
HAL Id: hal-03659297
https://imt-atlantique.hal.science/hal-03659297v1

Submitted on 9 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MOL-based In-Memory Computing of Binary Neural
Networks

Khaled Alhaj Ali, Amer Baghdadi, Elsa Dupraz, Mathieu Léonardon, Mostafa
Rizk, Jean-Philippe Diguet

To cite this version:
Khaled Alhaj Ali, Amer Baghdadi, Elsa Dupraz, Mathieu Léonardon, Mostafa Rizk, et al.. MOL-
based In-Memory Computing of Binary Neural Networks. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 2022, 30 (7), �10.1109/TVLSI.2022.3163233�. �hal-03659297�

https://imt-atlantique.hal.science/hal-03659297v1
https://hal.archives-ouvertes.fr

IEEE Transactions on Very Large Scale Integration (VLSI) Systems

MOL-based In-Memory Computing of Binary
Neural Networks

Khaled Alhaj Ali, Amer Baghdadi, Elsa Dupraz, Mathieu Léonardon, Mostafa Rizk and Jean-Philippe Diguet

Abstract—Convolutional neural networks (CNN) have proven
very effective in a variety of practical applications involving
Artificial Intelligence (AI). However, the layer depth of CNN
deepens as user applications become more sophisticated, resulting
in a huge number of operations and increased memory size.
The massive amount of the produced intermediate data leads to
intensive data movement between memory and computing cores
causing a real bottleneck. In-Memory Computing (IMC) aims
to address this bottleneck by directly computing inside memory,
eliminating energy-intensive and time-consuming data movement.
On the other hand, the emerging Binary Neural Networks
(BNN), which is a special case of CNN, shows a number of
hardware-friendly properties including memory saving. In BNN,
the costly floating-point multiply-and-accumulate is replaced with
lightweight bit-wise XNOR and popcount operations. In this
paper, we propose an IMC programmable architecture targeting
efficient implementation of BNN. Computational memories based
on the recently introduced Memristor Overwrite Logic (MOL)
design style are employed. The architecture, which is presented
in semi-parallel and parallel models, efficiently executes the ad-
vanced quantization algorithm of XNOR-Net BNN. Performance
evaluation based on CIFAR-10 dataset demonstrates between
1.24× to 3× speedup, and 49% to 99% energy saving compared
to state-of-the-art implementations, and up to 273 image/sec/Watt
throughput efficiency.

Index Terms—Convolutional neural networks (CNN), Binary
neural networks (BNN), In-memory computing (IMC).

I. INTRODUCTION

Deep convolutional neural networks (CNN) are the current
state-of-the-art for many computer vision tasks such as image
classification, detection, and localization [1], [2]. Specifically,
there is an increasing focus on the deployment of CNN in
mobile systems, IoT devices and embedded chips for the mass
market [3]. The main challenge that limits the integration of
CNN in such systems is the requirement for a substantial
amount of computation and memory. For instance, the VGG-
19 network exhibits over 140 million floating-point (FP) pa-
rameters and requires more than 15 billion FP operations in
order to classify one image [4]. Embedding such networks in
traditional cores that deploy Von-Neumann model (e.g. CPUs
and GPUs) poses significant problems in terms of execution
speed and power consumption. Massive intermediate data are
produced during CNN execution revealing intensive I/O data
congestion between memory and processing cores causing a
real bottleneck.

K. Alhaj Ali, A. Baghdadi, E. Dupraz, M. Léonardon and M. Rizk are
with IMT Atlantique, Lab-STICC, UMR CNRS 6285, F-29238 Brest, France.
M. Rizk is also with School of Engineering, International University of
Beirut, and Physics Department, Faculty of Sciences, Lebanese University,
Lebanon. J. Diguet is with IRL CROSSING CNRS, Adelaide, Australia. (e-
mail: khaled.alhaj-ali@imt-atlantique.fr)

Various prior works have been proposed to alleviate the
hardware burdens in Von-Neumann model in order to get
better CNN inference performance. Two of the most promis-
ing solutions are network binarization [5–7] and in-memory
computing (IMC) [8]. Network binarization or Binary Neural
Networks (BNN) quantize all the weights and/or inputs to +1
and -1, providing a promising solution to mitigate storage
and computation bottlenecks. In the resulting BNN, each
convolution is processed by simple bitwise operations (XNORs
and popcounts) instead of the multiply-and-accumulate (MAC).
While BNNs are compact and efficient for resource-constrained
devices, a degradation in accuracy is inevitable compared to
their full precision counter-parts. However, recent works have
been carried out to reduce the decline in accuracy [5]. For
instance, the authors in [9] have demonstrated only 3% loss
in accuracy when applying BNN to the CIFAR-10 dataset. For
the larger ImageNet dataset, the authors in [10] have achieved
promising results where the accuracy loss is around 5%.

On the other hand, IMC is one of the emerging techniques
that address the memory wall problem encountered in conven-
tional Von-Neumann model [11], [12]. By merging processing
cores and the memory component into a single unit, IMC
allows to perform a part of the computation inside the memory,
thus eliminating the need for data exchange. Although IMC is
an old concept [8], it has been revisited recently with the advent
of emerging Non-Volatile Memory (NVM) technologies where
computing is efficiently enabled on the storage cells, directly
on the data location. Several recent IMC architectures [13–
15] have been developed based on NVM technologies such as
resistive memory (RRAM), magnetic memory (MRAM) and
phase change memory (PCM). Usually, IMC breaks arithmetic
tasks into elementary logic operations that are successively exe-
cuted within the memory cells. Although IMC can execute any
arithmetic task, some tasks may be more efficiently performed
in classical CMOS implementations. In this case, dedicated
near-memory units are usually added to handle such tasks.
More recently, a computational memory (CMEM) architecture
[13] based on Memristor Overwrite Logic (MOL) design style
has shown promising performance in terms of execution speed
and throughput efficiency especially for bitwise application
tasks.

In fact, there is a great synergy between in-memory com-
puting and BNNs when they are combined: the low logic
complexity of BNNs makes them well suited for in-memory
implementation. In this context, we propose a novel MOL-
based in-memory architecture design dedicated for binary
neural networks. The related contributions can be listed as
follows:

IEEE Transactions on Very Large Scale Integration (VLSI) Systems

• The proposed architecture efficiently implements a paral-
lel row-wise in-memory XNOR-based convolution.

• A novel mechanism for combining in-memory and near
memory execution is proposed for certain operations such
as popcount and max pooling.

• An original in-memory bubble sorting technique is intro-
duced to execute a majority-binarization stage replacing
addition and normalization operations.

• For evaluation, a python-based environment with appro-
priate library and commands has been developed emulat-
ing the functionality of the adopted MOL-based compu-
tational memory and the corresponding control unit.

• The new architecture is presented in the form of both
semi-parallel and parallel models, and exhibits the lowest
energy consumption compared to all existing relevant
works including CPU, GPU and FPGA.

• The proposed parallel model reveals the lowest inference
latency when compared to recent NVM-based approaches
thanks to the high level of parallelism offered using MOL-
based in-memory computing.

The rest of this paper is organized as follows. Section
II provides an overview on CNN, BNN and the adopted
MOL-based in-memory computing approach. Section III illus-
trates the devised methodology and algorithms for realizing
a BNN inside the CMEM architecture. Section IV describes
our proposed semi-parallel and parallel architectures that are
dedicated for BNNs. Section V presents the environment setup
for performance evaluation and discusses the achieved results.
Finally, Section VI concludes the paper.

II. PRELIMINARIES

This section briefly reviews the basics of CNN and BNN. In
addition, it introduces the MOL-based in-memory computing
technique which is adopted in this paper.

A. CNN
A CNN is a particular type of neural network. It usually

takes an image at the input and computes the probabilities
that the image features belong to one of the output classes.
Typically, a CNN consists of several convolutional and pooling
layers followed by fully-connected layers (FC) as illustrated in
Fig. 1(a). It has been shown that fully-connected layers could
be equivalently replaced by convolutions [16].

1) Convolutional layers: As depicted in Fig. 1, a convolu-
tional layer takes an input feature map (Ifmap) represented by a
set of channels/matrices and convolves them with a particular
set of weights (called kernels) to generate an output feature
map (Ofmap). The transfer from Ifmap to Ofmap follows
expression (1).

Ym = f

(
b+

N∑
n=1

Xn ∗Wn,m

)
(1)

In this expression, Xn represents an Ifmap channel of index
n (where n ∈ J1, NK) and Ym represents an Ofmap channel
of index m (where m ∈ J1,MK). M and N are the number
of channels of the Ifmap and Ofmap, respectively. Wn,m is a
k×k weight filter window linking Xn with Ym. The parameter
b is the bias. f represents the activation function.

2) Pooling layers: Pooling is an important feature of CNN
as it reduces the dimensionality of a feature map while main-
taining the most important information [17]. It allows to reduce
the size of the network and the number of parameters used,
preventing overfitting. Considering the max pooling, a spatial
neighborhood (e.g. a 2×2 window) is defined. The window is
slided without overlapping on the Ofmap elaborated by the
convolutional layer. The largest element inside that window
is taken as an output. Another choice is to take the average
(Average Pooling) or the sum of all elements in that window.
In practice, max pooling has been shown to work better [17].
An intuitive example of max pooling is illustrated in Fig. 1(b).

B. BNN

The multiply-accumulate is the key and the most compu-
tationally expensive arithmetic operation in classical CNN.
BNNs have been introduced to alleviate the need for these oper-
ations. This is achieved by forcing the inputs/weights/gradients
to have binary values, especially in the forward propagation.

Various types of BNNs have been explored in the literature
[9], [10], [18]. In this paper, we adopt the XNOR-Net [18]
binary neural network which offers significant simplifications
and better results than other binarization methods. In XNOR-
Net, both the incoming activations and weight parameters of
the convolutional layers are constrained to a binary set {-1,1}
except for the first convolutional layer where the input is the
image. For efficient hardware mapping, the values -1 and 1 are
encoded to logic ’0’ and ’1’ respectively. Then, multiplication
of weights and activations is achieved according to the XNOR
truth table as shown in Fig. 2(a).

As illustrated in Fig. 2(b), the accompanied MAC operations
can be then replaced by a series of XNOR operations and a
final popcount (difference between number of zeros and ones).
The result is then subjected to normalization and binarization
(Norm-bin). The convolutional layer in a XNOR-net BNN
is depicted in Fig. 3 and can be modeled by the following
expressions:

ybn,m = Norm-bin
(
Popcount

(
XNOR

(
W b

n,m, Xb
n

)))
(2)

Y b
m = Norm-bin

(
N∑

n=1

ybn,m

)
(3)

where ybn,m represents the output after convolving the nth

binary Ifmap Xb
n with its corresponding binary weight kernel

W b
n,m, and Y b

m represents the mth Ofmap after adding and
binarizing all the N outputs ybn,m.

C. MOL-based in-memory computing

1) In-memory computing (IMC): IMC has been widely
explored to overcome the memory wall by avoiding the long
latency originated from intensive exchange of data between
host processor and memory. From the device level perspective,
emerging Non-Volatile Memories are promising for the imple-
mentation of IMC. In this context, several recent contributions
have been proposed and can be classified in two categories.
The first category includes approaches that use the NVM cell

IEEE Transactions on Very Large Scale Integration (VLSI) Systems

KernelIfmap

Ofmap

Convolution Max Pooling Convolution Max Pooling Fully connected(FC)

Image patch Hidden layers Final layer

Classes

51
23

52x2 widow

*

Sliding window Convolution Max Pooling

Kernel

Ifmap Ofmap

(a)

(b)

Fig. 1. The structure of the convolutional neural network: (a) the multiple
layers of CNN including convolution layer (CONV), pooling (POOL) and
fully-connected (FC) layer, and (b) illustration on the convolution and the
Max Pooling operation.

1 0 0

0 0 1

1 0 0

3 -4 3 4

1 -2 -5 2

5 1 -2 9

-7 2 3 -8

1 1 0

1 0 1

1 0 1

*

1 0 1

0 1 1

1 1 0

1 0 1 1

1 0 0 1

1 1 0 1

0 1 1 0

*

Original Convolution XNOR-Net convolution

6 ones, 3 zeros
6-3=3

Pop-count

I

W

sign I

sign W

Binarize

(b)

(a)

Encoding (Value) XNOR (Multiply)

0 (-1) 0 (-1) 1 (+1)

0 (-1) 1 (+1) 0 (-1)

1 (+1) 0 (-1) 0 (-1)

1 (+1) 1 (+1) 1 (+1)

XNOR truth table

XNOR

Binarize

0.5 0.3 -0.2

0.1 -0.4 0.8

0.3 -0.1 0.6
0.2 -0.5 -0.3

-0.2 -0.6 0.8

0.7 -0.4 -0.5

Fig. 2. Binary Neural Network: (a) XNOR truth table, and (b) XNOR-
popcount process.

Y0

Y1

X0

X1

X2

Xn

XN-1

N

[Sum/N]

[Sum/N]

[Sum/N]

[Sum/N]

K0,0

K1,0

Kn,0

KN-1,0

P0

P1

Pm

PM-1

Convolution Pooling

y0,0
y1,0

yn,0
yN-1,0

K2,0

y2,0

Ym

YM-1

Fig. 3. A convolutional layer in a BNN followed by a pooling layer

as a single-level cell (SLC) [13–15]. In the second category,
the authors have employed the NVM cell as a multi-level cell
(MLC) or analog cell [19–21]. MLC crossbars can perform
parallelized in-situ operations by eliminating sequential mem-
ory accesses. MLC-based computing is promising when tar-
geting applications with intensive MAC operation (e.g. CNN)
[22]. However, a number of challenges remain in terms of
manufacturability and computational accuracy regarding device
variability, pattern-dependent current leakage and the area
overhead of peripheral circuits [23]. In contrast, SLC approach
involves larger readout margin that makes NVM cells much
tolerant against process variation and resistance drift effects.

Based on the SLC approach, various in-memory computing
techniques have been introduced in the literature [14], [15]. All
these techniques attempt to realize arithmetic tasks inside NVM
arrays by performing successive elementary logic operations
on the stored data bits. For instance, the Material Implication
(IMPLY) [15] and the Memristor Aided Logic (MAGIC) [24]
have been introduced to enable in-place logic operations in
memristive crossbar arrays. Although promising results have
been demonstrated, these techniques present the following
limitations:

• The performance of IMPLY and MAGIC is highly depen-
dent on the technology of the adopted NVM device (e.g.
requirement of high ON-OFF margin) [14][15]. Thus, they
are not qualified for the operation with spintronic devices
such as STT-MRAMs.

• The analysis in [25] reveals that IMPLY may incur partial
switching and significant state drift issues [14][15] of the
NVM devices within the memory array.

• The corresponding basis functions provided by IMPLY
and MAGIC are not diverse enough to allow fast logic
mapping with minimum number of computational cycles.

Other in-memory computing techniques such as the sensing-
based computing, that is introduced in [26], has gained large
interest for its ease of implementation and the ability to
execute diverse types of bitwise operations. Sensing-based
computing redesigns the read circuitry so that it can compute
the bitwise logic of two or more memory rows. Although
fast, this technique involves a relatively high precision read
circuitry that is based on sensing amplifiers (usually Op-Amps)
employed as comparators. The read circuitry which must be
activated at each computational step involves a relatively high
energy consumption.

In this paper, the recently proposed in-memory computing
approach [13] namely Memristor Overwrite Logic (MOL) is
adopted. The main idea behind MOL was to address the
aforementioned limitations. MOL applies for various NVM
technologies spanning resistive devices (memristors [27]), spin-
tronics (STT-MTJ [28]) and phase-change materials (PCM
[29]). Moreover, it allows for significant reduction in the
number of required computational steps as well as the reserved
processing area inside the memory.

2) MOL-based computational memory (CMEM): The com-
putational memory presented in [13] is composed of two
adjacent non-volatile (NV) sub-arrays that work in complemen-
tary manner. In this architecture, two wordlines are activated

IEEE Transactions on Very Large Scale Integration (VLSI) Systems

simultaneously in order to perform bitwise logic operations. A
vector level AND/OR operation can be executed within a single
computational step. Moreover, shifting and inversion opera-
tions are also enabled through a dedicated intermediate driver
offering flexibility in the operations, which is crucial for some
arithmetic tasks. The intermediate driver involves a simple
sensing circuitry followed by a set of 2-to-1 multiplexers. The
role of multiplexers is to either pass the value from the sensed
wordline, or to pass its inverse. It can be configured depending
on the desired operation. The multiplexers are followed by a
configurable 1-bit shifter, that can be enabled/disabled during
the run time. The resulting intermediate driver passes the
signals on-the-fly without additional computational steps. More
details on the working mechanism of the intermediate driver
can be found in [13].

An external controller arranges the operations performed
inside the memory sub-arrays in order to finalize a desired
arithmetic task. It breaks down the task into series of micro-
operations (bitwise MOL) that are executed one after the other.
The architecture diagram is presented in Fig. 4.

Generally, the high bandwidth of in-memory computing
allows to minimize the step period of each micro-operation.
However, when the complexity of an arithmetic task scales
up, the corresponding number of computational steps becomes
large which again increases latency and energy consumption.
In this case, moving data to be processed near memory is more
efficient. Hence, the performance of in-memory computing is
task dependent.

In this paper, we consider applying the principle of MOL
and the corresponding computational memory for the imple-
mentation of BNNs. For higher precision neural networks, as
previously stated, the multiply-accumulate operation is the cru-
cial operation in these networks. Addition and multiplication
tasks can be executed in-memory, but usually necessitate large
number of computational steps which grows when increasing
the size of operands (i.e., precision of the network). As a result,
such tasks might be more efficient to implement in traditional
Von-Neumann architectures, despite the high communication
cost between memory and processing cores. In contrast, the
low logic complexity of BNN makes it highly suitable for in-
memory computing as the multiply-accumulate operations of
a convolutional layer are mainly replaced with basic bit-wise
XNOR and popcount.

III. MOL-BASED IN-MEMORY BNN

A. In-memory XNOR-based convolution

1) Method: The bitwise XNOR represents the most com-
putationally expensive operation in the convolution process.
Thus, optimizing its execution inside memory will enhance
the overall performance of the binary neural network. This is
why we first propose an efficient implementation of the XNOR
convolution inside the CMEM. We consider a binary Ifmap Xb

of size h×w being XNORed with a k× k weight kernel W b.
A simple example presented in Fig. 5(a) illustrates some of
the steps of the proposed procedure. In this example, a 3× 3
kernel is adopted. This kernel size is also suitable and used for
large networks and datasets [30].

Sub-array A

Sub-array B

Data in

Data out

Intermediate
driver

Control Unit

Macro-Instruction

Address: m

Address: n

17 bit

9 bit

8 bit

M
ic

ro
-I

n
st

ru
ct

io
n

s

Processing area

Processing area

WL

BL

SL

Controlled
Inverting driver

Sensing
circuitry

Controlled
Shifting

Fig. 4. Architecture diagram of the MOL-based Computational Memory
(CMEM)

First, an Ifmap, zero padded at its surrounding, is loaded
into sub-array A of the CMEM as shown in Fig. 5(a). The
corresponding kernel is then loaded into sub-array B, though
in a tiled pattern fitting the width of the Ifmap. Hence, the size
of the tiled kernel is k × w. Here we assume that the width
after zero padding is a multiple of k, otherwise padding is
increased. For better scheduling of the XNOR operations and
in order to obtain a higher level of parallelism, the Ifmap is
gridded into k × k slots without overlapping. For simplicity,
we use the term sliding grid (instead of sliding window) to
point on the selected regions that would be XNORed. The
convolution is performed in k successive phases (3 phases in
this example), while each phase is carried out in k rounds.
For a given phase i ∈ J0, k − 1K and round j ∈ J0, k − 1K,
the sliding grid is right and down shifted to the position i and
j respectively. Simultaneously, the tiled kernel is right shifted
to the position i. In other words, the horizontal movement of
the tiled kernel follows that of the sliding grid. This specific
shifting operating is enabled by the CMEM. Row-wise XNOR
is then performed purely inside the CMEM based on a series
of MOL operations that are discussed in the next sub-section.
At each position (i, j) of the sliding grid, a XNOR matrix is
obtained in sub-array-B. The resulting matrix is then moved
to a near memory processing unit to undergo popcount and
binarization. In fact, the popcount process is not adapted to in-
memory computing. Its implementation is inefficient in terms
of the number required computational steps. Fig. 5(b) depicts
the occupied regions inside the CMEM after execution, where
auxiliary processing regions are required in sub-array-A and B
in order to finalize the convolution task.

2) Row-wise XNOR: The Ifmap undergoes several rounds
of XNOR operations inside the CMEM. Thus, an Ifmap should
remain safe until the end of the convolution process. Similarly,
a safe version of the kernels should be available all the
time in order to be reused for later inference. Within these
requirements, a non-destructive row-wise XNOR is applied
based on a series of MOL operations. As illustrated in Fig.
6(a), an Ifmap row Xb

r and a kernel row W b
r are assumed to be

initially inside the CMEM sub-arrays A and B respectively. In
order to avoid destroying W b

r , a copy is stored in the processing

IEEE Transactions on Very Large Scale Integration (VLSI) Systems

region of sub-array B. After that, 5 successive computational
steps are required. In each step, a micro-operation z@(m,n)
is sent to the CMEM, where z corresponds to one of the 30
micro-instructions described in [13], m and n represent the
corresponding addresses of sub-arrays A and B respectively.
The 6 micro-operations are defined in Fig. 6(b). At the end,
the value Xb

r ⊕ W b
r is obtained in sub-array B while keeping

Xb
r and W b

r safe. As a result, only three auxiliary rows have
to be reserved for the XNOR operation to be processed. As
presented in Fig. 6(a), one row resides in sub-array-A (at
address m2), while the other two rows reside in sub-array-
B (at addresses n1 and n2). The same auxiliary rows can
serve for later XNORs. Yet, it is preferred to change the
location of the processing region regularly to avoid the thermal
accumulation in certain cells and maintain high endurance.
Overall, XNORing an Ifmap of size h×w located in sub-array-
A, with a tiled kernel of size k × w located in sub-array-B,
requires a minimum storage space of SXNOR = (h+k+3)w.

On the other hand, it is possible to retrieve the value of
W b

r logically instead of saving a spare copy. This is due to
the fact that the XNOR operation can be reversed. The value
of W b

r is still contained in the XNOR result. Yet, the required
operations for retrieving W b

r value is definitely more expensive
in terms of computational steps, in particular that the same set
of kernels are frequently needed for multiple operations and
inferences. Therefore, it is be more efficient in this case to use
the copy-saving strategy.

3) Near memory popcount: The XNOR matrix obtained in
sub-array B is also grouped into k × k slots using the sliding
grid. Horizontal slots are then moved row by row to the pop-
count and binarize (PB) block located inside the Near Memory
Unit (NMU) as shown in Fig. 5(c). In fact, the popcount and
binarize process is equivalent to obtaining the majority bit in a
given slot. Hence, the PB block counts the number of ones
in the horizontal slots simultaneously using parallel adders
and accumulators. The resulting number in each slot is then
compared with the threshold value (k2−1)/2, where this value
corresponds to half of the number of elements in each slot.
Exceeding this value indicates that the corresponding majority
bit is ’1’, otherwise the bit ’0’ is returned. The architecture of
PB is shown in Fig. 5(d). At the end of k successive steps, a
binary row is returned to the memory. The accumulators are
cleared before beginning with the next horizontal slots.

B. BNN layer in-memory

1) Convolutional layer: As illustrated in Section II-B, the
mth Ofmap Y b

m is obtained by adding, normalizing and bina-
rizing the resulting N convolution channels ybn,m as expressed
in (3). In fact, executing these three processes separately inside
the CMEM is computationally expensive. In order to handle
these processes efficiently by the CMEM, we introduce the
Majority-Bin stage instead.

The Majority-Bin stage involves computing the majority
channel out of the N convolution channels ybn,m. Computing
the majority is simply achieved through a proposed in-memory
bubble sorting technique. As illustrated in Fig. 7(a), we con-
sider an arbitrary vector of bits p = {p0, p1, .., pi, .., pN−1}

where i ∈ J0, N − 1K. When applying bubble sorting on p,
bits holding the value ’1’ are swept to one side of the vector
leading to new vector q = {q0, q1, .., qi, .., qN−1}. Since the
number of ’0’s and ’1’s after sorting remains the same, the
middle bit qN/2 (if N multiple of 2) can be considered as the
majority bit.

The applied bubble sorting technique is implemented using
the logic tree presented in Fig. 7(b), which has a regular form
and is based on the proposed bubble-flip module illustrated in
Fig. 7(c). The module is composed of only AND and OR logic
gates. It allows to flip the input bits so that ’1’s appear at the
output port of the OR logic gate as illustrated in the figure. As
an optimization step, since the goal is to compute the majority
bit and not to sort the bits inside the vector, bubble-flip modules
and logic gates which are not participating in the generation
of the majority bit have been discarded from the logic tree.
The resulting optimized logic tree has been efficiently realized
inside the CMEM, where the equivalent MOL operations are
implemented sequentially.

Moreover, operations inside the CMEM are performed on
the vector level. Thus, channels sorting is achieved row-wise,
speeding up the whole sorting process. Fig. 7(d) depicts how
rows are being sorted ending up with a majority channel
Y b
m located in the middle. The required number of steps to

generate a majority channel in-memory is derived as Smaj =
h(32N

2 − 4N + 3). The derived expression shows that the
latency overhead of the sorting technique is independent of
the width w of the channels. Although the number of steps
grows quadratically when increasing the number of channels
to be sorted, the high amount of parallelism at the vector level
and CMEM banks level is sufficient to compensate the time
overhead of the sequential sorting process.

In fact, the concept of sorting has already been adopted in
the literature for replacing computationally expensive tasks. In
[31], the authors have adopted the bitonic sorting algorithm in
order to replace the floating-point addition and activation stages
in neural networks. Authors of [32] have implemented the
bitonic sorter algorithm in memristive memory array achieving
significant reduction in the processing time compared to prior
sorting designs. Although bubble sort is slower than bitonic, it
has a simple and more regular pattern for accessing the data to
be sorted. This reduces the complexity of the control part of
the architecture. In [33], the authors have proposed a general
hardware/software design to achieve efficient sorting of floating
point numbers for data ranking. However, the mechanism
imposes a custom design, which is not adapted for in-memory
computing of BNNs.

2) Pooling layer: The input channel to the pooling layer
is gridded into 2 × 2 slots without overlapping. Each slot
corresponds to a max-pooling window p = {p0, p1, p2, p3}.
The max-pooling is defined as in [5] as: max − pool(p) = 0
if and only if all elements inside p is equal to ’0’, otherwise,
max − pool(p) = 1. In fact, this can be handled by applying
an elementary OR operation to the 4 elements inside p. The
resulting bit corresponds to the max−pool(p). Performing this
inside memory is achieved in two stages. The first stage can be
efficiently performed using in-memory MOL operations. Ele-
mentary OR operations are applied to the rows where all slots

IEEE Transactions on Very Large Scale Integration (VLSI) Systems

Ifmap

Conv

Aux in A

XNOR

TKernel

Aux in B

Near Memory Unit (NMU)

hp

wp

h

k

h

k

k

• h: height of Ifmap

• hp: height after zero
padding (hp=h+1)

• w: width of Ifmap

• wp: width after zero
padding (wp=w+1)

• k: size of kernel

I

O

addrA

addrB

Command

0 0 0 0 0 0 0 1 0

0 1 0 1 1 0 1 1 1

0 0 1 0 1 1 0 1 0

0 0 1 0 0 1 0 1 0

0 1 0 0 1 0 0 1 0

1 0 0 1 0 0 0 1 0

1 1 0 1 1 0 1 1 0

1 0 1 1 0 1 1 0 1

0 1 1 0 1 1 0 1 1

1 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 0 0 1 0 0 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 1 0 1 1 0 1 0 0

1 1 1 0 1 1 0 1 0

0 1 0 0 0 0 0 0 1

1 1 0 1 1 0 1 1 0

1 0 1 1 0 1 1 0 1

0 1 1 0 1 1 0 1 1

0 0 1 0 0 1 0 1 0

0 1 0 0 1 0 0 1 0

1 0 0 1 0 0 0 1 0

0 0 1 0 0 1 0 0 1

0 1 0 0 1 0 0 1 0

1 0 0 1 0 0 1 0 0

𝑋𝑏

𝑊𝑏

0 0 0 0 0 0 0 1 0

0 1 0 1 1 0 1 1 1

0 0 1 0 1 1 0 1 0

0 0 1 0 0 1 0 1 0

0 1 0 0 1 0 0 1 0

1 0 0 1 0 0 0 1 0

1 1 0 1 1 0 1 1 0

1 0 1 1 0 1 1 0 1

0 1 1 0 1 1 0 1 1

1 0 0 1 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

1 0 0 1 0 0 1

0 0 0 0 0 0 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1

1 0 0 1 1 0 1 1 1

0 1 0 0 1 0 0 0 1

1 0 0 1 0 0 1 0 0

0 0 1 0 0 1 1 1 1

1 0 1 1 0 1 1 0 1

0 0 1 0 0 1 0 0 1

0 1 0 0 1 0 0 1 0

1 0 0 1 0 0 1 0 0

𝑋𝑏

𝑊𝑏

0 0 0 0 0 0 0 1 0

0 1 0 1 1 0 1 1 1

0 0 1 0 1 1 0 1 0

0 0 1 0 0 1 0 1 0

0 1 0 0 1 0 0 1 0

1 0 0 1 0 0 0 1 0

1 1 0 1 1 0 1 1 0

1 0 1 1 0 1 1 0 1

0 1 1 0 1 1 0 1 1

1 0 0 1 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

1 0 0 1 0 0 1

0 0 0 0 0 0 1

0 0 0 0 0 0 0

0 1 0 0 1 0 0

1 1 0 1 1 0 x x x

0 0 0 0 0 0 x x x

0 0 1 1 0 1 x x x

1 0 0 1 0 0 x x x

0 0 1 0 0 1 x x x

0 1 0 0 1 1 x x x

0 1 1 0 1 1 x x x

1 1 0 1 1 0 x x x

1 0 1 1 0 1 x x x

0 0 1 0 0 1 0 0 1

0 1 0 0 1 0 0 1 0

1 0 0 1 0 0 1 0 0

𝑋𝑏

0 0 0 0 0 0 0 1 0

0 1 0 1 1 0 1 1 1

0 0 1 0 1 1 0 1 0

0 0 1 0 0 1 0 1 0

0 1 0 0 1 0 0 1 0

1 0 0 1 0 0 0 1 0

1 1 0 1 1 0 1 1 0

1 0 1 1 0 1 1 0 1

0 1 1 0 1 1 0 1 1

0 0 1 0 0 1 0 0 1

0 1 0 0 1 0 0 1 0

1 0 0 1 0 0 1 0 0

C
o

n
vo

lu
ti

o
n

𝑊𝑏

𝑋𝑏

𝑊𝑏

0 0 0 0 0 0 0 1 0

0 1 0 1 1 0 1 1 1

0 0 1 0 1 1 0 1 0

0 0 1 0 0 1 0 1 0

0 1 0 0 1 0 0 1 0

1 0 0 1 0 0 0 1 0

1 1 0 1 1 0 1 1 0

1 0 1 1 0 1 1 0 1

0 1 1 0 1 1 0 1 1

1 0 0 1 0 1 0

0 1 0 0 1 0 1

0 0 1 0 0 1 0

1 0 0 1 0 0 1

0 0 0 0 0 0 1

0 0 1 0 0 1 0

0 1 0 0 1 0 0

0 0 1 0 0 1 0 0 1

0 1 0 0 1 0 0 1 0

1 0 0 1 0 0 1 0 0

𝑦𝑏

𝑋𝑏

𝑊𝑏

(b)

(d)

1 1 0 1 1 0 1 0 0

1 1 1 0 1 1 0 1 0

0 1 0 0 0 1 0 0 1

+ + +

+ + +

(a)

6 5 3

Binarize

Po
p

co
u

n
t

&
 B

in
ar

iz
e

Near Memory Unit (NMU)

0 1 0 0 1 0 0 0 0

Po
p

co
u

n
t

&
 B

in
ar

iz
e

(P
B

)

(c) 𝑆𝑢𝑚1 𝑆𝑢𝑚2 𝑆𝑢𝑚3

phase, round = (0,0)
𝐈𝐧𝐢𝐭𝐢𝐚𝐥

phase, round = (0,1) phase, round = (1,0) phase, round = (2,2)

𝐄𝐧𝐝

X
N

O
R

X
N

O
R

X
N

O
R

k-bits

K-bit adder

Count #1

>

Reg

Thresh=(k2-1)/2

Memory

Clr
Clk

En

k-bits

K-bit adder

Count #1

>

Reg

Thresh=(k2-1)/2

Memory

Clr
Clk

En

k-bits

K-bit adder

Count #1

>

Reg

Thresh=(k2-1)/2

Memory

Clr
Clk

En

d

PB1 PB2 PB⌊d/k⌋

Fig. 5. The proposed in-memory XNOR-based convolution method: (a) samples of the CMEM state taken from different operation phases, (b) CMEM regions
partitioning, (c) example on the near memory popcount and binarization stage, and (d) architecture of the Popcount & Binarize (PB) block located inside the
Near Memory Unit (NMU).

Initial 6@(m2, n3) 9@(m2, n1) 19@(m1, n1) 7@(m1, n2) 14@(m2, n2) 17@(m2, n1)

m1 Xb Xb Xb Xb Xb Xb Xb

m2 Wb Wb Wb Wb WbXb WbXb

n1 Wb Wb Xb Wb Xb Wb Xb
Wb Xb +WbXb

Xb 𝑿𝑵𝑶𝑹Wb

n2 Xb Xb Xb

n3 Wb Wb Wb Wb Wb Wb Wb

Address

Command

MOL-based XNOR (6 steps)

Command: z@(m,n) Description Micro-operation

6@(m,n) Copy MA m = MB n

7@(m,n) Copy MB n = MA m

9@(m,n) Invert MB n = MA m

14@(m,n) AND MA m = MA m AND MB n

17@(m,n) OR MB n = MB n OR MA m

19@(m,n) AND-NOT MB n = MB n AND MA m

(b)

Su
b

-a
rr

a
y

A
Su

b
-a

rr
a

y
B

(a)

MA m : memory content in subarray-A at address m
MB n : memory content in subarray-B at address n

Fig. 6. Row-wise XNOR: (a) operations sequence for a MOL-based in-
memory XNOR operation, where each column corresponds to the state of
the CMEM at a certain step, and (b) definition of the six micro-instructions
used.

are managed simultaneously. Thus, the four bits in each slot
are compressed into two bits placed horizontally as depicted in
Fig. 8. In the second stage the resulting two bits are subjected
to another OR operation resulting in the max− pool(p). This
stage is realized near memory using simple OR logic gates that
are applied to the columns simultaneously.

y0,m

y1,m

yN/2,m

yn,m

yN-1,m

Bubble-flip

p0 p1 pipN/2 pN-1

q0 q1 qiqN/2 qN-1

Majority

Bubble sort

Bubble sort-based majority(a)

(d)

(c)

Resulting Ofmap

𝒀𝒎
𝒃 after bubble

sort

Majority
bit

p0

q0

p1 p2 p3 p4 p5

q1

q2

q3

q4

q5

(b)

Row-wise Bubble sort channels

Logic tree (N=6)

Discarded
parts

Active
parts

o
n

es

1 0 0 0

1 1 1 0
1 0 1 0

1 1 0 0

Fig. 7. Proposed bubble sort-based majority technique: (a) the middle bit after
bubble sort represents the majority bit, (b) the used bubble flip module, (c)
logic tree implementation for input vector size N=6 and (d) the in-memory
row-wise channel sorting in order to obtain the Ofmap Y b

m.

IEEE Transactions on Very Large Scale Integration (VLSI) Systems

P0 P1 0 0 1 1 1 0

P2 P3 0 0 1 1 0 0

0 0 0 1 0 0 1 1

0 0 1 0 0 0 1 1

1 0 1 1 0 0 1 0

0 0 0 1 0 0 1 0

0 0 1 1 0 1 0 0

0 0 0 0 0 0 0 0

ℎ

ℎ

pm 0 1 1

0 1 0 1

1 1 0 1

0 1 1 0

ℎ/2

ℎ/2

pm = p0+ p1+ p2+ p3

P0+P1+
P2+P3

Max-pooling colomns

In-memory

Near-memory

P0+P2 P1+P3

P0 P1

P2 P3

Max-pooling rows

Fig. 8. Proposed in-memory & near memory combined Max Pool process.

IV. SEMI-PARALLEL/PARALLEL ARCHITECTURE

This section presents our proposed architecture for the
execution of BNN in-memory. Then, the control flow and the
data mapping methodology are illustrated.

A. Architecture design

The execution of a complete BNN layer in a single CMEM
block is time consuming, as convolutions would be executed
serially. In order to improve parallelism and consequently
accelerate processing, we propose to split the CMEM block
into smaller interconnected CMEM units. Each CMEM unit
is then employed to execute a single Ofmap channel Y b

m in a
given layer. The same units are reprogrammed to perform the
other layers. The communication between these CMEM units
is managed by a master memory that receives intermediate
results and redistributes them in a systematic mapping method
that is illustrated in Section IV-B.

Fig. 9 shows our proposed architecture with two different
models. The semi-parallel model shown in Fig. 9(a) shares
one NMU to all CMEM banks; whereas in the parallel model
shown in Fig. 9(b), each CMEM bank reserves a separate
NMU. It is worth mentioning that all CMEM units are shared
with a unique control bus due to the fact that tasks being
executed on different units are identical. Thus, a single control
unit is able to cope with all these units. For this purpose,
an enabling decoder block is added. It can be configured to
either activate a single CMEM unit or all units at a time.
Such an architecture model is equivalent to a single-instruction
multiple-data (SIMD) model for in-memory computing, so it
can be called as SIMM which stands for single-instruction
multiple-memory.

B. Mapping methodology

The adopted mapping method is an important factor in
our proposed architecture as it highly influences the overall

performance of inferencing. We classify the mapped data
depending on its static or dynamic nature. Static data, such as
weight kernels, is mapped during the configuration phase only
and does not require any update during the running phase.
On the other hand, the continuously generated data during
the running phase is considered as dynamic. This type of
data requires redistribution before initializing the next layer.
Examples of dynamic data are the generated convolutions and
Ofmap channels.

The control flow is thus divided into three phases: configu-
ration phase, running phase and redistribution phase:

1) Configuration Phase: As stated earlier, each CMEM unit
is supposed to handle the computation of a single Ofmap
channel in each layer. Thus, the mth CMEM unit (CMEMm)
receives from the master memory its own set of weight kernels
(W b

n,m;n ∈ J0, N−1K) that are required to execute the Ofmap
channel Y b

m. Moreover, the master memory broadcasts the
Ifmaps to all CMEM units.

2) Running Phase: The control unit receives a flag to begin
the inference process. All CMEM units are then activated
simultaneously for parallel execution. For the case of the semi-
parallel architecture model, popcounting and pooling stages are
performed sequentially within the near memory unit. Thus,
during these stages, only one CMEM unit is activated at a
time. At the end of this phase, an Ofmap is generated in each
CMEM unit.

3) Redistribution Phase: This phase prepares the execution
of the next network layer. Normally, the generated Ofmaps are
fed to the next layer as Ifmaps. They are returned one after the
other to the master memory, which in turn rebroadcasts them
to all CMEM units.

In fact, a single CMEM unit should have a certain minimum
space to be capable of holding the inputs, the outputs and the
intermediate results. For a given layer with N Ifmaps and M
Ofmaps, generating a single Ofmap requires N tiled kernels.
Assuming the size of Ifmaps and tiled kernels as h × w and
k × w respectively, the minimum storage space required to
implement the layer can be expressed as SCMEM = w(2hN+
kN + 3h).

V. EVALUATION AND RESULTS

This section presents the validation and evaluation results
of the proposed in-memory BNN architecture. In addition,
it presents detailed discussions and comparisons with recent
relevant works.

A. Simulation environment and functional validation

For functional validation, a python based environment, with
appropriate library and commands, has been developed to
mimic the MOL-based in-memory computing operations per-
formed in the CMEM. This environment constitutes a proof-
of-concept that illustrates the programmability of the proposed
IMC architecture. It provides an abstract programming library
that hides the complexity of the low-level logic implementation
to application designers. In this environment, we deal with the
CMEM sub-arrays as two coupled binary matrices, and each
one has a separate input signal which points to a certain row

IEEE Transactions on Very Large Scale Integration (VLSI) Systems

Semi-parallel architecture Parallel architecture

M
U

X

CMEMM-1

Near Memory Unit
(NMU)

Logic Unit (LU)
[Pop-count]Logic Unit (LU)

[Pop-count]Logic Unit (LU)
[Pop-count]

Logic Unit (LU)
[Pop-count]

CMEM0

Master
Mem

CMEMM-1

Near Memory Unit (NMU)

Master
Mem

CMEM0

M
U

X

En
ab

lin
g

d
eco

d
er

En
ab

lin
g

d
eco

d
er

Control
Unit

Control
Unit

Select
Select

(a) (b)

Near Memory Unit
(NMU)

Fig. 9. The proposed in-memory BNN architecture with two different models: (a) the semi-parallel model shares one Near memory Unit (NMU) to all CMEM
banks and (b) the parallel model where each CMEM unit reserves a separate NMU.

inside the matrix. The ’0’s and ’1’s of the binary matrices
correspond to the ON and OFF state of the NVM cells. The
two matrices receive a command which is directly translated
into a bitwise elementary operation where 30 types of op-
erations are supported and described in [13]. The developed
environment allows for system-level simulations as well as
performance evaluation. Within this environment, the proposed
in-memory XNOR-based convolution, the Majority-Bin and
pooling operations have been simulated and cross-validated
with standard methods. Moreover, the implementation of bi-
nary convolutional layers has been functionally validated.

Fig. 10 shows a simple example of a BNN layer imple-
mented with four 28× 28 Ifmaps taken from MNIST dataset.
The black and white pixels represent the logic states ’1’ and ’0’
of the memory cells respectively. This figure, which is extracted
from the developed environment, corresponds to the state of the
CMEM sub-arrays at three different instants. The first instant
corresponds to the initial state, where 4 Ifmaps and a set of tiled
kernels appear in sub-arrays A and B respectively. The second
instant is the end of the convolutional layer, where 3 Ofmaps
are generated in sub-array B. The last instant corresponds to the
end of the combined in-memory & near memory Max Pooling
process. The channels after rows and columns Max Pooling
processes appear inside sub-arrays A and B respectively.

B. Performance evaluation

In order to evaluate the performance of our proposed ar-
chitecture, the binarized neural network BinaryNet [9] and
the CIFAR-10 dataset have been taken as a case study. The
BinaryNet model has been chosen as it achieves near state-
of-the-art results on CIFAR-10 and allows comparing with
the available relevant works [3], [34], [35]. For the rest of
the paper, the adopted model is referred to as CIFAR-10
BNN model. The BinaryNet BNN consists of six convolutional

Initial state End of CONV End of Max Pool

Ifmaps

Tiled
kernels

MAJ-Bin
process

Ofmaps

Rows
Max
Pooling

Columns
Max
Pooling

Su
b

-a
rr

a
y

A
Su

b
-a

rr
a

y
B

Fig. 10. The CMEM state at three different instants: the initial state, the end
of the convolutional layer and the end of the Max Pooling layer.

IEEE Transactions on Very Large Scale Integration (VLSI) Systems

layers, three fully connected layers, and three pooling layers.
All convolutional layers use 3 × 3 filters and edge padding.
Both Ifmaps and weight kernels of the convolutional layers are
binarized to -1 and 1 except for the first convolutional layer
where the input is the image. All pooling layers employ a 2×2
max-pooling window without overlapping.

We consider the convolutional layers CONV2-5 in our eval-
uations. For CONV2, CONV3, CONV4 and CONV5 layers,
the number of input and output channels are 128 and 128,
128 and 256, 256 and 256, and 256 and 512 respectively. The
corresponding sizes of the Ifmaps are 32, 16, 16, and 8 respec-
tively. More details on CIFAR-10 BNN model parameters can
be found in [34].

For both parallel and semi-parallel architectures, we employ
128 CMEM units, each of 34-bit width. The adopted width
supports the maximum binary image size (i.e. 32× 32) of the
CIFAR-10 after edge padding. Layers with a number of output
channels exceeding 128 are performed on several stages.

The minimum step period and the average energy con-
sumption of the performed operations are extracted from the
Cadence Virtuoso toolset. The 65-nm technology node is
used for the peripherals including the intermediate driver and
NMUs, while a realistic spin-transfer-torque magnetic tunnel
junction (STT-MTJ) device model [28] is adopted for the
CMEM memory cells. The model describes the static, dynamic,
and stochastic behaviours of the STT-MTJ device. It has been
proven through a resistance variability analysis in [13] that a
variation up to 21% in TMR, tsl and tox parameters of the
MTJ device leads to error-free MOL operations. In this work,
we consider that the resistance variability is below this limit.
According to [13], a single MOL operation consumes 0.196pJ
of energy per STT-MTJ cell, with a maximum switching delay
of 1.8ns. The reported value of energy includes the average
energy consumed by the peripherals as well as the intermediate
driver. On the other hand, the switching delay corresponds to
a clock frequency of 555 MHz. Since the switching speed of
MTJ devices is slower than that of CMOS, this frequency is
set to the entire architecture including the CMOS peripherals.

Moreover, evaluation is carried out using the emerging SOT-
MTJ device which exhibits fast read/write speed and unlimited
endurance. The read/write energy and delay for this device are
taken from [36]. The maximum estimated values of energy
(0.1pJ) and delay (∼ 1ns), for a single MOL operation, are
then deduced according to the analytical expressions derived
in [13]. Here, the delay corresponds to a maximum clock
frequency of 1 GHz. The average energy consumed by a single
MOL-type operation (AND, OR, AND-NOT, OR-NOT) per
MTJ device can be expressed as EMOL = Ew/2+Er, where
Er and Ew represent the read and write energy of the adopted
MTJ device respectively [13]. The energy consumed by a Copy
operation can be expressed as ECOPY = Ew +Er. Other op-
erations such as Invert and Shift have an energy overhead close
to that of a Copy operation. A slight difference appears due
to the change in the configuration of the intermediate driver.
To evaluate the energy consumed by 34-bit width operations,
the above expressions should be multiplied by a factor of 34.
Other sources of energy consumption appear during operands
movement from the memory array to the NMU. The NMU is

TABLE I
ENERGY CONSUMED PER 34-BIT WIDTH OPERATION IN CMEM (IN PJ)

MTJ device MOL Copy Invert Shift XNOR
STT-MTJ 6.66 11.32 11.93 12.3 54.4
SOT-MTJ 3.46 6.15 5.78 5.98 26.5

located close to the memory array, thus energy consumption
is mainly limited to the hybrid CMOS-resistive structure of
the read circuitry, as well as the dynamic energy dissipation
of the NMU’s CMOS structure. Table I presents the energy
consumption of the different 34-bit width operations performed
in STT and SOT CMEM. All these extracted informations are
provided to the developed python-based environment, which is
in turn used as an evaluation tool.

The total computational energy, power, latency and through-
put efficiency for the CONV2-5 layers are evaluated in both
parallel and semi-parallel architectures. Comparison is carried
out with relevant recent state-of-the-art works implementing
BNNs using similar in-memory computing approach [3], [35].
Moreover, BNN implementations using conventional com-
puting approach on Intel Xeon E5-2640 processor (CPU),
NVIDIA Tesla K40 GPU and FPGA [34] are considered,
although the two approaches are hardly comparable. Indeed,
the emerging STT/SOT memory technologies are still in the
development phase and there is no mature production technol-
ogy for them. In contrast, real fabricated devices using mature
technologies are available for accurate performance measure-
ment on CPUs, GPUs, and FPGAs. Nevertheless, comparing
with these conventional implementation approaches, that we
consider as baseline, still provide useful information about the
performance level of our proposed architecture.

On the other hand, it is worth noting that the proposed
in-memory computing approach doesn’t alter the accuracy of
the BNN model with respect to the conventional computing
approach. It only provides a different way to implement the
same computing operations on the same parameters and same
data.

Comparison results are summarized in Table II. As shown in
this table, our proposed semi-parallel and parallel architectures
exhibit the lowest energy consumption regardless of the used
NVM technology (STT/SOT). The SOT-based architecture
reveals 49% to 99% reduction in terms of energy compared
to the other implementations. Although the parallel architec-
ture shows better inference speed than the semi-parallel one
(6.5×), the latter requires less number of Near-Memory Units
(M×). The choice between these two architecture models
could depend on the application requirements. Furthermore,
our proposed architecture with SOT technology reaches 264 to
273 image/sec/Watt throughput efficiency, which outperforms
all others including the CPU, GPU, and FPGA solutions.

It is worth noting that the semi-parallel and fully parallel
architectures have the same energy consumption although they
have different implementation complexity. This is due to the
fact that they perform exactly the same operations, yet with
different level of parallelism. A slight difference appears due
to the static energy consumed by the additional NMUs in the

IEEE Transactions on Very Large Scale Integration (VLSI) Systems

parallel architecture. However, this static energy is negligible
with respect to the predominant dynamic energy consumed by
the resistive switching behavior of the MTJ cells.

In terms of inference speed, the proposed parallel archi-
tecture with SOT technology achieves 1.24×, 1.35× and 3×
speedup compared to Read-SOT [35], PXNOR-BNN [3] and
Intel Xeon E5-2640 processor (CPU) approaches respectively
thanks to the high level of parallelism offered using MOL-
based in-memory computing. On the other hand, the GPU and
FPGA implementations reveal higher inferencing speed (6.3×
and 1.6× respectively) compared to our SOT-based parallel
architecture. However, this higher speed comes at the cost
of 41× and 3.3× energy consumption respectively. In this
regard, it is worth noting that our architecture design adopts
the CMOS 65 nm technology node. If the design is scaled to
more recent technologies (e.g. 28 nm), we expect even better
results in terms of speed and energy consumption. At last,
although the GPU and FPGA implementations present better
results in terms of speed, still they are less convenient for
embedded applications such as IoT devices where area and
energy consumption are the most crucial.

C. Hardware complexity evaluation

The proposed architecture, which is presented in two models,
is mainly composed of interconnected CMEMs, near memory
units and a control unit. The storage space of a CMEM unit
should be sufficient to accommodate the Ifmaps, the resulting
Ofmap and the results of intermediate computations of the net-
work layer. Each CMEM unit in the BinaryNet model should
have a minimum of 36 KB of space, for a total of 4.5 MB for
all CMEM units. It is worth noting that these units are based
on the conventional 1T1M crossbar arrays, thus can benefit
from the promising 3D stacking technology of NVMs [37]
[38]. Accordingly, the CMEMs crossbars can be stacked at the
top of each other, leading to a compact design. In fact, it has not
been possible to evaluate the area of the proposed architecture
due to the lack of a layout model for the adopted MTJ devices.
However, in order to get an estimation of the complexity, we
evaluated the total number of components in each CMEM unit,
particularly in the peripheral and intermediate driver. Table III
presents the number of utilized hardware resources for a 34-bit
width as well as for a general d-bit width CMEM unit. Here,
it’s worth noting that the reported number of resources grows
when expanding the width d of a CMEM unit. Increasing the
depth (i.e., number of wordlines) has no additional cost. Table
IV presents the number of components involved in the near
memory unit. The NMU is mainly composed of k-bit adders,
constant comparators and registers. In the presented case study,
as we employed 128 CMEM banks, the parallel architecture
integrates 128 NMUs whereas the semi-parallel architecture
integrates only one NMU.

On the other hand, the functionality of the control unit has
been emulated using a python-script code, which automatically
generates the commands and the address signals to the inter-
connected CMEM units. It is considered that this functionality
can be handled using a host processor, which is programmed
according to the desired application (network model, dataset,

parameters). The use of a host processor ensures programma-
bility requirement.

VI. CONCLUSION

In this work, we presented a novel in-memory computing ar-
chitecture targeting efficient implementation of BNN. The pro-
posed architecture follows what we called SIMM parallelism
model to execute instructions inside multiple computational
memories. It employs the advanced quantization algorithm of
BNN and the promising MOL-based in-memory computing
technique which is well adapted for parallel bitwise operations.
The complex multiply-and-accumulate operations are replaced
by parallel row-wise XNOR and popcounts. Moreover, the
addition and normalization stage is replaced by Majority-Bin
stage which is achieved through the proposed in-memory bub-
ble sorting technique of channels. An efficient data mapping
methodology has been deployed. For simulation and evaluation
purposes, a python based environment with appropriate library
and commands has been developed emulating the functionality
of the adopted MOL-based computational memory architec-
ture. A study on the CIFAR-10 BNN model has demonstrated
that a proposed parallel architecture, implemented in SOT-
MTJ technology, has obtained a notable performance improve-
ment compared to recent relevant state-of-the-art works. The
results show 1.24× to 3× speedup compared with Read-
SOT, PXNOR-BNN and Intel Xeon E5-2640 processor (CPU)
implementations. Moreover, the proposed parallel architecture
outperforms all other approaches in terms of power and energy
consumption, where 49% to 99% reduction is achieved in terms
of energy cost. Besides, it reaches 264 to 273 image/sec/Watt
throughput efficiency, which is much higher than all others
including the CPU, GPU, and FPGA solutions. Finally, the
proposed architecture is scalable as it is able to handle larger
network sizes, and can in addition be compatibly applied to
other types of emerging memory technologies.

REFERENCES

[1] S. Yu, S. Jia, and C. Xu, “Convolutional neural networks for hyperspec-
tral image classification,” Neurocomputing, vol. 219, 2017.

[2] C. Chen, A. Seff, A. Kornhauser et al., “Deepdriving: Learning affor-
dance for direct perception in autonomous driving,” in Proceedings of
the IEEE international conference on computer vision, 2015.

[3] L. Chang, X. Ma, Z. Wang et al., “PXNOR-BNN: In/With spin-orbit
torque MRAM preset-XNOR operation-based binary neural networks,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 27, no. 11, 2019.

[4] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[5] T. Simons and D.-J. Lee, “A review of binarized neural networks,”
Electronics, vol. 8, no. 6, 2019.

[6] H. Qin, R. Gong, X. Liu et al., “Binary neural networks: A survey,”
Pattern Recognition, vol. 105, 2020.

[7] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training
deep neural networks with binary weights during propagations,” in
Advances in neural information processing systems, 2015, pp. 3123–
3131.

[8] A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh et al., “Memory devices
and applications for in-memory computing,” Nature nanotechnology,
vol. 15, no. 7, 2020.

[9] M. Courbariaux, I. Hubara, D. Soudry et al., “Binarized neural networks:
Training deep neural networks with weights and activations constrained
to +1 or -1,” arXiv preprint arXiv:1602.02830, 2016.

[10] X. Lin, C. Zhao, and W. Pan, “Towards accurate binary convolutional
neural network,” arXiv preprint arXiv:1711.11294, 2017.

IEEE Transactions on Very Large Scale Integration (VLSI) Systems

TABLE II
PERFORMANCE COMPARED WITH STATE-OF-THE-ART DESIGNS FOR THE CIFAR-10 BNN MODEL

Item CPU [34] GPU [34] FPGA [34] Read-SOT [35] PXNOR-BNN [3] This work (semi-parallel) This work (parallel)
Intel Xeon E5-2640 NVIDIA Tesla K40 Zynq-7000 SoC (SOT) (SOT) (STT/SOT) (STT/SOT)

Technology node 32 nm 28 nm 28 nm 45 nm 28 nm 65 nm 65 nm
Clock frequency 2.5 GHz to 3 GHz 745 MHz to 875 MHz 143 MHz 500 MHz 1.4 GHz 555 MHz / 1 GHz 555 MHz / 1 GHz
Execution time (ms/image) 13.2 0.68 2.68 5.35 5.83 50 / 28.1 7.7 / 4.3
Power (W) 95 235 4.7 2.1 1.41 0.15 / 0.13 0.96 / 0.88
Energy (mJ/image) 1254 159.8 12.59 11.23 7.58 7.5 / 3.82 7.5 / 3.82
Throughput efficiency (image/sec/Watt) 0.7 6.2 79.4 89 131.8 133.3 / 273.7 135.2 / 264.2

TABLE III
NUMBER OF PERIPHERAL COMPONENTS PER CMEM UNIT

Type # Components
(d-bit width CMEM)

Components
(34-bit width CMEM)

2:1 Mux 3d 68
Inverters 8d+6 278
Transmission Gate 2d 68
Pass-MOSFET 6d+4 208
Ref-resistor 2d 68

TABLE IV
NUMBER OF COMPONENTS IN EACH NMU

Near memory unit 3-bit adder 3-bit comparator 3-bit register 1-bit full adder
d-bit width CMEM

& k=3 ⌊d/3⌋ ⌊d/3⌋ ⌊d/3⌋ ⌊d/3⌋

34-bit width CMEM
& k=3 11 11 11 11

⌊.⌋ is the Floor operator

[11] S. Hamdioui, S. Kvatinsky, G. Cauwenberghs et al., “Memristor for
computing: Myth or reality?” in Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2017, pp. 722–731.

[12] C.-J. Jhang, C.-X. Xue, J.-M. Hung et al., “Challenges and Trends
of SRAM-Based Computing-In-Memory for AI Edge Devices,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 5,
pp. 1773–1786, 2021.

[13] K. A. Ali, M. Rizk, A. Baghdadi et al., “Memristive Computational
Memory Using Memristor Overwrite Logic (MOL),” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 28, no. 11, 2020.

[14] N. Talati, S. Gupta, P. Mane et al., “Logic design within memristive
memories using Memristor-Aided loGIC (MAGIC),” IEEE Transactions
on Nanotechnology, vol. 15, no. 4, 2016.

[15] S. Kvatinsky, G. Satat, N. Wald et al., “Memristor-based material
implication (IMPLY) logic: Design principles and methodologies,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 22, no. 10, pp. 2054–
2066, 2014.

[16] S. Zhou, Y. Wu, Z. Ni et al., “Dorefa-net: Training low bitwidth con-
volutional neural networks with low bitwidth gradients,” arXiv preprint
arXiv:1606.06160, 2016.

[17] U. Karn, “An intuitive explanation of convolutional neural networks,”
The data science blog, 2016.

[18] M. Rastegari, V. Ordonez, J. Redmon et al., “XNOR-Net: Imagenet
classification using binary convolutional neural networks,” in European
conference on computer vision. Springer, 2016.

[19] C.-X. Xue, W.-H. Chen, J.-S. Liu et al., “A 1Mb multibit ReRAM
computing-in-memory macro with 14.6 ns parallel MAC computing time
for CNN based AI edge processors,” in IEEE International Solid-State
Circuits Conference-(ISSCC). IEEE, 2019.

[20] W.-H. Chen, W.-J. Lin, L.-Y. Lai et al., “A 16Mb dual-mode ReRAM
macro with sub-14ns computing-in-memory and memory functions en-
abled by self-write termination scheme,” in IEEE International Electron
Devices Meeting (IEDM). IEEE, 2017.

[21] M. Hu, H. Li, Y. Chen et al., “Memristor crossbar-based neuromorphic
computing system: A case study,” IEEE transactions on neural networks
and learning systems, vol. 25, no. 10, 2014.

[22] C.-X. Xue, T.-Y. Huang, J.-S. Liu et al., “A 22nm 2Mb ReRAM
Compute-in-Memory Macro with 121-28TOPS/W for Multibit MAC
Computing for Tiny AI Edge Devices,” in IEEE International Solid-State
Circuits Conference-(ISSCC). IEEE, 2020.

[23] W.-H. Chen, C. Dou, K.-X. Li et al., “CMOS-integrated memristive non-

volatile computing-in-memory for AI edge processors,” Nature Electron-
ics, vol. 2, no. 9, 2019.

[24] S. Kvatinsky et al., “MAGIC—Memristor-Aided Logic,” IEEE Trans.
Circuits Syst. II: Exp. Briefs, vol. 61, no. 11, pp. 895–899, 2014.

[25] X. Fang and Y. Tang, “Circuit analysis of the memristive stateful
implication gate,” Electronics Letters, vol. 49, no. 20, pp. 1282–1283,
2013.

[26] S. Li, C. Xu, Q. Zou et al., “Pinatubo: A processing-in-memory archi-
tecture for bulk bitwise operations in emerging non-volatile memories,”
in 53nd Design Automation Conference (DAC). IEEE, 2016, pp. 1–6.

[27] D. B. Strukov, G. S. Snider, D. R. Stewart et al., “The missing memristor
found,” nature, vol. 453, no. 7191, 2008.

[28] S. Ikeda, K. Miura, H. Yamamoto et al., “A perpendicular-anisotropy
CoFeB–MgO magnetic tunnel junction,” Nature materials, vol. 9, no. 9,
2010.

[29] H.-S. P. Wong, S. Raoux, S. Kim et al., “Phase change memory,”
Proceedings of the IEEE, vol. 98, no. 12, pp. 2201–2227, 2010.

[30] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” Technical Report, University of Toronto, 2009.

[31] Y. Zhang, S. Lin, R. Wang et al., “When sorting network meets parallel
bitstreams: a fault-tolerant parallel ternary neural network accelerator
based on stochastic computing,” in 2020 Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 2020, pp. 1287–1290.

[32] M. R. Alam, M. H. Najafi, and N. TaheriNejad, “Sorting in memristive
memory,” J. Emerg. Technol. Comput. Syst., jan 2022, just Accepted.
[Online]. Available: https://doi.org/10.1145/3517181

[33] A. K. Prasad, M. Rezaalipour, M. Dehyadegari et al., “Memristive data
ranking,” in 2021 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). IEEE, 2021, pp. 440–452.

[34] R. Zhao, W. Song, W. Zhang et al., “Accelerating binarized convolutional
neural networks with software-programmable FPGA,” in Proceedings of
the ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, 2017.

[35] S. Angizi, Z. He, and D. Fan, “PIMA-logic: a novel processing-
in-memory architecture for highly flexible and energy-efficient logic
computation,” in Proceedings of the 55th Annual Design Automation
Conference, 2018.

[36] Z. Wang, H. Zhou, M. Wang et al., “Proposal of toggle spin torques
magnetic RAM for ultrafast computing,” IEEE Electron Device Letters,
vol. 40, no. 5, 2019.

[37] Y. Cao, G. Xing, H. Lin et al., “Prospect of spin-orbitronic devices and
their applications,” IScience, p. 101614, 2020.

[38] Y. Huai, H. Yang, X. Hao et al., “High density 3d cross-point stt-mram,”
in 2018 IEEE International Memory Workshop (IMW). IEEE, 2018, pp.
1–4.

Khaled Alhaj Ali received his master degree in Sig-
nal, Telecommunications, Image and speech (STIP)
in 2016, from the Lebanese University, Beirut,
Lebanon. He received his PhD degree in Electronics
from IMT Atlantique, France in 2020. He is now
a post-doctoral researcher at the Mathematical and
Electrical Engineering department of IMT Atlan-
tique. His current research interest is focused on the
use of emerging non-volatile memory technologies
for in-memory computing and neural networks.

IEEE Transactions on Very Large Scale Integration (VLSI) Systems

Amer Baghdadi is a Professor at IMT
Atlantique/Lab-STICC laboratory. He received
his Engineering degree in 1998, Master of Science
degree in the same year and PhD degree in
2002, all from Grenoble INP (Institut National
Polytechnique), France. Furthermore, he received
the accreditation to supervise research (HDR) in
Sciences and Technologies of Information and
Communication in 2012 from the University of
Southern Brittany, France. Prof. Baghdadi leads the
Algorithm-Architecture Interaction (2AI) team in the

Mathematical and Electrical Engineering department of IMT Atlantique. He
has recently contributed to FlexDEC-5G, H2020 METIS, FANTASTIC-5G,
and EPIC research projects. His research activities are mainly focused
on embedded system design for applications in digital communications
and neural networks, with a special interest in flexible implementations,
application-specific processor design, hardware accelerators, NoC and MPSoC
architectures, energy-efficient designs, processing-in-memory and non-volatile
memory-based design approaches.

Elsa Dupraz (member IEEE) was born in Paris,
France. She received the Master degree in advanced
systems of radio-communications from ENS Cachan
and University Paris Sud, France, in 2010, and the
Ph.D. degree in physics from University Paris-Sud,
France, in 2013. From January 2014 to September
2015, she held a Postdoctoral position wih ETIS (EN-
SEA, University Cergy-Pointoise, CNRS, France)
and ECE Department, University of Arizona, USA.
Since October 2015, she has been an Assistant Pro-
fessor with IMT Atlantique. Her research interests

lie in the area of coding and information theory, with a special interest on
distributed source coding, LDPC codes, and energy-efficient channel codes.

Mathieu Léonardon received the M.Sc. degree from
Bordeaux INP, Bordeaux, France, in 2015. He re-
ceived the Ph.D. in electronics engineering from
Polytechnique Montreal, Canada, and from the Uni-
versity of Bordeaux, France, in 2018. Between 2018
and 2019 he held a lecturer position at Bordeaux
INP. He is an Associate Professor at IMT Atlantique
in Brest, France, since 2020. His research inter-
est are on hardware and software implementations.
These include two main fields of application: signal
processing and in particular Error-Correcting Code

decoders on the one hand, and Deep Neural Networks on the other hand.

Mostafa Rizk received his Maitrise degree in Elec-
tronics, M.Sc in Biomedical Physics, and M.Sc
in Signal, Telecom, Image, and Speech from the
Lebanese University in 2007, 2008 and 2010 re-
spectively. He received his Ph.D. degree in Sciences
and Technologies of Information and Communication
from Telecom Bretagne, France in 2014 and a Ph.D
degree in Electronics and Telecommunication from
the Lebanese University in 2015. Dr. Rizk has been
a post-doctoral researcher at UBS University and
Lab-STICC laboratory CNRS, France. Dr. Rizk has

been an associate professor at LIU, Lebanon and associate researcher at
IMT-Atlantique, France. Currently, Dr. Rizk is a researcher at Lab-STICC
laboratory - UMR 6285 CNRS, France. His general research interests include
both algorithm development and corresponding hardware/software co-design
for embedded architectures, circuits and systems; NoC design and new MPSoC
architectures based on emerging computing paradigms using memories and
memristive technologies; ICT of drone systems; embedded machine learning
and embedded computer vision.

Jean-Philippe Diguet is a CNRS director of research
at Lab-STICC, Lorient/Brest, France. He received
the Ph.D. degree from Rennes University (France)
in 1996. In 1997, he has been a visitor researcher at
IMEC (Belgium). He has been an associate professor
at UBS University (France) until 2002. In 2003, he
co-funded the dixip company in the domain of wire-
less embedded systems. Since 2004 he is a CNRS
researcher at Lab-STICC, where he has been heading
the MOCS team until 2016. He has been a visitor
researcher at the University of Queensland, Australia

in 2010 and an invited Prof. at Tohoku University, Japan in Nov. 2014 and
May 2019, and at Univ. of São Paulo, Brazil, in Nov. 2016. His current work
focuses on various aspects of embedded system design: Designs and Tools for
NoC-based MPSoC architectures including memory-based computing, Self-
adaptivity for uncertain environments as autonomous vehicles and Design of
dedicated hardware accelerators.

