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Abstract—An Intrusion Detection System (IDS) is a core
element for securing critical systems. An IDS can use signatures
of known attacks, or an anomaly detection model for detecting
unknown attacks. Attacking an IDS is often the entry point of
an attack against a critical system. Consequently, the security of
IDSs themselves is imperative. To secure model-based IDSs, we
propose a method to authenticate the anomaly detection model.
The anomaly detection model is an autoencoder for which we only
have access to input-output pairs. Inputs consist of time windows
of values from sensors and actuators of an Industrial Control
System. Our method is based on a multipath Neural Network
(NN) classifier, a newly proposed deep learning technique. The
idea is to characterize errors of an IDS’s autoencoder by using
a multipath NN’s confidence measure c. We use the Wilcoxon-
Mann-Whitney (WMW) test to detect a change in the distribution
of the summary variable c, indicating that the autoencoder is not
working properly. We compare our method to two baselines. They
consist in using other summary variables for the WMW test. We
assess the performance of these three methods using simulated
data. Among others, our analysis shows that: 1) both baselines
are oblivious to some autoencoder spoofing attacks while 2) the
WMW test on a multipath NN’s confidence measure enables
detecting eventually any autoencoder spoofing attack.

I. INTRODUCTION

Intrusion Detection Systems (IDSs) are the primary security
tools for Industrial Control Systems (ICSs) [17]. IDSs date
back to the early 80’s. They are systems whose objective is
to detect malicious activity and policy violations regardless
of “whether they are initiated by outsiders who attempt to
break into the system or insiders who attempt to misuse the
privileges of their accounts” [5]. While early IDSs were based
on signatures of known attacks only, recent solutions rely on
anomaly detection models that also detect unknown attacks.

The used models are typically unsupervised: they do not
need examples to be trained to detect anomalies, such as func-
tional failure or attacks. This is important as attack examples
are rare, especially for Cyber-Physical Systems (CPSs). ICSs
often control several CPSs. At the same time, CPSs are more
likely to be faced with unknown attacks than Information and
Communications Technology systems [13].
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Anomaly detection for ICS follows three directions [3]:
1) protocol, 2) network and 3) payloads, i.e., sensors mea-
surements, automata commands and actuators responses, re-
ferred to as sensor data. Protocol-based anomaly detection
identifies anomalies on the basis of deviation from normal
packet data and protocol rules. For network-based anomaly
detection, a sequence of network packets is used, modeling the
communication relationships between devices. For payload-
based anomaly detection, it is the modeling of the physical
relationships between devices as well as the normal range of
system behavior that are considered.

The use of Deep Learning techniques to build an anomaly
detection model for the security of CPSs, including ICSs, has
increased in recent years [2], [4], [18], [13]. The anomaly
detection method used for monitoring an ICS is a critical
tool that might be targeted by attackers. The security of IDSs
themselves matters.

Yet, [15] reports that security of most of IDSs is low and
only one paper [16] that “concerns itself with the nature of
attacks against intrusion detection systems themselves” [15]
is cited. While this survey dates from 1998, a decade later, in
2009, [12] stated that “more significant efforts should be done
to improve intrusion detection technology in this aspect [secu-
rity]”. In the case of Deep Learning techniques, this concern
is even more relevant since they are recent techniques whose
security is not completely understood yet. The first survey on
attacks against IDS dates back from 2013 [9]. It distinguishes
six attacks against IDS, including Response Hijacking—“a
pattern is crafted to generate an incorrect alert description
and mislead the IDS response mechanism (either automatic
or performed by a security operator)” [9]—which our study
focuses on. In 2016, another survey [10], about the evasion
resilience of IDSs’ machine learning methods, shows that the
security aspect of many of their anomaly detection models
is an oversight. To the best of our knowledge, there is no
method that tackles the security of an anomaly detection model
used by an IDS. This study is restricted to the security of
payload-based anomaly detection models monitoring an ICS.
The research question is how to authenticate these models.

In this paper, the anomaly detection method used by the
IDS to monitor the ICS physical process is based on an



autoencoder. We propose a method to verify that the genuine
autoencoder is working by probing its outputs. Otherwise, we
assume an autoencoder spoofing attack. Our method bases on
a statistical test on the confidence measure of a multipath
Neural Network (NN) classifier [14]. If the test indicates a
likely change of distribution of a multipath NN’s confidence
measure, an alert is raised. Results show that our method can
detect any autoencoder spoofing attack with an arbitrary False
Positive Rate (FPR) fixed in advance, yet the lower the FPR,
the longer the detection.

In the rest of the paper, we first present in Section II
necessary background knowledge for understanding the paper
which comprises 1D-Convolutional Neural Network (CNN)
autoencoder, multipath NN and Wilcoxon-Mann-Whitney test.
Section III presents our method. Section IV presents the
dataset used for evaluation, details two baselines to be com-
pared to our method, exposes and discusses the results.

II. BACKGROUND AND ASSUMPTIONS

A. Motivated assumptions

We assume that an IDS anomaly detection model gets an
input x (sensor data) and outputs a security signal y based on
which the security team can take a decision. For instance, if
the anomaly detection model is an autoencoder, the security
signal y is the reconstruction of x and the security team decide
whether there is an anomaly based on the differences between
x and y. Too much difference suggests an anomaly in sensor
data x. We would like to be sure that the security signal comes
from the genuine model and no one is spoofing the model, by
providing a security signal yattacker trusted to be from the
IDS, to prevent the security team to be aware of a threat.

A trivial solution is to replicate the autoencoder of the IDS
so that the security team just has to compare the output of their
autoencoder yteam to the one of the monitoring autoencoder
y. If y 6= yteam, then the monitoring autoencoder is spoofed.
However, this solution adds a course of action for a malicious
actors who now has two ways to learn about the anomaly
detection model: through the IDS and through the replicated
autoencoder. Not to mention that this implies that the security
team has access to the anomaly detection model, including its
architecture and weights in case a neural network is used.

Another solution is to add classical security tools to au-
thenticate the IDS’s anomaly detection model. For example,
one could use a cryptographic message authentication code
tagIDS(y), also known as tag, so that with the proper secret
key, they can verify that tagIDS(y) = tagteam(y). But
solutions like this require computational resources to be added
to the IDS to get tagIDS(y). Furthermore, if an attack is
committed by an insider, by simply replacing the monitoring
autoencoder of the IDS by another, one cannot detect this
attack by the means of tags anymore.

In contrast, the solution we propose does not imply access
to the IDS anomaly detection model nor additional compu-
tational resources. Instead its constraints are of another kind,
it requires several input-output pairs (x,y) to authenticate the
IDS anomaly detection model and its authentication is not

strict but is rather given by a level of confidence. In other
words, a security operator can only probe the output of the
autoencoder, thus adding a layer of security, the authentication
of the anomaly detection model, without compromising the
previous one, the anomaly detection itself.

B. 1D-CNN autoencoder

In this paper, we consider several kinds of NNs. In partic-
ular, the anomaly detection model of the IDS is a 1D-CNN
autoencoder.

NNs consist of several layers, each composed of several
neurons. Given couples of input and target values, NNs are
trained to predict the target from a particular input using a
loss function. The loss function is applied on the output layer
and a backpropagation algorithm enables changing the weights
that link neurons between two different layers.

Autoencoders are NNs whose input and output have the
same number of dimensions and they are trained to reconstruct
their inputs. Because of some constraints on the hidden
layers, such as dimension reduction, an autoencoder better
reconstructs points close to the training distribution than points
far from it. In an anomaly detection setting, the reconstruction
error is used as an anomaly score. If the average error of
reconstruction of an input is above a certain threshold, the
input is considered dissimilar enough to those of the training
set to raise an alert.

Autoencoders can be of the form of a Convolutional Neu-
ral Network (CNN). CNNs are NNs with drastically fewer
weights than an FC (Fully Connected) NN. More specifically, a
nD-CNN is composed of convolutional layers and pooling lay-
ers. It takes inputs with n spatial dimensions. Typically, a time
window has one spatial dimension (n = 1), generally called
temporal dimension. An image has two spatial dimensions
(n = 2), height and width. CNNs pooling layers change the
size (i.e., number of features) of the next layer without adding
learnable parameters. A convolutional layer consists of sets of
filters that are sets of kernels (tensors of order n). They apply
an operation similar to the well-known convolution, namely
the cross-correlation, so as to capture spatial patterns along
n dimensions. In a layer after the input layer, the channel
dimension corresponds to the number of filters that extract
potentially different patterns. The channel dimension of the
input layer depends on the input shape. For example, in a
1D-CNN, for a k-dimensional time series, there are k input
channels. Details about CNNs can be found in [11].

In this paper, the IDS’s anomaly detection model is a
1D-CNN autoencoder. Its inputs are time windows of a k-
dimensional time series of physical process data, with k the
number of sensors and actuators of the observed ICS.

C. Multipath Neural Network

An important building block of our method to authenticate
a 1D-CNN autoencoder is the multipath NN model.

A multipath NN is a NN with at least one layer composed
of Dissector Layers (Diss-Layers) [14]. A Diss-Layer is a
computational unit whose output has the same number d of



dimensions as the input and that is defined by a simple relation
that uses 3× d+ 1 learnable parameters. This computational
unit’s sum of activations is a surrogate for the left-hand side
of the equation of a hyperplane

∑d
i=1 ai × xi + a0 = 0 so as

to benefit from a property of supervised NN classifiers shown
in [7]. This property is that the level of linear separability
increases monotonically when we go to deeper layers. Diss-
Layers are typically in the last layers.

Several Diss-Layers compose a Hyper-Neuron. A multipath
NN classifier forces, during the training phase, the information
to go through the dedicated Hyper-Neuron depending on the
input class. During inference, it provides a confidence measure
that verifies that the information goes through the right Hyper-
Neuron. Its confidence measure is shown to be robust to
transformations of the input distribution that mainly occur in
non-discriminative features, i.e., features not responsible for
the class membership.

In this paper, a multipath NN’s confidence measure charac-
terizes an autoencoder’s errors using a statistical test.

D. Wilcoxon-Mann-Whitney test

The second building block of our method to authenti-
cate a 1D-CNN autoencoder is the Wilcoxon-Mann-Whitney
(WMW) test. This test is distribution-free, i.e., data are not
assumed to follow a particular family of distributions, which
makes our method practical for any ICS.

The WMW test [6], [8] allows to check whether two
samples X1, . . . , Xn and Y1, . . . , Ym are from the same dis-
tribution. The assumption of this test is that the observations
from both samples are independent of each other. The null
hypothesis H0 is that the distributions are the same, and
the alternative hypothesis H1 considered herein is that the
distributions are different. The statistic U of this test is the
minimum between the number of times a Y precedes a X , U1

and the number of times a X precedes a y, U2 = nm − U1,
in the ordered sequence composed of X’s and Y ’s. More
formally, U = min(U1, U2) and, with 1 the indicator function:

U1 =

n∑
i=1

m∑
j=1

1Xi>Yj +
1

2

n∑
i=1

m∑
j=1

1Xi=Yj

The test is consistent—i.e., the probability to reject H0

when H1 is true converges towards 1 when n,m→ +∞—
only if P(X>Y |H1) 6= P(Y >X |H1), with P the notation
for probability. For samples of size greater than 20, U1 and
U2 are approximately normally distributed, so one can decide
an appropriate acceptable False Positive Rate (FPR) α, such
that H0 is rejected whenever the p-value—probability under
H0 that |U | > |u|, with U the statistic and u the observation
of this statistic—is lower than α.

In this paper, we propose to perform the WMW test on
the confidence measure of a multipath NN. A sample S1 of
confidence measures known to be derived from the genuine
autoencoder of the IDS serves as a reference to test if a second
sample S2 is from the same distribution.

III. AUTHENTICATION OF A 1D-CNN AUTOENCODER

Our method to authenticate an 1D-CNN autoencoder that
monitors the time series of an ICS’s sensors and actuators
values relies on three steps. The first step consists in choosing
moments in the ICS cycle that serve to characterize the
autoencoder based on time windows corresponding to these
moments. The second step is the training of a multipath NN
classifier that must predict the moment when given the matrix
of errors of the autoencoder that processed the corresponding
time window. The third step is a hypothesis testing that aims at
verifying that the distribution of the multipath NN’s confidence
measure has not changed.

A. Preprocessing of time series of sensors and actuators
values

Before explaining the first step in detail, we need to in-
troduce some notation. We consider an ICS composed of k
sensors/actuators, now referred to as items. The ICS’s physical
process data form a k-dimensional time series, i.e., a time
series that yields k values at each time step. We denote Rc

i,j

the value of the i-th item at the j-th time step within the
cth ICS cycle. We assume that the duration between two time
steps is always the same. For the sake of simplicity, we do not
consider a particular cycle instance c anymore but the random
variable Ri,j instead, i.e., the function associating Rc

i,j to c.
Now, we can explain the first step, i.e., choosing moments

in the ICS cycle. Let us first assume that the ICS executes
the same sequence of actions each cycle. In this case, the
time window of the n-th moment of interest can simply be
Rn = ((Ri,j)1≤i≤k)bpn×L/lc≤j<bpn×L/lc+s, with L the vari-
able length of the cycle, l = min(L), pn positions parameters
and s the size of time windows. In other words, the cycle is
simply divided into windows whose positions bpn ×L/lc are
proportional to the cycle length as depicted in Figure 1. If the
size of the time windows is big enough with respect to the
cycle variability, one can assume that a moment defined as in
Section III-A will correspond to a same set of ICS’s high-level
actions from one cycle to another.

High-level actions are actions that an ICS is programmed
to perform in its physical environment. For example, drilling
an object or the manipulation of an object by a robotic
arm. In other words, results of the working of an ICS at
the human level. In this way, time windows from the same
moment in different cycles are similar enough for a classifier
to predict the moment given a corresponding time window.
It enables training a classifier to predict the moment given
the autoencoder’s matrix of errors of reconstruction of a
corresponding time window. This is needed for the next step.

In general, an ICS does not necessarily executes the same
sequence of actions in each cycle. As an example, a car
manufacturing system equipped of a single production line can
produce vehicles with different features. The ICS will conduct
different sequences of actions depending on the car to produce.
In this case, the system’s knowledge is necessary to define
moments that correspond to some high-level sets of actions.
However, the purpose is the same as before, that is one must



Time
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Fig. 1. Two ICS cycles with fixed size time windows from the time series of
sensors/actuators values (items) represented by gray dots. Time windows are
linked to 6 distinct moments whose positions in the cycle are proportional to
its length. Due to the ICS’s working variability, the cycle length is variable.

be able to predict the moment given the autoencoder’s matrix
of errors of reconstruction of a corresponding time window.
Once this verification done, one can proceed to the next step.

B. Training of a multipath NN classifier

The second step, after having specified moments in the
ICS cycle as explained in the previous section, consists in
training a multipath NN to predict the moment based on the
matrix of errors—element-wise squared difference between
the input and the output—of the monitoring autoencoder that
processed a time window corresponding to this moment. This
NN comes with a confidence measure that is robust to some
transformations of the input (cf. Section II-C). The idea is
to characterize errors of an IDS’s autoencoder thanks to a
multipath NN’s confidence measure. Once m moments have
been chosen, a multipath NN classifier is defined such that its
last layer is a fully connected layer with m output features
and its first layers are convolutional layers. Then, one needs
a balanced—about the same number of examples for each
class/moment—set S of matrices of reconstruction errors from
the monitoring autoencoder that are normalized with the min-
max normalization. To this set of size |S| are added b|S|/mc
random matrices from the unit hypercube (cf. [14]): consider
a matrix as a vector and draw each dimension’s value from
the uniform distribution between 0 and 1. The set obtained
is the training set of the multipath NN. Once the training
set defined, one uses the multipath NN’s loss detailed in
[14] that ensures that the multipath NN’s confidence measure
is properly learned. This confidence measure is simply the
softmax output’s max value multiplied by a term which allows
verifying that the path of the information leading to the
prediction is the expected one.

C. The Wilcoxon-Mann-Whitney test on the multipath NN’s
confidence measure

The third step is a Wilcoxon-Mann-Whitney (WMW) test
on the confidence measures of the multipath NN. One has to
decide the size of the tested sample and the size of the sample
of reference. The latter is the confidence measures’ sample
arising during the normal operation of the ICS (without attack
or dysfunction) and with the genuine autoencoder. Typically,

the sample of reference is large (≥ 100), and to be able to
use any FPR α (cf. Section II-D) manageable for the security
team, the size of tested samples has to be greater than 20 as
explained in Section II-D. The more subtle is the attack, the
larger has to be the tested samples. Thus, if the multipath NN
is used online, one can perform several tests on increasingly
larger samples to rapidly detect rather obvious attacks and
eventually detect more subtle ones.

One has to build a sample of reference in the same way as
the set S from Section III-B—but different from S—except
that one has to use the same normalization parameters as
before (cf. Section III-B) instead of recomputing them based
on the new matrices. The same holds for tested samples, but,
of course, one does not know whether matrices of errors are
from the genuine autoencoder. An alert is raised whenever the
WMW test rejects the null hypothesis.

IV. EXPERIMENTATION

The experimentation consists in testing our method in
several settings, that is with different 1D-CNN autoencoders
and multipath NNs, as well as two baselines introduced in
Section IV-A. After presenting the data in Section IV-B and
the results in Section IV-C, we compare the ability of each
method to distinguish normal samples from abnormal ones
with Receiver Operating Characteristic (ROC) curves, which
plot True Positive Rate (TPR) against FPR.

A. Baselines and hyperparameters

Our method aims to characterize an autoencoder’s recon-
struction errors by providing to the WMW test a confidence
measure on its ability to retrieve the moment within the ICS
cycle so as to detect spoofing attacks. One can ask if there
is not a better variable to summarize an autoencoder’s errors.
The first baseline is the use the autoencoder’s mean squared
error for the WMW test. The second baseline involves the
confidence measure of a classical NN classifier, that is its
softmax’s maximum value, as summary variable for the test.

The architectures of the classical NNs and of the multipath
NNs, all trained in batches of size 16 and in 20 epochs, are:
• Classical NN classifier

InputLayer(15,15) → Conv(15,19) → Up(4)(60,19)
→ Down(5)(12,19) → Conv(12,22) → Up(4)(48,22)
→ Down(5)(10,2) → Conv(10,24) → Up(4)(40,24)
→ Down(5)(8,24)→ Conv(8,25)→ Flat(200)→ Dense(5)
• multipath NN classifier (simplest form: one Diss-Layer

per dedicated Hyper-Neuron)
InputLayer(15,15) → Conv(15,19) → Up(4)(60,19)
→ Down(5)(12,19) → Conv(12,22) → Up(4)(48,22)
→ Down(5)(10,2) → Conv(10,24) → Up(4)(40,24)
→ Down(5)(8,24) → Conv(8,25) → Flat(200)
→ Dense(100) → 5DissLayers(100) → Dense(5)

A couple or a number after layers Up(n), Down(m),
Conv, Dense, Flat or 5DissLayers indicates the layer’s
output shape. Up(n) repeats data n times (for example,
Up(2)([1, 2, 3]) = [1, 1, 2, 2, 3, 3]), and Down(m) operates a
max-pooling with strides m and pool size 2 (for example,
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Fig. 2. ROC curves from 1 - p-values of the WMW test on the three summary variables (Section IV-A) for samples of size 25 tested against a reference sample
of size 1000. First 3 graphs: 90 ROC curves in each, details in Fig. 4 and 5. Fourth graph: mean curves (ROC1/2: 1st/2nd baseline, ROC3: our method).
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Fig. 3. Same as in Figure 2 except that the tested samples’ size is 200.

Down(3)([1, 1, 2, 2, 3, 3]) = [1, 3]). Flat is a layer, without
learnable parameters, used to reshape the features into a vector
so that one can use a fully connected layer afterwards. Conv
and Dense are respectively convolutional and fully connected
layers and 5DissLayers is a layer with 5 Diss-Layers [14].

The autoencoders’ layout is: [(15,15),(8,9),45,72,(15,15)].
Output shapes (couples (a, b) or numbers c) are obtained with
omitted sampling, flattening and cropping layers. A couple
(a, b) indicates a convolutional layer (or the input layer at the
beginning) with b channels, each with a features. A unique
number c indicates a fully connected layer with c features.

B. Data

In this study, data are of two types: 1) the ICS physical
process data and 2) the matrices of reconstruction errors of an
1D-CNN autoencoder that monitors the ICS physical process
data. Data of the first type are simulated so that we can gather
enough data of the second type to have representative results.
Indeed, time series from real-world ICSs would require a large
stochastic model—both from the point of view of the autoen-
coder and the model that authenticates the autoencoder. Yet,
since we deal with stochastic models, we need several trained
instances to perform a thorough analysis of the performance
of the model that authenticates the autoencoder.

Data of types 1 and 2 are created as follows:

1) Simulated ICS physical process data are a binary Multi-
variate Markov Chain with 15 chains (for 15 sensors/actuators
values) that operates a cycle in about 50 time steps in average
and comprises 4000 cycles for the training set and 1000 for
the test set. This requires much smaller stochastic models than
real-world ICSs that typically have tens of sensors/actuators
and cycles with hundreds of time steps. Moreover, real-world
ICSs also have continuous sensors/actuators data, but for the
sake of simplicity we simulate a binary Multivariate Markov
Chain where the ICS executes the same sequence of actions
in each cycle, and we select five moments (cf. Section III-A).

2) As the method’s performance depends on both the gen-
uine autoencoder and the spoofing autoencoder, not only we
have to repeat the procedure for several genuine autoencoders,
but each genuine autoencoder must be faced with attacks from
several spoofing autoencoders. Ten 1D-CNN autoencoders are
trained. Then, they alternately play the role of the (single)
genuine autoencoder and the 9 spoofing autoencoders, re-
sulting in 90 spoofing attacks which is enough to aggregate
representative results. For each autoencoder, a multipath NN
classifier and a traditional NN classifier are trained. Finally,
samples derived from matrices of reconstruction errors are
tested against a sample derived from matrices of errors from
the genuine autoencoder only. More precisely, it is a summary
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Fig. 4. ROC curves from 1 - p-values of the WMW test on the summary variable of the three methods (one per column) for samples of size 25 tested against
a reference sample of size 1000 (see Figure 2 for the summary of the ROC curves per methods). Each row corresponds to a genuine autoencoder, each graph
contains 9 ROC curves, one for each spoofing autoencoder.
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Fig. 5. ROC curves from 1 - p-values of the WMW test test on the summary variable of the three methods (one per column) for samples of size 25 tested
against a reference sample of size 1000 (see Figure 2 for the summary of the ROC curves per methods). Each row corresponds to a genuine autoencoder,
each graph contains 9 ROC curves, one for each spoofing autoencoder.



of the matrix of errors that is the variable of the WMW test, the
confidence measure in the case of the multipath NN classifier
and in the case of the second baseline, as well as the mean
squared error in the case of the first baseline. Matrices of
errors summarized into single values that compose a tested
sample are all, either from the genuine autoencoder, either
from a unique spoofing autoencoder. This way, a ROC curve
can be plotted to visualize how well a genuine autoencoder
is distinguished from a particular spoofing autoencoder, but of
course this does not change the end result which is the average
performance of the model that authenticates the autoencoder.

C. Results

To see which summary variable best distinguishes an ab-
normal sample (from a spoofing autoencoder) from a normal
one (from the genuine autoencoder) with the WMW test, we
plot ROC curves from 1 minus the p-value. Each point of a
curve comes from a particular anomaly threshold 1− α, with
α the corresponding FPR (cf. Section II-D). Indeed, 1 minus
the p-value can be seen as an anomaly scoring function whose
input is a tested sample since, the more abnormal the sample,
the lower the p-value due to the consistency of the test (cf.
Section II-D). The more the ROC curve is near the top left
corner of the graph—or similarly the bigger the Area Under
the Curve (AUC)—, the better.

Results of the 90 ROC curves (see Section IV-B) for each
the three methods with tested samples of size 25 are shown in
Figure 2: 1st baseline’s AUC = 0.6877 ± 0.16; 2nd baseline’s
AUC = 0.8012 ± 0.17; our method’s AUC = 0.8953 ± 0.14.
Similar graphs for tested samples of size 200 are shown in
Figure 3: 1st baseline’s AUC = 0.8650 ± 0.18; 2nd baseline’s
AUC = 0.9198 ± 0.16; our method’s AUC = 0.9736 ± 0.08.

D. Discussion

The multipath NN’s confidence measure allows the WMW
test to detect a spoofing attack with less examples. When used
online, it thus detects attacks faster than the baselines.

Moreover, when a ROC curve is too close to the first
bisector for tests with 25 examples (Figure 2), the detection
of the corresponding spoofing autoencoder is difficult, if not
impossible, with more examples (Figure 3). Yet, each ROC
curve of the graph related to our method move to the top left
corner with the increased size of the tested samples (from
Figure 2 to Figure 3), while some ROC curves from the
baselines are stuck on the first bisector. This means that some
spoofing autoencoder will never be detected by the baselines.
In contrast, since the WMW is consistent under a reasonable
assumption already mentioned (cf. Section II-D), our method
will eventually detect every spoofing autoencoder, even if it
takes a large sample and thus a long time for a few of them.

Figures 4 and 5 show the details of Figure 2, that are, for
each of the 10 autoencoders, the ROC curves corresponding
to the other 9 trying to spoof them. They show that 1) in each
case, our method is better than the first baseline and that 2)
in only two cases out of the ten cases, the second baseline
outperforms our method but only by a small margin.

Finally, it is worth noting that, in practice, when the
test on the multipath NN’s confidence measure rejects the
null hypothesis—meaning that the distribution of the tested
sample is likely to be different from the reference sample’s
distribution—it only indicates there is an anomaly occurring
in the matrices of errors of the autoencoder, but it does not tell
where this anomaly comes from. It can be from the physical
process data or from a spoofing autoencoder. One can only be
sure that the first case is wrong when the first baseline does
not detect any change in distribution while our method detects
a significant change in distribution.

V. CONCLUSION

In this paper, we propose a method to authenticate the
autoencoder of an IDS monitoring an ICS by the use of input-
output probes (Section III). This allows to add a layer of se-
curity (authentication) without compromising the previous one
(anomaly detection). Our method can detect any autoencoder
spoofing attacks (Section IV-D) with an arbitrary FPR, yet
with a trade-off between the FPR and the time of detection.
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