the 17-network parcellation, with633
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the largest decays found in the networks related to cognitive control and attention (as shown in Figure634

8b and 8c). Interestingly, the distribution of performance decays in cognitive decoding was not related635

to the size of affected intrinsic networks (r=0.097, p=0.332). To conclude, the ChebNet decoding636

model was robust to random attacks but was more vulnerable to targeted attacks on task-related brain637

regions and networks. Moreover, compared to the low-order model (e.g. K=1), the high-order638

ChebNet model was more resilient to random or targeted attacks by showing smaller decays in639

cognitive decoding due to lesions on regions and networks (Figure 8-S1).640

641

Figure 8. Robustness of ChebNet decoding models to random attacks on nodes and networks.642

We simulated two types of brain lesions, either attacking randomly chosen regions or targeting for643

regions from a specific brain network. For random node attacks (a), we silenced brain responses from644

randomly chosen nodes, ranging from 10% to 80% of brain parcels, and repeated the process for 100645

times. We found that the decoding model was highly resilient to random node attacks by showing a646

small decay in the decoding accuracy (<3% when attacking around 80 regions). The most vulnerable647
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regions include areas in the ventral and dorsal visual streams (top right panel). For network attacks,648

we removed one brain network at a time, identified by Yeo’s 7 (b) and 17 (c) resting-state functional649

networks, and silenced the associated brain parcels with at least 30% areas affected. We found severe650

decays in the cognitive decoding when attacking specific brain networks (around 10% and 5% for 7-651

and 17-network parcellation, respectively). Among which, the most vulnerable networks were those652

related to cognitive control and attention, for instance the frontoparietal network (FPN) and ventral653

attention networks (vAtt).654

3.8. Node contributions revealed by saliency maps655

In order to illustrate the biological basis of the decoding model, we generated the saliency maps on656

the trained model by propagating the non-negative gradients backwards to the input layer657

(Springenberg et al., 2014). An input feature is salient or important only if its little variation causes658

big changes in the decoding output. As shown in Figure 9, category-specific salient features were659

detected for all WM tasks and separately for 0back and 2back conditions. For 0back tasks, regions in660

the visual cortex and ventral visual stream were identified, including V1-V3, PH, FFC and PHA,661

coinciding with the literature that the ventral visual stream is involved in the recognition of visual662

stimuli (Haan and Cowey, 2011; Haxby et al., 2014). By contrast, the frontoparietal network regions,663

including IPS and MFG, and the temporal regions, e.g. superior temporal gyrus (STG) and Perirhinal664

Cortex (PRC), were contributed to the decoding of 2back tasks. These regions have been shown to be665

engaged in object recognition and visual working memory (Eriksson et al., 2015; Schon et al., 2016).666

Our findings revealed that the ChebNet decoding model captured task-related brain regions and667

category-specific patterns of brain activity, and consequently extracted biologically meaningful668

features for the classification of different task conditions. This analysis also revealed high salience in669

the primary sensorimotor cortices for Motor tasks (Fig.9-S1a) and in the perisylvian language-related670

brain regions for Language tasks (Fig.9-S1b). Moreover, the learned graph representations, i.e.671

activation maps in the last ChebNet layer, demonstrated distinct patterns of brain activity in the672

perisylvian language-related regions among mathematics and story trials (Fig.9-S1c).673
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674

Figure 9. Saliency maps for the decoding of WM tasks.675

We generated the salient features that showed high contributions to the classification of WM tasks by676

using the guided backpropagation approach. The model detected biologically meaningful and677

category-specific salient features on 0back and 2back WM tasks. For 0back tasks, the model678

identified salient regions in the visual cortex and ventral visual stream, including V1-V3, PH, FFC679

and PHA. For 2back tasks, the model detected salient features in the frontoparietal network regions,680

including IPS and MFG, and the temporal regions, e.g. superior temporal gyrus (STG) and Perirhinal681

Cortex (PRC). Note that only brain regions with a high saliency (saliency values>0.1, full range of682

saliency is (0,1)) and a significant ‘task condition’ effect (p<0.001) were shown in the brain maps.683
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4. Discussion684

We proposed a generalized framework for brain decoding based on ChebNet graph convolutions. The685

model takes in a short window of fMRI time series and a brain graph (with nodes representing brain686

parcels and edges representing brain connectivity), and integrates brain activity in a multiscale manner,687

ranging from local regions, to brain circuits/networks, and across multiple brain systems. Using a 10s-688

time window of fMRI signals, our model identified 21 different task conditions across multiple689

cognitive domains with a test accuracy of 93% (chance level of 4.8%). We systematically investigated690

the impacts of using high-order graph convolutions and connectome-constrained graph architectures691

in the decoding model. Our findings revealed that 1) connectome constraints accelerate the692

propagation and integration of brain activity by adding shortcuts through long-range connections; 2)693

smaller parcel size or finer-scale atlas improves the internal homogeneity of brain parcels and boosts694

the overall decoding performance; 3) high-order graph convolution encodes functional integration of695

distributed brain activity at multiple scales and boots the decoding performance on all brain graphs.696

These results support an important role of functional integration in cognitive decoding, which leads to697

higher decoding accuracy as well as better adaptation to network misspecifications due to random698

rewiring and node attacks.699

4.1. Functional integration plays an important role in cognitive decoding700

A variety of computational models have been proposed in the field of brain decoding in the last701

decades, with the aim of learning a linear discriminative function on the spatial patterns of brain702

activation under specific experimental conditions. For instance, researchers have successfully703

attempted to use brain activity to reconstruct the frames of movies (Nishimoto et al., 2011), or to704

decode the semantic context from words (Mitchell et al., 2008) and visual scenes (Huth et al., 2012)705

by using linear regression models. Recently, with the fast development of deep learning, artificial706

neural networks have been applied in the field of decoding human cognition from recorded brain707

activity, for instance using classical convolutional (Wang et al., 2020) and recurrent neural networks708

(Li and Fan, 2019), or a generalized form of convolutions in the graph domain (Zhang et al., 2021).709
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However, the majority of current brain decoding studies so far focused on segregating neural710

substrates of different cognitive tasks by treating each brain area independently in the decoding model711

(Haxby, 2012; Haxby et al., 2014; Poldrack, 2011; Varoquaux et al., 2018). The interactions between712

different brain areas and networks have been largely ignored, but starts to play an important part in713

the field. Cole and colleagues (Cole et al., 2016) demonstrated the possibility of predicting activations714

of unseen brain regions or new subjects by transmitting information flow of brain activity within a715

functional network. Using a similar idea, Li and Fan (Li and Fan, 2019) have successfully inferred716

cognitive states from network-level neural activity by integrating signals from large-scale brain717

networks. Accordingly, we recently proposed a GNN architecture that propagates brain activity718

through functional connectomes and integrates the context of brain activity in both local and global719

extent (Zhang et al., 2021). The model has achieved high decoding accuracy over a variety of720

cognitive domains -90% in (Zhang et al., 2021)- outperforming other baseline approaches on the721

benchmark, including non-integrative full-brain models, e.g. 64% in linear SVM and 76% in MLP.722

In this study, we further extend the GNN framework by enlarging the scale of functional integration in723

graph convolutions and exploring the impacts of different connectome priors in cognitive decoding.724

Firstly, we implement high-level integration of task-evoked brain activity in the decoding model,725

extending from a single brain network (K=1, similar to (Zhang et al., 2021)), to multiple brain726

systems (K>1) and towards the full brain (K>5). Secondly, we explore different choices of graph727

architectures that restrict the propagation of brain activity through the topology or connectome of the728

human brain. Our results demonstrate a significant improvement in large-scale cognitive decoding by729

implementing high-order interactions on functional connectomes (93% using the 5-order ChebNet730

model). We observed this effect on all types of brain graphs (Figure 3). In addition, the high-order731

integrative model resulted in a similar level of decoding performance when using different732

connectome priors, for instance the diffusion-graph derived from whole-brain tractography of fiber733

projections (Figure 4), but higher than topological and morphological priors.734

The sensitivity to functional integration was not uniformly distributed among all cognitive domains735

but rather depended on the cognitive demands of tasks (Figure 3e). For instance, WM and Relational-736

processing required a high-order model to integrate brain activity across multiple brain systems, while737

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 10, 2022. ; https://doi.org/10.1101/2021.10.12.464145doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.12.464145
http://creativecommons.org/licenses/by-nc-nd/4.0/


33

Language and Motor tasks already achieved the optimal performance by taking into account the738

interactions within targeted brain networks. These findings may partially explain the excellent739

decoding performance in previous decoding studies when tackling unimodal cognitive functions, for740

instance, distinguishing body movements using patterns of brain activity from in the motor cortex741

(Mottolese et al., 2013) or restricting the context of brain activity within a local area (Wang et al.,742

2020), but showed poor decoding on high-order cognitive functions, for instance, classifying 0-back743

and 2-back WM tasks (Wang et al., 2020). By contrast, when taking into account the integration744

within the functional networks, the model achieved high accuracy on both unimodal and high-order745

cognitive functions (Li and Fan, 2019; Zhang et al., 2021), and showed a further improvement by746

implementing high-order interactions among brain networks (Figure 3e). Our results indicate that747

high-performing cognitive decoding relies on the encoding of high-level functional integration in748

brain activity, not limited to local brain activity or low-level interactions. In addition to higher749

decoding accuracy, the integrative model also improved the robustness to perturbations on the graph750

architecture, for instance, by using different types of interactions (Figure 4), network rewiring (Figure751

7), as well as random attacks on brain regions and networks (Figure 8). These findings greatly expand752

current main perspectives on brain decoding that aims to segregate neural substrates of different753

cognitive tasks, and suggest an important role of functional integration during cognitive processes,754

especially for high-order cognitive functions.755

4.2. Connectome-constrained graph architectures accelerate information propagation and756

functional integration757

A series of studies in the literature have illustrated a great potential of using resting-state functional758

connectivity in predicting cognitive functions, not only in behavior (Rosenberg et al., 2020;759

Yamashita et al., 2018) but also in task-evoked brain activity (Cole et al., 2016; Tavor et al., 2016).760

Recent decoding studies have shown that the connectivity patterns (Richiardi et al., 2011; Shirer et al.,761

2012) as well as the activity flow on functional networks (Li and Fan, 2019; Zhang et al., 2021) are762

also predictive of cognitive states. In the current study, we further demonstrated the potentials of763

using other types of human connectomes beyond functional networks. As one of the basic graph764
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architectures, brain topology and its derived spatial constraints has been widely used in fMRI analysis,765

for instance generating brain parcels on individual brains (Blumensath et al., 2013; Craddock et al.,766

2012; Ma et al., 2021). When implementing GNN with such constraints, the model generalizes the767

classical convolutional operations defined in the 3D volume space, e.g., (Wang et al., 2020), onto the768

geometry of cortical surfaces. Interestingly, the topologically constrained decoding model achieved a769

decent performance on unimodal cognitive functions, similar to previous studies (Wang et al., 2020),770

but showed lower performance on high-order cognitions compared to functional connectomes (Figure771

3f). The morphological brain networks, e.g. structural covariance of cortical thickness, on the other772

hand, resembled randomized functional connectomes by showing slightly lower prediction accuracy773

than the original graph in all cases (Figures 4 and 6). Compared to them, the biologically constrained774

graph convolutions using either functional or diffusion brain connectomes achieved the highest775

decoding performance along with high robustness to network misspecifications due to random776

rewiring and node attacks. Our results revealed a clear gradient in the contribution of graph777

architectures for cognitive decoding, ranging from the lowest decoding performance by restricting778

activity flow within local areas (spatial-graph), to moderate performance by integrating information779

within neural circuits (diffusion-graph), and to the highest performance when using functional780

networks (functional-graph). Moreover, this gradient was only dominant at a low propagation rate and781

mostly diminished when using a high propagation rate, by converging to a similar level on all brain782

graphs (Figure 4). We observed a similar interaction effect on the randomized functional graphs as783

well (Figure 7). One possible explanation is that the spatial graph only consists of short-distance784

connections, which restricts information integration to a small local area on the cortical surface. When785

using a high-order propagation rate (K>1), the model expands the receptive field or neighborhood size786

at each graph convolutional layer by taking multiple steps at once, and eventually reaches a large787

neighborhood that includes distributed brain regions from a task-related functional network when K is788

sufficiently high (K>5). On the other hand, by adding modular and community structures to the graph,789

extracted from diffusion and functional connectomes, the model further accelerates the propagation of790

brain activity in the brain by adding shortcuts through long-range connections. Numerous studies have791

illustrated that the diffusion and functional brain networks, rather than regular spatial networks,792
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followed the small-world configuration with information segregation and integration at low wiring793

and energy costs (Bullmore and Sporns, 2009; Bullmore and Bassett, 2011; Liao et al., 2017).794

Our results revealed that, in addition to the K-order in ChebNet graph convolution, which controls the795

propagation rate of information flow on the graph by taking multiple walks at once, the architecture of796

brain graphs restricts the scale of the information flow at each step, ranging from local areas (spatial-797

graph), to neural circuits (diffusion-graph), and to functional networks (functional-graph). Among798

which, the biologically constrained graph structures derived from human brain connectomes highly799

boost the decoding of cognitive processes.800

4.3. Limitations and Future directions801

In this study, we only investigated the choices of group-wise brain graphs in the decoding model, i.e.802

all subjects taking the same definition of nodes and edges in the graph architecture. The benefit of803

using such a brain graph is that the decoding model can easily generalize across large populations804

(more than 1000 subjects in our case), transfer onto new populations and datasets, as well as better805

adaptation to network misspecifications due to random rewiring and node attacks. However, our806

findings did not rule out the possibility of using an optimal individual brain graph in cognitive807

decoding, for instance constructing an individualized brain parcellation and subject-level graph808

architecture. This might be beneficial when handling massive fMRI data from a single subject. Due to809

the limited amount of functional imaging data from individual brains in the HCP database, this option810

was not explored in the current study. In the next project, we plan to investigate how individual brain811

parcellation schemes and individual graph architectures improve brain decoding of complex cognitive812

processes on individual brains by using fMRI data from a local data collection (www.cneuromod.ca ).813
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5. Conclusions814

In summary, we propose a connectome-based graph neural network to encode the underlying815

spatiotemporal organization of cognitive processes and explore the optimal connectome architectures816

for large-scale cognitive decoding, including the path length, the homogeneity of brain parcels and the817

type of interactions. The model propagates information flow of brain dynamics in a multiscale manner,818

ranging from localized brain areas, to a specific brain network and towards the full brain. The scale of819

functional integration is largely controlled by the path length, i.e. K-order of ChebNet, and is820

restricted by the nature of interactions, i.e. brain connectomes. Compared to the topological and821

morphological constraints, connectome-constrained graph convolutions achieved better decoding of822

cognitive states. The edge-sparsified graph structures also contribute to superior performance of the823

ChebNet decoding model. Together, our findings indicate that human connectome constraints and824

multiscale functional integration are critical for large-scale cognitive decoding. Such decoding models825

better adapt to small fluctuations on the graph architecture including disconnections and lesions in the826

brain.827
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