https://imt-atlantique.hal.science/hal-03675569Qian, ShenShenQianKanagawa UniversityHe, JiguangJiguangHeCWC - Centre for Wireless Communications [University of Oulu] - University of OuluMUST - Macau University of Science and TechnologyZhou, XiaoboXiaoboZhouTJU - Tianjin UniversityImai, TakamasaTakamasaImaiKanagawa UniversityMatsumoto, TadTadMatsumotoIMT Atlantique - MEE - Département Mathematical and Electrical Engineering - IMT Atlantique - IMT Atlantique - IMT - Institut Mines-Télécom [Paris]Outage Analysis for Correlated Sources Coding over NOMA in Shadowed κ-µ FadingHAL CCSD2022Up-link NOMAshadowed κ-µ fadingSlepian-Wolf theoremoutage probability-outage achievable rate[MATH.MATH-IT] Mathematics [math]/Information Theory [math.IT]Dupraz, Elsa2022-05-23 11:25:152022-08-05 14:54:522022-05-31 14:35:00enConference papershttps://imt-atlantique.hal.science/hal-03675569/document10.1109/WCNC51071.2022.9771603application/pdf1We consider correlated sources coding over a up-link non-orthogonal multiple access shadowed κ-µ fading channel. The sufficient condition for lossless coding is determined by the intersection of the Slepian-Wolf region and multiple access channel region, assuming source-channel separation holds. The exact expression for the outage probability upper bound is derived by dividing the sufficient conditions into three cases. The accuracy of the analytical results is verified by the Monte-Carlo simulations. The analytical results indicate that more than 2 nd order diversity gain can be achieved with a larger ratio of line-of-sight dominant component in single cluster or multiple clusters with non-line-of-sight component. It is also found that the shadowed κ-µ fading well represents one-sided Gaussian, Rayleigh, Rician, and Nakagami-m fading in calculating the outage probability. Furthermore, the-outage achievable rate is analyzed, which is found to be larger with higher source correlation and/or average signal-to-noise ratio.