
HAL Id: hal-03663088
https://imt-atlantique.hal.science/hal-03663088

Submitted on 9 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performance Analysis and Optimal Tuning of IETF
LPWAN SCHC ACK-on-Error Mode

Sergio Aguilar, Patrick Maillé, Laurent Toutain, Carles Gomez, Rafael Vidal,
Nicolas Montavont, Georgios Papadopoulos

To cite this version:
Sergio Aguilar, Patrick Maillé, Laurent Toutain, Carles Gomez, Rafael Vidal, et al.. Performance
Analysis and Optimal Tuning of IETF LPWAN SCHC ACK-on-Error Mode. IEEE Sensors Journal,
2020, 20 (23), pp.14534-14547. �10.1109/JSEN.2020.3007855�. �hal-03663088�

https://imt-atlantique.hal.science/hal-03663088
https://hal.archives-ouvertes.fr


Performance Analysis and Optimal Tuning of IETF LPWAN 
SCHC ACK-on-Error Mode

Journal: IEEE Sensors Journal

Manuscript ID Draft

Manuscript Type: Regular Paper

Date Submitted by the 
Author: n/a

Complete List of Authors: Aguilar, Sergio; Universitat Politecnica de Catalunya, Network 
Engineering
Maillé, Patrick; IMT Atlantic Brittany-Pays de Loire - Rennes Campus
Toutain, Laurent; IMT Atlantic Brittany-Pays de Loire - Rennes Campus
Gomez, Carles; Universitat Politecnica de Catalunya
Vidal Ferré, Rafael; Universitat Politecnica de Catalunya, Network 
Engineering
Montavont, Nicolas; IMT Atlantic Brittany-Pays de Loire - Rennes 
Campus
Papadopoulos, Georgios Z. ; TELECOM Bretagne, RSM; Télécom 
Bretagne

Keywords: NETW

 



 

194x96mm (72 x 72 DPI) 

Page 1 of 12

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017 1

Performance Analysis and Optimal Tuning of
IETF LPWAN SCHC ACK-on-Error Mode

Sergio Aguilar, Patrick Maillé, Laurent Toutain, Carles Gomez, Rafael Vidal, Nicolas Montavont, Georgios
Z. Papadopoulos

Abstract— The Internet Engineering Task Force (IETF) Low Power
Wide Area Network (LPWAN) Working Group has developed the
Static Context Header Compression (SCHC) framework to enable
IPv6 over LPWAN. In order to support 1280-byte packets, as re-
quired for IPv6, SCHC includes a fragmentation functionality, since
relevant LPWAN technologies offer very short data unit sizes and
do not provide native fragmentation mechanisms. SCHC offers 3
fragmentation modes: No-ACK, ACK-Always, and ACK-on-Error, the
latter being especially promising due to its reliability and high
efficiency. In this article, we develop a mathematical model to
compute the most critical performance parameters for the SCHC
ACK-on-Error mode, namely, the acknowledgment traffic incurred
by a fragment receiver for the successful delivery of a fragmented packet. The model is used to evaluate the SCHC ACK-
on-Error mode performance, as well as to optimally tune its main parameters when used over LoRaWAN and Sigfox, for
different packet sizes.

Index Terms— LPWAN, SCHC, ACK-on-Error, LoRaWAN, Sigfox, IoT, LoRa, IETF, mathematical model, fragmentation

I. INTRODUCTION

LOW Power Wide Area Networks (LPWANs) refer to
network technologies designed for the Internet of Things

(IoT) that are characterized by a long-range and low-energy
operation [1–3]. LPWAN technologies are based on star topol-
ogy deployments, where a potentially high number of Internet
of Things (IoT) devices are directly connected to a radio
gateway.

In some quintessential LPWAN technologies, such as Lo-
RaWAN and Sigfox, the layer 2 Maximum Transmission Unit
(L2 MTU) ranges from tens to hundreds of bytes [1]. To
carry IPv6 packets over LPWAN despite those limitations, the
Internet Engineering Task Force (IETF) has defined a new
adaptation layer called Static Context Header Compression
(SCHC) [4], [5], which along with a header compression
functionality, provides fragmentation mechanisms to transport
an IPv6 packet over several LPWAN frames. SCHC defines
3 Fragmentation/Reassembly (F/R) modes called No-ACK,
ACK-Always and ACK-on-Error. This paper focuses on the
ACK-on-Error mode, which is promising due to its reliability

This work was supported in part by the Spanish Government through
project TEC2016-79988-P, AEI/FEDER, EU.

S.Aguilar, C. Gomez and R. Vidal are with the Department of Network
Engineering, Universitat Politècnica de Catalunya, 08860 Castelldefels,
Barcelona, Spain (e-mail: sergio.aguilar.romero@upc.edu,{carlesgo,
rafael.vidal}@entel.upc.edu)

P. Maillé, L. Toutain, N. Montavont and G. Z. Papadopou-
los are with the Department of Network Systems, Cyber Secu-
rity and Digital Law (SCRD), IMT-Atlantique, IRISA, 35576 Cam-
pus of Rennes, France (e-mail: {patrick.maille, laurent.toutain, nico-
las.montavont, georgios.papadopoulos}@imt-atlantique.fr)

and high efficiency by minimizing the number of acknowl-
edgments (ACKs) compared to ACK-Always. In this mode,
ACKs are sent by the fragment receiver only when the latter
detects fragment losses. Then, the fragment sender selectively
retransmits any lost fragments reported in the ACKs. To
maintain consistency, a final ACK is also unconditionally sent
at the end of the fragmented packet transmission.

A key constraint for LPWAN is the amount of downlink
traffic, i.e., from the gateway to the IoT device. Indeed, in the
spectrum band used by unlicensed LPWAN technologies in
Europe (e.g. the 868 MHz band), each device must respect a
duty-cycle limit, that can be especially binding for gateways,
which may manage many flows. Even if the downlink traffic
is not limited by the duty-cycle constraint, one may still want
to minimize it for economic reasons: the amount of downlink
traffic is now used by some operators as a basis for charging
IoT users in some plans1 or is limited [6]. Noting that IoT
flows are mostly uplink flows (e.g., from the IoT device, say
a sensor, sending its data readings), the focus in this paper
is on the ACK traffic incurred by the SCHC F/R process–
the main expected type of downlink traffic–which needs to
be minimized in order to reduce costs and/or respect gateway
duty-cycle constraints [7].

More specifically, in this paper we propose a mathematical
model to compute the volume of ACK traffic (relative to the
IoT device data volume) based on the quality of the radio
link and the SCHC F/R parameters. We then use the model

1See, e.g., https://iotmarket.orange.com/connectivity.
html (accessed on 30/06/2019)

Page 2 of 12

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



2 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

to optimize those parameters in order to minimize the ACK
traffic. For a direct practical use of our results, we provide the
optimal parameter values for the specifics of LoRaWAN [8]
and Sigfox [9] technologies.

The remainder of this paper is organized as follows. In Sec-
tion II we first present the existing works related to LPWAN
fragmentation and its performance. We then detail the SCHC
framework in Section III, and the SCHC F/R modes in Sec-
tion IV, especially focusing on the ACK-on-Error mode. The
mathematical model used to analyze the ACK-on-Error mode
is developed in Section V, and is it used in Section VI to
evaluate the performance metrics, mostly regarding the amount
of ACK messages. Section VII explains how our results can
be applied to state-of-the-art LPWAN technologies such as
LoRaWAN and Sigfox. Finally, we provide some conclusions
in Section VIII.

II. RELATED WORK

Recent attention on LPWAN technologies has partly focused
on the evaluation of the physical layers [6], [7], [10], [11].
In [7] the authors analyze LoRaWAN and explore its limita-
tions. The results show that the application and network design
must minimize the number of acknowledged frames to avoid
capacity drain, because the LPWAN gateway must enforce
a time-off following the transmission to comply with duty-
cycle regulations. Other works provide a mathematical model
that characterizes LoRaWAN and Sigfox end-device energy
consumption, lifetime and energy involved in data delivery [6],
[10]. In [11] a performance evaluation of Sigfox scalability is
presented. Together, these studies provide important insights
into the physical layer of LPWAN technologies, but do not
consider the compatibility with IPv6, nor fragmentation mech-
anisms.

Several studies compare different LPWAN technolo-
gies [12–14]. While Mroue et al. [12] perform an evaluation
using the packet error rate for Sigfox, LoRa and NB-IoT, a
comprehensive and comparative study for a number of perfor-
mance metrics is presented in [14]. The study in [13] evaluates,
by simulation, the influence of the number of devices, on
the packer error rate, collisions and spectrum utilization for
Sigfox and LoRa. None of these studies address the problem
of transmitting a fragmented IPv6 packet over LPWAN.

Regarding the upper layer functionalities in LPWAN, the
study in [15] evaluates the effect of fragmentation, and its ef-
ficiency in terms of energy consumption, throughput, goodput
and end time delay in dense networks. Suciu et al [15] showed
that fragmentation increases reliability, especially when send-
ing several fragments instead of only one of the MTU size.
Other works focus on IPv6 over LPWAN by means of using
SCHC [5], [16–20]. Some of these propose enhancements
to SCHC Header compression, but do not consider SCHC
F/R [18], [19]. On the other hand, Moons et al. [16] com-
pared SCHC and 6LoWPAN compression and fragmentation
functionalities. Their results show that SCHC has a smaller
footprint, uses less memory and the header overhead is twenty
times smaller when compared with 6LoWPAN. Ayoub et
al. [17] present an implementation of SCHC using the ns-3

network simulator and also compare SCHC with 6LoWPAN,
finding the same performance advantage for SCHC in terms
of header overhead. The authors in [5] provided an overview
of SCHC and a simple evaluation of the different F/R modes,
but it is a superficial study due to its tutorial purpose. In [20],
the authors compared the different SCHC F/R modes in terms
of total channel occupancy, goodput and total delay at the
SCHC layer in an ideal communication channel. The authors
showed that, when comparing the reliable SCHC F/R modes,
namely, ACK-Always and ACK-on-Error, the latter provided
better goodput.

To the best of our knowledge, no previous work provides
a mathematical model to estimate the ACK volume and its
relation with key configuration parameters of SCHC F/R ACK-
on-Error mode, nor contribute with configuration guidance
based on radio link quality and packet size. We think that
this mode is worth analyzing, because it provides reliable
communication while minimizing the number of ACKs when
compared to ACK-Always.

III. TECHNICAL BACKGROUND: SCHC FRAGMENTATION
AND REASSEMBLY

This section provides an overview of SCHC F/R. We first
introduce the SCHC adaptation layer, then focus on the main
SCHC F/R components and tools.

A. SCHC Adaptation Layer Overview

Flagship LPWAN technologies, such as LoRaWAN and
Sigfox, are characterized by a reduced L2 MTU [1]. Further-
more, these technologies do not provide a native fragmentation
mechanism for transferring larger packets. The SCHC frame-
work provides header compression and F/R functionalities
specifically designed for LPWAN [4]. SCHC defines a set
of Rules, each identified with a RuleID, which determine
how to perform the compression and fragmentation and allow
the sender and receiver to determine the operation mode and
configuration parameters.

SCHC is composed of two sublayers, namely the Com-
pression and the Fragmentation sublayers. Fig. 1 shows those
sublayers between the IPv6 layer and the LPWAN technology
layer. When an IPv6 packet needs to be sent, compression is

IPv6

Compression

Fragmentation

}
SCHC

LPWAN technology

Fig. 1. Protocol stack illustrates the location of the SCHC sublayers
between the IPv6 layer and the underlying LPWAN technology [4].

performed. The compressed IPv6 is called a SCHC Packet. If
the SCHC Packet size is greater than the L2 MTU, SCHC
fragmentation is performed at the sender. At the receiver,
the SCHC Packet is reassembled and the IPv6 packet is
decompressed.

Page 3 of 12

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



S.AGUILAR et al.: PERFORMANCE ANALYSIS AND OPTIMAL TUNING OF IETF LPWAN SCHC ACK-ON-ERROR MODE 3

In SCHC F/R, a SCHC Packet is fragmented into units
called tiles. One or more tiles are carried by one SCHC
Fragment, which is sent in an LPWAN frame. In some SCHC
F/R modes, a determined number of tiles are grouped into
a window, and the receiver generates SCHC ACKs to tell
the sender which tiles of that window have been received or
not. Missing fragments or tiles are retransmitted. Tiles and
windows are numbered in a way that each tile can be identified
for further retransmissions (see Fig. 2).

SCHC Packet︷ ︸︸ ︷
4 3 2 1 0 4 3 2 1 0 4 3 2 1 0 4 3 2 1 0︸ ︷︷ ︸

w0

︸ ︷︷ ︸
w1

︸ ︷︷ ︸
w2

︸ ︷︷ ︸
w3

Fig. 2. Example of a SCHC Packet fragmented into 20 tiles, with
5 tiles per window. The tile index in the window, called the Fragment
Compressed Number (FCN) is indicated for each tile.

B. SCHC F/R Messages and Headers
The SCHC framework defines different messages that are

used to carry out the SCHC F/R process between the sender
and the receiver. The main messages are the SCHC Fragment
and the SCHC ACK. Each message has a SCHC F/R Header
with the following fields:

• Rule ID: this field identifies whether a SCHC message
is a SCHC Fragment. In a SCHC Fragment, it indicates
which F/R mode and settings are used.

• Datagram Tag (DTag): this field is used to identify–along
with the Rule ID–a SCHC Packet. The length of the DTag
field is T in bits.

• W : this number identifies the window a fragment belongs
to and has a length of M bits. W is only present in SCHC
F/R modes that use windows.

• Fragment Compressed Number (FCN): this N -bit field is
used to identify the progress of the sequence of tile(s)
being transmitted in a SCHC Fragment message.

• Message Integrity Check (MIC): this field, of U bytes,
is used to check the integrity of a reassembled SCHC
Packet. It protects the complete SCHC Packet.

• Integrity Check (C): this one-bit field (LCbit
= 1) equals

1 if the integrity check of the reassembled SCHC Packet
succeeded, and 0 otherwise.

A SCHC Fragment carries a part of a SCHC Packet from
the sender to the receiver. The FCN field of a SCHC Fragment
has all bits set to 1 (it is then called an All-1 SCHC Fragment),
to indicate it is the last fragment for the current SCHC Packet;
that fragment carries the MIC for this SCHC Packet. Fig. 3
shows a regular and an All-1 SCHC Fragment. LSH is the
length of the SCHC Fragment Header in bytes. Padding bits
are added at the end of the SCHC Fragment if needed by the
LPWAN technology. A SCHC ACK is sent by the receiver to
the sender to acknowledge the complete or partial reception
of the fragmented SCHC Packet. In the latter case, a SCHC
ACK reports whether the tiles of a given window have been
received or not, in the form of a bitmap (see section III-E).

Fig. 4 shows the SCHC ACK format. A SCHC ACK carries
the C field.

SCHC Frag Header︷ ︸︸ ︷
Rule ID DTag W FCN Fragment Payload padding(as needed)

T M N

Rule ID DTag W 11..11 MIC Fragment Payload padding(as needed)

T M N U

LSH

Fig. 3. Illustration of a regular SCHC Fragment, and an All-1 SCHC
Fragment with the MIC field. The length in bits of each header field is
indicated below each field.

SCHC ACK Header︷ ︸︸ ︷
Rule ID DTag W C=1 padding (as needed) (success)

Rule ID DTag W C=0 Bitmap padding (as needed) (failure)

T MLCbit

LSH

Fig. 4. Illustration of a SCHC ACK message. The top SCHC ACK
Message notifies successful reassembly of a SCHC Packet by carrying
a C = 1. The bottom one indicates a failed SCHC Packet reassembly
(C = 0) and carries a bitmap. The length of each header field (in bits)
is indicated below each field.

C. Tiles
As previously explained (see Fig. 2), a SCHC Packet is

fragmented into units called tiles, which have a size of t bytes.
In ACK-on-Error mode, each tile must be of the same size,
except for the last one, which can be smaller. In the No-ACK
and ACK-Always modes, tiles can be of different sizes. If
the payload field is present in a SCHC Fragment, it must
carry at least one tile. In ACK-on-Error mode, each tile of
a SCHC Packet is uniquely identified by the window and tile
numbers. The FCN of the SCHC Fragment, together with the
window index W , identifies the first tile carried by the SCHC
Fragment.

D. Windows
A group of w successive tiles is called a window. Each

window in a fragmented SCHC Packet transmission, except
the last one, must have the same number of tiles. Windows
are numbered from 0 upwards. The window field (W ) has a
size of M bits and the window size (window size) has to be
less than 2N−1 (in each window, the tiles are numbered from
window size−1 downwards). Fig. 2 shows the fragmentation
of a SCHC Packet in 4 windows, with 5 tiles per window.

E. Bitmap
A bitmap is a sequence of bits where each bit indicates

the received status of a tile within a specific window. The

Page 4 of 12

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



4 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

bitmap has a size of 2N − 1. The rightmost and leftmost
bits will correspond to tile numbers 0 and window size− 1,
respectively. The receiver will set a 1 in the bitmap when the
corresponding tile is received successfully and a 0 when the
tile was not received, as exemplified in Fig. 5. The C field is
set to 0, indicating the packet reassembly was not successful,
since the SCHC Packet was not received completely.

SCHC ACK Header︷ ︸︸ ︷ Bitmap︷ ︸︸ ︷
Rule ID DTag W C=0 0 1 1 1 1 1 1 padding(as needed)

tile number = 6 5 4 3 2 1 0

Fig. 5. Example of a SCHC ACK, where a window of 7 tiles (w = 7)
was sent and tile FCN # 6 was not received successfully.

IV. SCHC FRAGMENTATION AND REASSEMBLY MODES

SCHC offers 3 SCHC F/R modes to perform the SCHC
F/R process: No-ACK, ACK-Always and ACK-on-Error. If a
reliable communication is required, ACK-Always and ACK-
on-Error use ACKs to support potential retransmission upon
failure. This section provides a brief description of No-ACK
and ACK-Always modes, and a more detailed explanation of
the ACK-on-Error mode.

A. The No-ACK mode
The No-ACK mode provides a mechanism for in-sequence

delivery of SCHC Fragments between the sender and the
receiver. This mode does not provide reliability when errors
are present, since there is no feedback from the receiver and
the sender cannot perform SCHC Fragment retransmissions.
Variable L2 MTU size is supported. Tiles can be of different
sizes, while windows are not used.

B. ACK-Always mode
The ACK-Always mode is a window-based mechanism

for in-sequence delivery of SCHC Fragments that supports
reliability. At the end of the transmission of each window, a
SCHC ACK is sent by the receiver to the sender to report
on the tiles received for the current window. The sender
only begins the transmission of the next window, once the
receiver confirms the correct reception of all tiles of the current
window. Variable L2 MTU size is not supported. Tiles can
have different sizes.

C. ACK-on-Error mode
The ACK-on-Error mode is a window-based mechanism

that supports reliable and out-of-order delivery of SCHC
Fragments and variable L2 MTU. This SCHC F/R mode
reduces the number of SCHC ACKs, when compared to ACK-
Always, since in all windows except for the last one carrying
a SCHC Packet, SCHC ACKs are only sent when at least
one tile is lost. For the last window, in order to ensure that
the sender can expect to receive feedback on the fragmented
SCHC Packet transmission, a SCHC ACK is unconditionally
sent.

LPWAN
device

LPWAN Radio
Gateway

Rule ID DTag W0 100 4 3 2 1
Rule ID DTag W0 000 0 4 3 2
Rule ID DTag W1 001 1 0 4 3
Rule ID DTag W2 010 2 1 0 4

Rule ID DTag W3 011 3 2 1

Rule ID DTag W3 111 MIC 0
SCHC ALL-1

Rule ID DTag W3 C=1

SCHC ACK Success

sender receiver

Fig. 6. Example of a transmission of the SCHC Packet shown in Fig. 2
with no errors. The transmission ends with a SCHC ACK that indicates
successful SCHC Packet reassembly.

All tiles must be of the same size, except for the last one,
which can be smaller. One or more tiles can be carried in a
SCHC Fragment and they can be from multiple windows.

In a SCHC Fragment, the window number (W ) needs to be
set to identify each window number unambiguously during the
transmission of a SCHC Packet. The sender can retransmit the
SCHC Fragments for any lost tiles, from previous windows.
This allows the sender and the receiver to work in a loosely
coupled manner.

Transmission of a fragmented SCHC Packet may end in
three ways: first when the integrity check for the SCHC Packet
shows a correct reassembly at the receiver, second when too
many retransmission attempts were made, finally when an
inactivity timer at the receiver indicates that the transmission
has been inactive for too long. Fig. 6 shows the transmission of
the fragmented SCHC Packet of Fig. 2 with no errors, where
the SCHC Fragment size allows 4 tiles per fragment.

If the receiver receives the All-1 SCHC Fragment, it
performs the integrity check for the SCHC Packet. This is
carried out by comparing the MIC calculated with the MIC
received in the All-1 SCHC ACK Fragment. With the result
of the Integrity Check, the C field is populated with 1 or 0,
indicating success or failure of the SCHC Packet reassembly,
respectively. In case some tiles of a window or a complete
window were lost, the receiver prepares the bitmap for the
lowest-numbered window that was not entirely received.

The sender has to listen for a SCHC ACK from the
receiver after sending the All-1 SCHC Fragment. Moreover,

Page 5 of 12

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



S.AGUILAR et al.: PERFORMANCE ANALYSIS AND OPTIMAL TUNING OF IETF LPWAN SCHC ACK-ON-ERROR MODE 5

a technology-oriented profile specification can establish other
times when the sender may need to listen for a SCHC ACK,
for example after sending a complete window of tiles. The
sender can terminate the transmission of a SCHC Packet when
receiving a SCHC ACK with C = 1. If the SCHC ACK
carries C = 0, the sender must resend the SCHC Fragments
corresponding to the missing tiles indicated in the bitmap.
As an example, Fig. 7 shows the transmission of the SCHC
Packet presented in Fig. 2 with an error in the 4th SCHC
Fragment. Even though the SCHC Fragment carries tiles from
2 windows, the SCHC ACK indicates the window number of
the lower-numbered window and the sender is able to identify
which SCHC Fragment has to be retransmitted. After the
retransmission of the missing SCHC Fragment, the receiver
computes the MIC, performs the integrity check and sends a
SCHC ACK reporting successful SCHC Packet reassembly.

V. MATHEMATICAL MODEL AND ANALYSIS

This section provides the mathematical model used to cal-
culate the expected number of SCHC ACKs, hereafter called
ACKs, required to successfully transfer a fragmented SCHC
Packet in ACK-on-Error mode, in presence of losses.

For the analysis we consider an infinite maximum number
of fragment retries, all tiles of the same size and no padding
in the bitmap. We do not count the unconditional SCHC ACK
(see Fig. 4) generated by the receiver to notify that all tiles
of a SCHC Packet have been received successfully because it
does not provide more information to the analysis.

A. ACK Message Overhead
The ACK message overhead (Ek) is defined as the expected

number of ACKs required to successfully transfer a given
window. Ek will depend on the average number of SCHC
Fragments necessary to transmit all the tiles of a window and
on the probability that each SCHC Fragment is successfully
received.

If we assume that all bits must be received without errors
for the transmission to be successful, the probability of success
(Psuccess) for a SCHC Fragment can be related to the Bit Error
Rate (BER) through the relation

Psuccess = (1−BER)8F , (1)

where F is the fragment size in bytes of the L2 MTU of the un-
derlying LPWAN technology. (Note that we implicitly assume
a uniform BER that refers to the residual BER after application
of physical layer error correcting techniques; the impact of the
frame header size is considered separately, see Section V-C.)
Assuming Psuccess fixed and all transmissions independent, the
number of transmission attempts NTA needed to successfully
deliver a SCHC Fragment from the sender to the receiver
follows a geometric distribution, i.e.,

P(NTA = n) = (1− Psuccess)
n−1Psuccess. (2)

Recall that at most only one ACK per window is generated:
the ACK reports all the tiles not received in that window.
Hence, until all SCHC Fragments containing all tiles of a
window have been successfully received, a negative ACK is

LPWAN
device

LPWAN Radio
Gateway

Rule ID DTag W0 100 4 3 2 1
Rule ID DTag W0 000 0 4 3 2
Rule ID DTag W1 001 1 0 4 3
Rule ID DTag W2 010 2 1 0 4

Rule ID DTag W3 011 3 2 1

Rule ID DTag W3 111 MIC 0
SCHC ALL-1

Rule ID DTag W2 C=0 1 1 0 0 0

SCHC ACK Failure

Rule ID DTag W2 010 2 1 0 4
Retransmission

Rule ID DTag W3 C=1

SCHC ACK Success

sender receiver

Fig. 7. Example of a transmission of a SCHC Packet with one
lost SCHC Fragment in ACK-on-Error mode. Once the All-1 SCHC
Message is received by the receiver, a SCHC ACK with C = 0 and
its corresponding bitmap is generated. The sender performs the SCHC
Fragment retransmission. When the lost SCHC Fragment is received,
the receiver performs the Integrity Check and sends the corresponding
SCHC ACK Success indicating the end of the transmission of the SCHC
Packet.

sent for that window and the missing SCHC Fragments are
re-sent.

As a result, the number of such negative ACKs that are
sent per window is the maximum number of retransmissions
over all the SCHC Fragments in the window. The expected
value of that number can be computed recursively, using
a renewal argument. To do so, denote by Aj the expected
number of transmission attempt cycles (a cycle meaning that
we send all the missing SCHC Fragments of a window once)
until successful reception of all SCHC Fragments, when j >
0 SCHC Fragments remain to be sent. Then, consider the
situation after a transmission attempt cycle of all those j

SCHC Fragments: with probability
Å
j
i

ã
P j−i
success(1−Psuccess)

i,

there have been j− i SCHC Fragments successfully received,

Page 6 of 12

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



6 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

and i SCHC Fragments that need retransmission. From that
situation, the expected number of transmission attempt cycles
is simply Ai, hence the recursive relation

Aj = 1 +

j∑
i=0

Å
j
i

ã
P j−i
success(1− Psuccess)

iAi, (3)

where the first term accounts for the transmission attempt we
considered. Rearranging, we get

Aj = 1
1+(1−Psuccess)j

ï
1 +

∑j−1
i=0

Å
j
i

ã
P j−i
success(1− Psuccess)iAi

ò
(4)

Using (4) with A0 = 0, the number of ACKs required
per window is simply Ak − 1, removing the last success
transmission attempt cycle, when all the SCHC Fragments
with all the tiles of that window were correctly received, with
k the number of SCHC Fragments in a window.

A SCHC Fragment can contain tiles from several consec-
utive windows, hence the number of SCHC Fragments to
successfully send a window may vary. For a fixed window
size w (in tiles) and fragment size f (in tiles), the number of
SCHC Fragments per window (k) can be modeled as a random
variable, as follows:

k =

®
k1 = bwf c, with probability 1 + bwf c −

w
f

k2 = dwf e, with probability w
f − b

w
f c,

(5)

as illustrated in Fig. 8.

SCHC Packet︷ ︸︸ ︷
4 3 2 1 0 4 3 2 1 0 4 3 2 1 0 4 3 2 1 0 ...︸ ︷︷ ︸

w0

︸ ︷︷ ︸
w1

︸ ︷︷ ︸
w2

︸ ︷︷ ︸
w3

SCHC Fragments

Rule ID DTag w0 100 4 3 2 1 Rule ID DTag w0 000 0 4 3 2︸ ︷︷ ︸
w0

︸︷︷︸
w0

︸ ︷︷ ︸
w1

Rule ID DTag w1 001 1 0 4 3 Rule ID DTag w2 010 2 1 0 4︸ ︷︷ ︸
w1

︸ ︷︷ ︸
w2

︸ ︷︷ ︸
w2

︸︷︷︸
w3

Rule ID DTag w3 011 3 2 1 0 Rule ID DTag w4 100 4 3 2 1︸ ︷︷ ︸
w3

︸ ︷︷ ︸
w4

Rule ID DTag w4 000 0 4 3 2︸︷︷︸
w4

︸ ︷︷ ︸
w5

Fig. 8. Example of a SCHC Packet and SCHC Fragments. The SCHC
Packet is fragmented in 5 tiles per window (w = 5) and the SCHC
Fragments can transport 4 tiles per fragment (f = 4). For a successful
transmission of the packet, w0 needs k2 = 2 successful SCHC
Fragment transmissions, then w1, w2, and w3 need each k1 = 1
more successful SCHC Fragment transmission, in compliance with (5):
a proportion w

f
− bw

f
c = 1/4 of windows need k2 = dw

f
e new

SCHC Fragment transmissions, while the other windows need only
k1 = bw

f
c = 1 new SCHC Fragment transmission.

To compute Ek, the expected number of transmission at-
tempts for k1 and k2 are first obtained from (4), and Ek is the
weighted average of Ak1

− 1 and Ak2
− 1 with the weights

of (5). This gives us the Ek for a given window size, fragment
size and tile size, as follows:

Ek =
(
1+
⌊
w
f

⌋
− w

f

)
·Abwfc −1+

(
w
f −

⌊
w
f

⌋)
·Adwfe −1. (6)

B. ACK Bit Overhead
The ACK bit overhead (OACK) is defined as the average

number of (negative) ACK bits sent for each data bit sent and
provides the trade-off between the amount of data that can be
transferred in a window and the resulting ACK(s) volume.

OACK is obtained by dividing Ek by the window size and
then multiplying the result by the ACK size (LACK). The
window size can be obtained as the tile size (t) multiplied
by the number of tiles in a window (w). LACK is equal to the
bitmap size, that exactly equals w (one bit per tile in a window)
plus the ACK header LSH (in bytes) allowing to express the
ACK bit overhead as:

OACK =
(8LSH + w) · Ek

8wt
. (7)

OACK quantifies the relation between the quantity of data
and the quantity of ACKs that need to be sent. The ACK size
(LACK) is related to the tile size. For the same window size
(in bytes), larger tiles produces smaller bitmaps, thus smaller
ACKs. Recall that the OACK is from the point of view of
the SCHC framework layer, as it only considers the SCHC
Headers.

C. ACK Bit Overhead with L2 Headers
As the SCHC framework sits on top of a LPWAN technol-

ogy, there is an extra overhead due to L2 Headers. To consider
the additional cost involved in sending an ACK, the L2 Header
(with size LL2H in bytes) is added to OACK in the downlink,
i.e. a penalty for sending an ACK, and can be calculated as
follows:

OACKL2 =
(8 · (LL2H + LSH) + w) · Ek

8wt
. (8)

The ACK bit overhead with L2 headers (OACKL2
) analyzes

the impact of the L2 overhead and its relation with the window
and tile sizes. Minimizing OACKL2

maximizes the uplink data
while optimizing the ACK size and volume, reducing the
utilization of the LPWAN gateway and leveraging the available
resources in duty-cycle-constrained networks.

D. Percentage of used bits per fragment
The percentage of used bits per SCHC Fragment provides

information on how efficient a tile size is for a given L2
MTU (F ) considering the SCHC Headers. Due to LPWAN
technologies capacity constraints, the tile size must be set
to maximize the SCHC Fragment payload. Therefore, the
percentage of usage of a SCHC Fragment, which we will
denote by PU , equals

PU =
f · t

F − LSH
· 100. (9)

In LPWAN technologies such as LoRaWAN, F can change
during an on-going fragmented packet transmission [8] and the
tile size previously chosen may not be multiple of the modified
F as it was in the previous one, leaving some bytes unused.
The number of unused bytes in a SCHC Fragment (funused),
for a given tile size, is calculated as follows:

funused = (F − LSH)− (f · t). (10)

Page 7 of 12

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



S.AGUILAR et al.: PERFORMANCE ANALYSIS AND OPTIMAL TUNING OF IETF LPWAN SCHC ACK-ON-ERROR MODE 7

For example, a 9-byte tile (t = 9) will use all the bytes
when F = 11, f = 1 with LSH = 2, but when having 5 tiles
(f = 5) of 9 bytes and F = 53, 6 bytes per SCHC Fragment
will not be used.

E. Maximum window and bitmap sizes

The SCHC framework defines a method for F/R on the
uplink to transfer SCHC Packets, but it does not propose a
SCHC ACK F/R method. Without a fragmentation method
the ACK is limited to one SCHC Fragment, i.e. one L2 MTU.
Therefore, there is a maximum bitmap size (MBS) that leads to
a maximum window size (MWS). Moreover, the tile size will
limit the maximum data on a window. The maximum bitmap
size in tiles, i.e., number of bits in the bitmap, is therefore
calculated as follows:

MBS = 8 · (F − LSH), (11)

and the maximum window size in bytes is then:

MWS = (t ·MBS)− U. (12)

VI. PERFORMANCE EVALUATION

In this section, we use the models derived in section V to
evaluate the ACK-on-Error mode in terms of the performance
metrics presented.

The fragment sizes F used in the performance evaluation
are the minimum (F = 11) and maximum (F = 242) MTU
values in LoRaWAN for US 915 MHz band (US915) and EU
868 MHz band (EU868), respectively. Note that the physical
layer configuration in LoRaWAN (including data unit size,
and thus fragment size) is determined by the Data Rate (DR)
and Spreading Factor (SF) [8]. The SCHC ACK and SCHC
Fragment Header size used is 2 bytes (LSH = 2).

A. ACK Message Overhead

Fig. 9a, shows the ACK message overhead, (Ek) as a
function of Psuccess for different window sizes for F = 11 and
t = 9 bytes so that f = 1 (one tile per fragment), k = w, and
no unused bits. The difference in Ek between a small window
size (e.g., w = 1) and a large window (e.g., w = 143) is larger
for lower Psuccess than with higher Psuccess. This happens
because Ek has a logarithmic behavior as a function of k
(see Fig. 9b) and “flattens” when Psuccess increases: for small
values of k and Psuccess, a small variation in k produces large
changes in Ek. The Ek variation decreases as k increases. For
higher Psuccess, the difference in Ek is less dependent on k,
since less ACKs are produced.

For Psuccess = 1, only one positive ACK is generated at the
end of the fragmented packet transmission because no SCHC
Fragments are lost, but Ek = 0 because it only counts negative
ACKs, i.e. failed window transmission cycles.

B. ACK Bit Overhead

We now consider the ACK bit overhead metric OACK

defined in (7), with the aim of minimizing that metric.

0.2 0.4 0.6 0.8 1

0

20

40

Psuccess

E
k

Ek vs Psuccess

w = 1
w = 9
w = 18
w = 36
w = 72
w = 143

(a)

0 100 200 300 400 500

100

101

102

103

k

E
k

Ek vs k

Psuccess = 0.10 Psuccess = 0.30
Psuccess = 0.50 Psuccess = 0.70
Psuccess = 0.90 Psuccess = 0.99

(b)

Fig. 9. Ek for F = 11, t = 9 and LSH = 2 for different windows
sizes as a function of Psuccess (a) and a function of k (b).

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

window size (bytes)

O
A
C
K

t = 1
t = 3
t = 9

(a) F = 11, Psuccess = 0.9

0 100 200 300 400 500

0.2

0.4

0.6

0.8

window size (bytes)

O
A
C
K

t = 1
t = 3
t = 9

(b) F = 11, Psuccess = 0.5

0 200 400 600 800
0

0.01

0.02

0.03

0.04

window size (bytes)

O
A
C
K

t = 3
t = 9
t = 30
t = 49

(c) F = 51, Psuccess = 0.9

0 1,000 2,000 3,000 4,000 5,000
0

0.005

0.01

0.015

window size (bytes)
O

A
C
K

t = 9
t = 30
t = 49
t = 100
t = 240

(d) F = 242, Psuccess = 0.9

Fig. 10. OACK vs window size. Impact of the tile size t on the OACK.
LSH = 2.

1) Optimal Tile Size: Fig. 10a shows the impact of the tile
size on OACK, for F = 11 and Psuccess = 0.9. For small tiles,
OACK increases faster with the window size than for large
tiles; indeed a smaller tile size will require a larger bitmap
for each data bit transferred, since the bitmap size equals the
number of tiles in a window, hence is inversely proportional to
the tile size for a fixed window size (in data volume). As the
tile size increases, the ACK size required for the same window
size decreases. When the window size increases, the ACK size
becomes more relevant in OACK than the average number of
ACKs, because the average number of ACKs has a logarithmic
behavior (see Fig. 9b) while the ACK size increases linearly
with the window size. The tile size that yields the smallest
ACK size and the lowest OACK ratio is the largest possible
tile size.

The results for F = 51 and F = 242 for Psuccess = 0.9
are shown in Fig. 10c and Fig. 10d, respectively. As in the
previous case, a tile size equal to the SCHC Fragment payload
size minimizes OACK. As expected, there is a large difference
between using a 9-byte and 49-byte tile, when compared to a

Page 8 of 12

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



8 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

240-byte tile, as Fig. 10d shows.
Fig. 10b shows OACK for Psuccess = 0.5 and F = 11,

evaluated for different window sizes. For larger tile sizes, as
the window size increases, OACK decreases because larger
windows are more efficient when reporting many lost frag-
ments.

For all the displayed settings, the optimal tile size is the
largest possible tile, i.e., a tile size of the SCHC Fragment
payload size, independently of Psuccess. Hence, for technolo-
gies with fixed MTU such as Sigfox, the optimal tile size is
simply the SCHC Fragment payload size. For technologies
with variable MTU size, such as LoRaWAN, it is not possible
to use a tile of the SCHC Fragment payload size in the
larger fragment sizes because the tile has to fit in the smallest
fragment size to support variable MTU. In the case the SCHC
Fragment size is known beforehand, the Rule can be chosen
with the optimal tile and windows sizes. If the MTU changes,
then the tile size can change accordingly.

2) Optimal Window Size: The tile size is set to a fixed value,
i.e., equal to the SCHC Fragment payload size. Fig. 11a and
Fig. 11b illustrate the OACK as a function of Psuccess for
different window sizes, for F = 11, t = 9 and F = 51,
t = 49, respectively. When Psuccess is low, many fragments
are lost and a larger window size leads to lower OACK.

The interest of having large windows lies in what we can
call ACK pooling, that is the fact that when several fragments
(of the same window) fail, the information of the failures
is pooled into a single ACK message. Large window sizes
benefit from ACK pooling when Psuccess is low because one
large ACK can report many lost fragments. Conversely, smaller
windows sizes will generate a greater number of ACKs leading
to higher overhead.

Henceforth, the tradeoff is between ACK pooling (larger
windows mean less ACKs) and ACK size (larger windows
mean larger ACKs), that we manage through the total ACK
volume metric OACK.

As Psuccess increases, there exists one point (see zoom
in Fig. 11a and Fig. 11b) beyond which smaller windows
outperform larger window sizes. From this point forward,
having smaller ACKs becomes more important since the
number of losses is low. For example, the window size of 1
tile performs worst for lower Psuccess but as Psuccess increases,
it becomes the one yielding the lowest OACK. When Psuccess

is greater than 0.9, the window size of just 1 tile is optimal
because rarely a SCHC Fragment will get lost, in which case a
smaller ACK will be sent (almost no ACK pooling, and smaller
ACKs). In contrast, large windows require a large ACK to
report the few lost fragments.

As a consequence, there exists an optimal window size that
minimizes OACK, which depends not only on Psuccess, but
also on F and t. Fig. 11c and Fig. 11d show the values for
OACK for different windows sizes, and for F = 11, t = 9
and F = 51, t = 49, respectively. When Psuccess is 0.8, ACK
pooling benefits the larger windows and the optimal window
size is large, as for example, 342 bytes (w = 38) in Fig. 11c.
As Psuccess increases, OACK increases with the window size
and for Psuccess ≥ 0.9 the benefit of ACK pooling is lost,
leading to an optimal window size of one tile (w = 1).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10−2

10−1

100

Psuccess

O
A
C
K

OACK vs Psuccess

w = 1
w = 9
w = 18
w = 36
w = 72
w = 143

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10−2

10−1

100

Psuccess

O
A
C
K

OACK vs Psuccess

w = 1
w = 9
w = 18
w = 36
w = 72
w = 143

(a) F = 11, t = 9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10−2

10−1

Psuccess

O
A
C
K

OACK vs Psuccess

w = 1
w = 2
w = 4
w = 7
w = 14
w = 27

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10−2

10−1

Psuccess

O
A
C
K

OACK vs Psuccess

w = 1
w = 2
w = 4
w = 7
w = 14
w = 27

(b) F = 51, t = 49

101 102 103

0

0.02

0.04

0.06

window size (bytes)

O
A
C
K

OACK vs window size

Psuccess = 0.80 Psuccess = 0.82
Psuccess = 0.84 Psuccess = 0.86
Psuccess = 0.88 Psuccess = 0.90
Psuccess = 0.92 Psuccess = 0.94
Psuccess = 0.96 Psuccess = 0.98
Psuccess = 0.99

(c) F = 11, t = 9

102 103

0

0.002

0.004

0.006

0.008

0.01

window size (bytes)

O
A
C
K

OACKvs window size

Psuccess = 0.80 Psuccess = 0.82
Psuccess = 0.84 Psuccess = 0.86
Psuccess = 0.88 Psuccess = 0.90
Psuccess = 0.92 Psuccess = 0.94
Psuccess = 0.96 Psuccess = 0.98
Psuccess = 0.99

(d) F = 51, t = 49

Fig. 11. Impact of the window size w (in tiles) or 8wt (in bits) on the
ACK overhead OACK. The window size is a multiple of the tile size
using w. LSH = 2.

Fig. 12a and Fig. 12b illustrate the results for F = 240 with
t = 49 and t = 240, respectively. When the tile size is small
compared with the SCHC Fragment payload size (f > 1)
there is no gain from ACK pooling for Psuccess > 0.5. Hence
smaller windows perform better, as Fig. 12a shows. As the
window size increases, more small tiles are required when
compared with larger tile sizes (see Fig. 12b), making the
larger windows size yield a greater OACK when using smaller
tiles. Fig. 12c shows how OACK is minimum for small window
sizes when Psuccess > 0.80 for F = 240 and t = 49: the
optimal window size is the smaller window, i.e. w = 4. By
contrast, Fig. 12d illustrates for F = 242 and t = 240 how
a larger tile size will yield a larger optimal window size and
benefit from ACK pooling for Psuccess < 0.9.

Hence, depending on the parameters and the channel con-
ditions, the window size minimizing OACK varies. We now
focus on that optimal window size.

Fig. 13a presents the optimal window size as a function
of Psuccess, for different F values. When Psuccess is below
0.8, in most of the cases, the optimal window size is large.
The optimal window size decreases as Psuccess increases, as
expected the importance of ACK pooling decreasing with
respect to the ACK size. Fig. 13b presents the optimal window
sizes for different Psuccess and for larger F values. As for the
case of smaller F , as Psuccess becomes higher, the optimal
window size becomes smaller.

C. ACK Bit Overhead with L2 Headers
Previous figures were considering the ACK overhead as

defined in (7), i.e., ignoring L2 headers in the size of ACKs.

Page 9 of 12

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



S.AGUILAR et al.: PERFORMANCE ANALYSIS AND OPTIMAL TUNING OF IETF LPWAN SCHC ACK-ON-ERROR MODE 9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10−3

10−2

10−1

Psuccess

O
A
C
K

OACK vs Psuccess

w = 4
w = 7
w= 14
w = 27
w = 100

(a) F = 242, t = 49

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10−3

10−2

Psuccess

O
A
C
K

OACK vs Psuccess

w = 4
w = 7
w = 14
w = 27
w = 100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10−3

10−2

Psuccess

O
A
C
K

OACK vs Psuccess

w = 4
w = 7
w = 14
w = 27
w = 100

(b) F = 242, t = 240

102 103 104

0

0.002

0.004

0.006

window size (bytes)

O
A
C
K

OACK vs window size

Psuccess = 0.80 Psuccess = 0.82
Psuccess = 0.84 Psuccess = 0.86
Psuccess = 0.88 Psuccess = 0.90
Psuccess = 0.92 Psuccess = 0.94
Psuccess = 0.96 Psuccess = 0.98
Psuccess = 0.99

(c) F = 242, t = 49

103 104

0

0.0005

0.001

0.0015

0.002

window size (bytes)

O
A
C
K

OACK vs window size

Psuccess = 0.80 Psuccess = 0.82
Psuccess = 0.84 Psuccess = 0.86
Psuccess = 0.88 Psuccess = 0.90
Psuccess = 0.92 Psuccess = 0.94
Psuccess = 0.96 Psuccess = 0.98
Psuccess = 0.99

(d) F = 242, t = 240

Fig. 12. Impact of the window size w (in tiles) or 8wt (in bits) on the
ACK overhead OACK. The window size is a multiple of the tile size
using w. LSH = 2.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

101

102

103

Psuccess

O
pt

m
ia

l
w

in
do

w
si

ze
(b

yt
es

)

F = 11, t = 1 F = 11, t = 8
F = 11, t = 9 F = 12, t = 5
F = 12, t = 10 F = 51, t = 8
F = 51, t = 49 F = 53, t = 9
F = 53, t = 51

(a) F = 11, 12, 51, 53

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

102

103

Psuccess

O
pt

m
ia

l
w

in
do

w
si

ze
(b

yt
es

)

F = 115, t = 49 F = 115, t = 113
F = 125, t = 9 F = 125, t = 51
F = 125, t = 123 F = 242, t = 8
F = 242, t = 9 F = 242, t = 49
F = 242, t = 51 F = 242, t = 113
F = 242, t = 123 F = 242, t = 240

(b) F = 115, 125, 242

Fig. 13. Optimal window size vs Psuccess for different settings.

This may be justified if the operator charges the user based
on the volume of L2 payloads. In this section we investigate
the impact of counting the whole L2 ACK size by counting
those headers, as suggested in (8).

The L2 headers of Sigfox according to [6] is 21 bytes
in downlink with a payload of 8 bytes. The L2 headers of
LoRaWAN according to [8] are 13 byte long, hence we will
especially focus on those values.

For clarity in the figures, we define Pfailure as 1−Psuccess.
Fig 14a and Fig. 14b illustrate OACKL2

for F = 11, t = 9
and for F = 242, t = 49, with LL2H = 13, respectively.

Smaller windows outperform larger ones for Psuccess > 0.99
(see the zoom in Figs. 14a and 14b), whereas in Section VI-B
it is for Psuccess > 0.90. This happens because the additional

constant length added to the ACK size favors the ACK pooling
effect of large windows over the additional ACK length,
making it more efficient to send one large ACK than several
smaller ones (and their large L2 headers). Hence, only with
very large success probability Psuccess > 0.99, i.e., Pfailure <
10−2, does the ACK length effect take over the ACK pooling
effect, as Fig. 14a shows. For Psuccess < 0.99, the best window
size is 1 tile (w = 1), but as Psuccess decreases, the optimal
window size increases (e.g. w = 143 for Psuccess > 0.99).

Fig. 14c and Fig. 14d confirm our conclusions, by showing
OACKL2

for F = 11, t = 9 and for F = 242, t = 49 with
LL2H = 13 for different Psuccess, respectively.

10−2 10−1 100

10−2

10−1

100

101

102

103

Pfailure

O
A
C
K

L
2

OACKL2
(LL2H 13 bytes) vs Pfailure

w = 1
w = 9
w = 18
w = 36
w = 72
w = 143

10−2 10−1 100

10−2

10−1

100

101

102

103

Pfailure

O
A
C
K

L
2

OACKL2
(LL2H 13 bytes) vs Pfailure

w = 1
w = 9
w = 18
w = 36
w = 72
w = 143

(a) F = 11, t = 9

10−2 10−1 100

10−3

10−2

10−1

100

101

102

Pfailure

O
A
C
K

L
2

OACKL2
(LL2H 13 bytes) vs Pfailure

w = 1
w = 2
w = 4
w = 7
w = 14
w = 27
w = 100

10−2 10−1 100

10−3

10−2

10−1

100

101

102

Pfailure

O
A
C
K

L
2

OACKL2
(LL2H 13 bytes) vs Pfailure

w = 1
w = 2
w = 4
w = 7
w = 14
w = 27
w = 100

(b) F = 242, t = 49

101 102 103

0

0.1

0.2

0.3

0.4

window size (bytes)

O
A
C
K

L
2

OACKL2
(LL2H 13 bytes) vs window size

Psuccess=80.0 % Psuccess=82.0 %
Psuccess=84.0 % Psuccess=86.0 %
Psuccess=88.0 % Psuccess=90.0 %
Psuccess=92.0 % Psuccess=94.0 %
Psuccess=96.0 % Psuccess=98.0 %
Psuccess=99.0 %

(c) F = 11, t = 9

103 104

0

0.005

0.01

0.015

0.02

window size (bytes)

O
A
C
K

L
2

OACKL2
(LL2H 13 bytes) vs window size

Psuccess=80.0 % Psuccess=82.0 %
Psuccess=84.0 % Psuccess=86.0 %
Psuccess=88.0 % Psuccess=90.0 %
Psuccess=92.0 % Psuccess=94.0 %
Psuccess=96.0 % Psuccess=98.0 %
Psuccess=99.0 %

(d) F = 242, t = 49

Fig. 14. Impact of the window size w (in tiles) or 8wt (in bits) on the
ACK overhead OACKL2

. The window size is a multiple of the tile size
using w. LSH = 2 and LL2H = 13.

D. Percentage of used bits per fragment

The percentage of used bits per fragment (PU ) provides
an overview of how efficient a tile size is for a given SCHC
Fragment size. Fig. 15a illustrates PU for F = 11, 12, 51, 53
and different tiles sizes. When fragment sizes are a multiple
of the tile size, PU is 100%, e.g. t = 1 ∀ F , t = 3 for
F = 11, t = 5 for F = 12, t = 7 for F = 51 and t = 17
F = 53. Furthermore, there are tile sizes that have a low PU .
For example, t = 5 for F = 11 only uses the 55.56%, t = 6
for F = 12 with only 60%, t = 25 for F = 51 with 51.02%
and t = 26 for F = 53 with 50.98%.

Fig. 15b shows the percentage of used bits for F =
115, 125, 242. As with smaller SCHC Fragments, some tile
sizes have a better PU than others. Moreover, as the tile size

Page 10 of 12

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



10 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

5 10 15 20 25 30 35 40 11

12

51

53

0

50

100

t (bytes) F
(bytes

)

P
U
(%

)

(a) F = 11, 12, 51, 53

50
100 150 200 115

125

242

0

50

100

t (bytes) F
(bytes

)

P
U
(%

)

(b) F = 115, 125, 242

Fig. 15. Percentage of usage PU vs t. LSH = 2.

gets larger and only one tile can be fitted in the SCHC Frag-
ment payload, the percentage of used is reduced significantly.
For example, t = 57 for F = 115 with 50.44%, t = 62 for
F = 125 with 50.41% and t = 121 for F = 242 with 50.42%.

VII. TECHNOLOGY-ORIENTED EVALUATION

This section provides configuration guidance for the main
parameters of SCHC F/R ACK-on Error mode when used over
LoRaWAN (EU868 and US915) and Sigfox, with respect to
the ACK bit overhead OACK and OACKL2

metrics. Further-
more, we present the maximum window and bitmap size for
each fragment and tile size.

Considering that the ACK size has to be a byte multiple,
we obtained the optimal window size value as the next integer
value that will not require padding. For the SCHC ACK
Header size we consider LSH = 2. This makes 3 bytes the
smallest negative ACK size possible without padding, and with
a bitmap of 8 bits. The values presented in sections VII-A
and VII-B are for Psuccess ≥ 0.85. The FCN field size (N ) is
set to handle the number of tiles in the optimal or maximum
window size. The length of the Window field (M ) is calculated
according to the number of windows required to transmit a
320-byte and 1280-byte SCHC Packet.

In SCHC ACK-on-Error mode, several F/R parameters,
such as window size, tile size, N and M must be selected
when starting a transmission of a SCHC Packet. However,
instead of using a fixed configuration, a device may select
the most suitable ACK-on-Error mode configuration values
by estimating the BER, therefore Psuccess, and considering the
available SCHC Fragment payload size.

A. ACK Bit Overhead
Table I presents the optimal window sizes for the ACK bit

overhead OACK and SCHC F/R ACK-on-Error configuration
parameters for LoRaWAN fragment sizes (F ) in EU868 and
US915 bands. Table II presents the optimal window size and
SCHC F/R ACK-on-Error mode configuration parameters for
the fragment size of Sigfox (only the uplink is considered).

B. ACK Bit Overhead with L2 Headers
Tables III and IV present the optimal window sizes from the

perspective of the ACK bit overhead with L2 headers OACKL2

and SCHC F/R ACK-on-Error configuration parameters, for
LoRaWAN in EU868 and US915 bands, and for Sigfox,
respectively.

TABLE I
OPTIMAL WINDOW SIZES (OACK) FOR LORAWAN

Region F
(bytes) SF DR t

(bytes) Psuccess

Optimal
Window

Size
(tiles)

N
(bits)

M
(bits)

SCHC Packet Size
320

(bytes)
1280

(bytes)

Europe
EU868

51
12,

11,10
DR0,

DR1,DR2 49 0.85 ≤ Psuccess < 0.90 40 6 1 1
0.90 ≤ Psuccess ≤ 1 8 4 1 3

115 9 DR3
49 0.85 ≤ Psuccess ≤ 1 8 4 1 3

113 0.85 ≤ Psuccess < 0.90 40 6 1 1
0.90 ≤ Psuccess ≤ 1 8 4 1 2

242
8,
7

DR4,
DR5

49 0.85 ≤ Psuccess ≤ 1 8 4 1 3
113 0.85 ≤ Psuccess ≤ 1 8 4 1 2

240 0.85 ≤ Psuccess ≤ 0.90 24 5 1 1
0.90 < Psuccess ≤ 1 8 4 1 1

USA
US915

11 10 DR0 9 0.85 ≤ Psuccess < 0.90 48 6 1 3
0.90 ≤ Psuccess ≤ 1 40 6 1 3

53 9 DR1
9 0.85 ≤ Psuccess ≤ 1 8 4 3 5

51 0.85 ≤ Psuccess ≤ 0.90 40 6 1 1
0.90 < Psuccess ≤ 1 8 4 1 3

125 8 DR2

9 0.85 ≤ Psuccess ≤ 1 16 5 2 4
51 0.85 ≤ Psuccess ≤ 1 8 4 1 3

123 0.85 ≤ Psuccess ≤ 0.90 40 6 1 1
0.90 < Psuccess ≤ 1 16 5 1 1

242
7,
8

DR3,
DR4

9 0.85 ≤ Psuccess ≤ 1 32 6 2 3
51 0.85 ≤ Psuccess ≤ 1 8 4 1 3

123 0.85 ≤ Psuccess < 0.90 40 6 1 1
0.90 ≤ Psuccess ≤ 1 8 4 1 2

240 0.85 ≤ Psuccess ≤ 0.90 24 5 1 1
0.90 < Psuccess ≤ 1 8 4 1 1

LSH = 2. LoRaWAN physical layer options are defined and identified by the Spreading Factor (SF) and
Data Rate (DR) parameters.

TABLE II
OPTIMAL WINDOW SIZES (OACK) FOR SIGFOX

F
(bytes)

t
(bytes) Psuccess

Optimal
Window

Size
(tiles)

N
(bits)

M
(bits)

SCHC Packet Size
320

(bytes)
1280

(bytes)

12 10 0.85 ≤ Psuccess < 0.90 40 6 1 3
0.90 ≤ Psuccess ≤ 1 8 4 3 5

LSH = 2.

C. Maximum window and bitmap sizes

Table V shows the maximum bitmap and window sizes for
LoRaWAN and Sigfox with LSH = 2. Different tile sizes
are presented considering different SCHC F/R ACK-on-Error
parameters configurations. Recall that the optimal tile size is
the size that entirely fills a SCHC Fragment. The maximum
bitmap size does not depend on the tile size, but on the SCHC
Fragment and SCHC Header sizes as shown in (11). Note that,
Sigfox has a downlink payload size of 8 bytes [6], hence with
LSH = 2 at most 6 bytes can be used for the bitmap.

VIII. CONCLUSIONS AND PERSPECTIVES

The SCHC framework enables LPWAN technologies to
comply with IPv6 by performing a static context header
compression and fragmentation. ACK-Always and ACK-on-
Error modes, provide reliable F/R between the sender and the
receiver. In this article, we have developed a mathematical
model to analyze the ACK-on-Error mode, focusing on the
number of ACKs required to transmit data. We were then able
to perform an analysis that yielded to transmission parameters
minimizing the ACK burden imposed on the (more sensitive to
duty-cycle constraints) downlink. Finally we have applied our
mathematical model to state-of-the-art LPWAN technologies
such as LoRaWAN and Sigfox, to minimize the ACK bit over-
head taking into account the retransmission process subtleties
of the ACK-on-Error mode.

Page 11 of 12

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



S.AGUILAR et al.: PERFORMANCE ANALYSIS AND OPTIMAL TUNING OF IETF LPWAN SCHC ACK-ON-ERROR MODE 11

TABLE III
OPTIMAL WINDOW SIZES WITH L2 HEADERS (OACKL2

) FOR

LORAWAN

Region F
(bytes) SF DR t

(bytes) Psuccess

Optimal
Window

Size
(tiles)

N
(bits)

M
(bits)

SCHC Packet Size
320

(bytes)
1280

(bytes)

Europe
EU868

51
12,

11,10
DR0,

DR1,DR2 49 0.85 ≤ Psuccess ≤ 0.98 392 9 1 1
0.98 < Psuccess ≤ 1 8 4 1 3

115 9 DR3

49

0.85 ≤ Psuccess < 0.90 512 10 1 1
0.90 ≤ Psuccess < 0.95 480 9 1 1
0.95 ≤ Psuccess < 0.97 400 9 1 1
0.97 ≤ Psuccess < 0.98 584 10 1 1
0.98 ≤ Psuccess ≤ 1 8 4 1 2

113

0.85 ≤ Psuccess < 0.90 512 10 1 1
0.90 ≤ Psuccess < 0.95 480 9 1 1
0.95 ≤ Psuccess < 0.97 400 9 1 1
0.97 ≤ Psuccess < 0.98 584 10 1 1
0.98 ≤ Psuccess ≤ 1 8 4 1 2

242
8,
7

DR4,
DR5

49 0.85 ≤ Psuccess ≥ 1 8 4 1 2

113

0.85 ≤ Psuccess < 0.90 512 10 1 1
0.90 ≤ Psuccess < 0.95 480 9 1 1
0.95 ≤ Psuccess < 0.97 400 9 1 1
0.97 ≤ Psuccess < 0.98 584 10 1 1
0.98 ≤ Psuccess ≤ 1 8 4 1 2

240

0.85 ≤ Psuccess < 0.90 576 10 1 1
0.90 ≤ Psuccess < 0.95 624 10 1 1
0.95 ≤ Psuccess < 0.99 368 9 1 1
0.99 ≤ Psuccess ≤ 1 8 4 1 1

US
US915

11 10 DR0 9 0.85 ≤ Psuccess < 0.98 72 7 1 2
0.98 ≤ Psuccess ≤ 1 8 4 3 5

53 9 DR1
9 0.85 ≤ Psuccess ≤ 0.90 328 9 1 1

0.90 < Psuccess ≤ 1 8 4 3 5

51 0.85 ≤ Psuccess ≤ 0.98 408 9 1 1
0.98 < Psuccess ≤ 1 8 4 1 3

125 8 DR2

9 0.85 ≤ Psuccess ≤ 1 16 5 2 4

51 0.85 ≤ Psuccess < 0.98 72 7 1 1
0.98 ≤ Psuccess ≤ 1 8 4 1 3

123

0.85 ≤ Psuccess < 0.90 576 10 1 1
0.9 ≤ Psuccess < 0.95 624 10 1 1
0.95 ≤ Psuccess < 0.97 360 9 1 1
0.97 ≤ Psuccess < 0.98 456 9 1 1
0.98 ≤ Psuccess < 0.99 624 10 1 1
0.99 ≤ Psuccess ≤ 1 8 4 1 2

242
7,
8

DR3,
DR4

9 0.85 ≤ Psuccess ≤ 1 32 6 2 3

51

0.85 ≤ Psuccess < 0.90 376 9 1 1
0.90 ≤ Psuccess < 0.95 328 9 1 1
0.95 ≤ Psuccess < 0.96 488 9 1 1
0.96 ≤ Psuccess ≤ 1 8 4 1 3

123

0.85 ≤ Psuccess < 0.90 576 10 1 1
0.90 ≤ Psuccess < 0.95 624 10 1 1
0.95 ≤ Psuccess < 0.98 360 9 1 1
0.98 ≤ Psuccess < 0.99 624 10 1 1
0.99 ≤ Psuccess ≤ 1 8 4 1 2

240

0.85 ≤ Psuccess < 0.90 576 10 1 1
0.90 ≤ Psuccess < 0.95 624 10 1 1
0.95 ≤ Psuccess < 0.99 368 9 1 1
0.99 ≤ Psuccess ≤ 1 8 4 1 1

LSH = 2. LoRaWAN physical layer options are defined and identified by the Spreading Factor (SF) and
Data Rate (DR) parameters.

TABLE IV
OPTIMAL WINDOW SIZES WITH L2 HEADERS (OACKL2

) FOR SIGFOX

F
(bytes)

t
(bytes) Psuccess

Optimal
Window

Size
(tiles)

N
(bits)

M
(bits)

SCHC Packet Size
320

(bytes)
1280

(bytes)

12 10 0.85 ≤ Psuccess ≤ 0.95 48 6 1 3
0.95 < Psuccess ≤ 8 4 3 5

LSH = 2.

ACKNOWLEDGMENT

This research was done during Sergio Aguilar visit at IMT-
Atlantique and is supported in part by the Spanish Government
through project TEC2016-79988-P, AEI/FEDER, EU.

REFERENCES

[1] S. Farrell, “Low-Power Wide Area Network (LPWAN) Overview,” RFC
8376, RFC Editor, May 2018.

[2] D. Davcev, K. Mitreski, S. Trajkovic, V. Nikolovski, and N. Koteli, “IoT
agriculture system based on LoRaWAN,” in Proc. of 14th IEEE WFCS,
(Imperia, Italy), 2018.

[3] U. Grunde and D. Zagars, “LoPy as a building block for Internet of
Things in coastal marine applications,” in Proc. of 25th Telecommuni-
cations Forum, (Belgrade, Serbia), 2017.

[4] A. Minaburo, L. Toutain, C. Gomez, D. Barthel, and J. Zuniga, “LPWAN
Static Context Header Compression (SCHC) and fragmentation for IPv6
and UDP,” Internet-Draft draft-ietf-lpwan-ipv6-static-context-hc-18.txt,
IETF Secretariat, Dec. 2018.

TABLE V
MAXIMUM BITMAP AND WINDOW SIZE FOR LORAWAN AND SIGFOX

Region &
Technology

F
(bytes)

t
(bytes)

Maximum
bitmap size

(bits)

Maximum
window size

(bytes)

N
(bits)

LoRaWAN
EU868

51 49 392 19204 9

115 49 904 44292 10113 102148

242
49

1920
94076

11113 216956
240 460796

LoRaWAN
US915

11 9 72 644 7

53 9 408 3668 951 20804

125

9

984

8852

1051 50180
123 121028

242

9

1920

17276

1151 97916
123 236156
240 460796

Sigfox 12 10 48 476 6
LSH = 2, U = 4.

[5] C. Gomez, A. Minaburo, L. Toutain, D. Barthel, and J.-C. Zuniga, “IPv6
over LPWANs: connecting Low Power Wide Area Networks to the
Internet (of Things),” IEEE Wireless Communications (in press).

[6] C. Gomez, J. C. Veras, R. Vidal, L. Casals, and J. Paradells, “A Sigfox
Energy Consumption Model,” Sensors, vol. 19, no. 3, 2019.

[7] F. Adelantado, X. Vilajosana, P. Tuset-Peiro, B. Martinez, J. Melia-
Segui, and T. Watteyne, “Understanding the limits of LoRaWAN,” IEEE
Commun. Mag., vol. 55, pp. 34–40, Sept 2017.

[8] LoRa Alliance Technical Committee, “LoRaWAN 1.1
Specification,” https://lora-alliance.org/sites/default/files/2018-
04/lorawantm specification -v1.1.pdf, Oct 2017.

[9] Sigfox, “Sigfox connected objects: Radio specifications,”
https://build.sigfox.com/sigfox-device-radio-specifications, 2 2019.
Rev. 1.3.

[10] L. Casals, B. Mir, R. Vidal, and C. Gomez, “Modeling the energy
performance of LoRaWAN,” Sensors, vol. 17, no. 10, 2017.

[11] A. Lavric, A. I. Petrariu, and V. Popa, “Long Range SigFox Commu-
nication Protocol Scalability Analysis Under Large-Scale, High-Density
Conditions,” IEEE Access, vol. 7, pp. 35816–35825, 2019.

[12] H. Mroue, A. Nasser, S. Hamrioui, B. Parrein, E. Motta-Cruz, and
G. Rouyer, “MAC layer-based evaluation of IoT technologies: LoRa,
SigFox and NB-IoT,” in Proc. of IEEE MENACOMM, (Jounieh,
Lebanon), April 2018.

[13] N. I. Osman and E. B. Abbas, “Simulation and Modelling of LoRa
and Sigfox Low Power Wide Area Network Technologies,” in Proc. of
ICCCEEE, (Guayaquil, Ecuador), Aug 2018.

[14] K. Mekki, E. Bajic, F. Chaxel, and F. Meyer, “Overview of Cellular
LPWAN Technologies for IoT Deployment: Sigfox, LoRaWAN, and
NB-IoT,” in Proc. of IEEE PerCom Workshops, (Athens, Greece), March
2018.

[15] I. Suciu, X. Vilajosana, and F. Adelantado, “An analysis of packet
fragmentation impact in LPWAN,” in Proc. of IEEE WCNC, (Barcelona,
Spain), 2018.

[16] B. Moons, A. Karaagac, J. Haxhibeqiri, E. De Poorter, and J. Hoebeke,
“Using SCHC for an optimized protocol stack in multimodal LPWAN
solutions,” in Proc. of IEEE WF-IoT, (Limerick, Ireland), 04 2019.

[17] W. Ayoub, F. Nouvel, S. Hmede, A. E. Samhat, M. Mroue, and J.-C.
Prévotet, “Implementation of SCHC in NS-3 Simulator and Comparison
with 6LoWPAN,” in Proc. of 26th ICT, (Hanoi, Vietnam), Apr. 2019.

[18] K. Q. Abdelfadeel, V. Cionca, and D. Pesch, “LSCHC: Layered Static
Context Header Compression for LPWANs,” in Proc. of CHANTS,
Session: Security & IoT, (New York, USA), 2017.

[19] K. Q. Abdelfadeel, V. Cionca, and D. Pesch, “Dynamic Context for
Static Context Header compression in LPWANs,” in Proc. of 14th
DCOSS, (New York, USA), June 2018.

[20] S. Aguilar, A. Marquet, L. Toutain, C. Gomez, R. Vidal, N. Montavont,
and G. Z. Papadopoulos, “LoRaWAN SCHC Fragmentation Demys-
tified,” in Ad-Hoc, Mobile, and Wireless Networks (M. R. Palattella,
S. Scanzio, and S. Coleri Ergen, eds.), pp. 213–227, Springer Interna-
tional Publishing (Cham), 2019.

Page 12 of 12

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


