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Abstract—Accurate estimation of delays in a network is crucial
for its management. In real-world applications, it is not always
possible to conduct on-demand measurements regularly on the
overall network. Doing so is costly and time-consuming, and it is
also possible that not all the equipments respond to the probes
sent in the network. In this paper, we formulate the network
delay prediction problem as a non-negative matrix factorization
problem with piecewise constant coefficients of the approximate
instantaneous representation of data. We choose this approach
to utilize the strong spatial and temporal correlation that appear
in network delay data. To solve this factorization problem,
we consider two different algorithms: an alternating projected
gradient algorithm and the NeNMF algorithm. We finally study
the efficiency of our approach on two datasets. The first dataset
is a synthetic dataset produced by a simulator that we have
designed, and the second one is composed of RTT measurements
from RIPE Atlas.

Index Terms—Non-negative Matrix Factorization, Matrix
Completion, Network Measurement, Network Delay

I. INTRODUCTION

Internet delay measurements have wide applications and
are crucial for proper network monitoring. They are used to
measure network QoS. Moreover, in distributed services, such
as content distribution network and overlay routing, knowledge
of delays helps to improve responsiveness by choosing the
most suitable communication peer. A full knowledge of net-
work delays might sound attractive but conducting on-demand
measurements regularly on the overall network is costly and
time-consuming. It is therefore necessary to be able to predict
missing delays from few measurements.

This prediction problem can be solved because delays
are highly correlated. Indeed, delay measurements between
different origins and destinations are spatially correlated with
each other. In addition, if one considers a particular pair
of nodes, the delay is generally stable over long periods
of time, resulting in temporal correlation. These spatial and
temporal correlations can be exploited to reduce the number of
measurements. One natural way to use these correlations is to
formulate our delay inference problem as a matrix completion
problem [1].

We define the network delay prediction problem as a piece-
wise constant non-negative matrix factorization to incorporate
expert knowledge into the completion problem [2]. Firstly, the
non-negative constraint on the coefficients of the factorized

matrices is consistent with the fact that network delays cannot
be negative. Secondly, we are looking for a piecewise constant
factorization to encode the temporal correlation.

A. Related works

Network delays estimation has first been addressed in the
context of network coordinate systems using either Euclidean
embedded models [3], [4] or matrix factorization [5]–[7].
Euclidean embedded approaches are embedding network’s
nodes in a low-dimensional space. In this space, a good
approximation for the delay between nodes is assumed to be
equal to the Euclidean distance. Such approaches decrease
the amount of end-to-end delays needed for the estimation
of distances. However, their major drawbacks are that they
are limited by geometrical constraints (triangle inequality,
symmetry), and they are not efficient in the presence of
complex routing policies [8].

To overcome this problem, matrix factorization approaches
gained a lot of interest. These methods are often based on
the low rank approximation of delay matrix. Many models
use nuclear norm for rank minimization and others use non-
negative matrix factorization (NMF) exploiting the positivity
of delays [9], [10]. Matrix and tensor completions have also
been recently used to estimate the traffic matrix [11]–[13] and
to infer top-k Elephant flows [14].

The estimation of network delays with completion ap-
proaches has been studied in multiple recent works [15]–[17].
An adaptive completion algorithm has been proposed in [15]
to estimate network delays. Moreover, in [16], authors have
studied an efficient probing strategy of (Origin, Destination)
pairs to improve the performance of completion. Finally, the
effect of graph-Laplacian regularization on the performance
has been studied in [17]. Such regularization is used to add
more non-linear interactions between network delays.

B. Organization of the paper

To the best of our knowledge, our paper is the first to
model network delay prediction problem as a piecewise con-
stant non-negative matrix factorization problem. The code
and the data used in this paper are available at [18]. Our
paper is divided into 4 sections. In section II, we introduce
the matrix completion approach proposed to predict network
delays. We formulate the problem as the optimization of a
quadratic function with a regularization term. The goal of the978-1-6654-0601-7/22/$31.00 © 2022 IEEE



regularization term is to capture the fact that delay is stable
over long periods of time. Then, in Section III we introduce
two algorithms used to solve the optimization problem: an
alternating projected gradient algorithm [2], and the NeNMF
algorithm [19] which is based on the Nesterov method. In
Section IV, we first study the performance of our approach
on a synthetic dataset. The simulator designed to generate the
synthetic dataset is described into details. We finally assess
the performance of delay completion on RIPE Atlas [20]
measurements. In Section V, we conclude our paper and
discuss possible extensions.

II. NETWORK DELAY PREDICTION BY NON-NEGATIVE
MATRIX FACTORIZATION

A. Non-negative matrix factorization of delays

We consider that time is slotted with time slots of ⇠ 5
minutes. A delay matrix over a network of N nodes at a
given instant t is a N ⇥ N matrix X(t) where Xij(t) is the
delay between the origin node i and the destination node j at
instant t. The delay matrix has many characteristics, including
positive entries and low effective rank. The low effective
rank property in this case results from spatial correlation.
Indeed, some nodes, such as nodes in the same Autonomous
System, often share route segments and therefore exhibit
similar performance. Moreover, successive delays between a
same pair of origin and destination are correlated through time
since delay is stable over long periods of time on a particular
path. For instance, Figure. 1 displays the time series of Round
Trip Times (RTT) between two anchors on RIPE Atlas [20]
during one week. We can observe that the delay is stable for
hours and abrupt changes in the statistical distribution of the
delay occur due to routing changes (see for example [21]). In
order to take advantage of this property, we will construct a
matrix D where the t-th column is given by Dt = vec(X(t)).
Therefore, a row of D represents a (Origin, Destination) pair,
and a given column represents an instant. The matrix D is of
size n ⇥ m where n is the number of node pairs, and m is
the number of time slots. The temporal stability of the rows
of this matrix represents a low rank property. Which is indeed
sufficient for a proper matrix factorization [22].

B. Optimization problem

Non-negative matrix factorization (NMF) consists in ap-
proximating the matrix D as the product of two low rank
matrices W 2 Rn⇥r

+ and H 2 Rr⇥m

+ with r  min(n,m).
To derive this approximation, we solve the following con-
strained optimization problem: minW,H kD �WHkF subject
to W 2 Rn⇥r

+ and H 2 Rr⇥m

+ where k.kF is the matrix
Frobenius norm.

If D·j = (Dij)1in denotes the column vector of delays
at time j then the basic idea behind non-negative matrix
factorization is that D·j '

P
r

k=1 W·kHkj with W·k the k
th

column of matrix W . The columns of W are the basis vectors
of the decomposition of the delays, and Hkj are the weights
of this decomposition at time j.

In real-world applications, network performance is often
only partially monitored (in time or space). This fact implies
that in practice, only part of the elements of D are observed.
Moreover, it is possible that some equipments are not replying
to the probes, and therefore, are producing extra missing values
in D.

The idea behind matrix completion is to approach D solely
on the basis of available measurements. We introduce a n⇥m

binary matrix S, named the sampling matrix, where Sij = 1
if Dij is known and Sij = 0 otherwise. The optimization
criterion then becomes: minW,H kS � (D �WH)kF subject
to W 2 Rn⇥r

+ and H 2 Rr⇥m

+ , where � is the Hadamard
product (term by term product of matrices).

In order take advantage of the time stability observed among
the column of D, we add an additive regularization term
�
P

r

i=1

P
n

j=2 |Hij � Hi(j�1)| to kS � (D �WH)kF
2. This

permits to favor solutions such that the delays are more stable
over time. � is a weighting hyperparameter that controls
temporal smoothness.

We then arrive at the optimization problem:

minW,H C(W,H) s.t. W � 0, H � 0, (1)

where the optimization criterion can be splitted into two terms:

C(W,H) = F (W,H) + L(H),
with F (W,H) = kS � (D �WH)kF

2
,

and L(H) = �
P

r

i=1

P
n

j=2 |Hij �Hi(j�1)|.

(2)

III. SOLUTION OF NMF FACTORIZATION

In this section, we are going to introduce two algorithms
that can be used in order to solve the optimization problem
(1). The first one is an alternating projected gradient algorithm
[2]. And the second one involves Nesterov’s optimal gradient
method [19].

A. Alternating projected gradient

The alternating projected gradient algorithm is an iterative
algorithm where estimates of W and H are updated sequen-
tially. Each iteration k can be decomposed into two steps: i)
a steepest descent method is used to update W with H = H

k

fixed and with a projection over the set W � 0, and ii) a
steepest descent method is used to update H with W = W

k+1

fixed and with a projection over H � 0:

W
k+1 = [W k

� ↵rWF (W k
, H

k)]+
H

k+1
ij

= [Hk

ij
� ↵[rHF (W k+1

, H
k)]ij +

@L(H)
@Hij

]+, 8(i, j)
(3)

With [x]+ = max{0, x} and ↵ � 0 is a step-size. The
mathematical closed expression of the first order derivatives
rWF (W,H), rHF (W,H) and @L(H)

@Hij
are:

rWF (W,H) = S � ((WH �D)H>)
rHF (W,H) = W

>(S � (WH �D))
@L(H)
@Hij

= �(sign(Hij �Hi(j+1))� sign(Hi(j�1) �Hij))
(4)



Fig. 1. RTT between two anchors on RIPE Atlas over 1 week

B. NeNMF: Nesterov gradient

The NeNMF overcomes NMF solvers limitations such
as numerical instability, slow convergence and theoretical
convergence problems. It achieves the optimal convergence
rate O( 1

k2 ) by using the Nesterov accelerated gradient [23].
The NeNMF consists of updating at each outer iteration k

sequentially W
k and H

k by running an inner loop of Nesterov
accelerated gradient method to minimize the objective function
with respect to W with H

k fixed (and vice versa). In fact, in
order to estimate H

k, Nesterov gradient method will construct
two sequences {Ht} and {Yt} and update them respectively
at each iteration round t :

Ht = minH�0{�(Yt, H) = F (W k
, Yt)

+hrHF (W k
, Yt), H � Yti+

Lc
2 kH � YtkF

2
}

Yt+1 = Ht +
↵t�1
↵t+1

(Ht �Ht+1),
(5)

where H 7! �(Yt, H) is a quadratic majorant function of
H 7! F (W k

, H) at Yt [24]. h·, ·i is the matrix inner product,
Lc = kW

>
Wk2 is a Lipschitz constant of the gradient

of the objective function H 7! F (W k
, H) and Yt is a

linear combination of the two last approximate solutions, i.e.
Ht�1 and Ht. The coefficient ↵t is updated at each iteration
according to the formula ↵t+1 = (1 +

p
4(↵t)2 + 1)/2.

When solving the first-order optimality conditions (KKT
conditions) for the convex optimization problem (5), the
previous equations can be rewriten as:

Step 1: Ht = [Yt �
1
Lc

rHF (W>
, Tk)]+,

Step 2: Yt+1 = Ht +
↵t�1
↵t+1

(Ht �Ht+1).
(6)

This algorithm doesn’t use the penalization L(H), and there-
fore, in the rest of the paper, when we refer to the NeNMF
algorithm, we implicitly assume that � = 0 (i.e. C(W,H) =
F (W,H)).

IV. PERFORMANCE EVALUATION

A. Synthetic dataset generation

To start our study, we work on synthetic data. It will provide
a ground truth that will be used to compare the results of the
completion algorithms and permits to rely on a fully controlled
data generation environment.

There are some characteristics in actual network delay
measurements that we want to reproduce. As it can be noticed
in Figure 1, delay is stable over several hours and abrupt
changes occur. The statistical distribution of the delay during

the stable periods displays a baseline and some random vari-
ations above this baseline. Indeed, the delay in a network has
several components. A term corresponds to signal propagation
and packet processing at the routers’ interfaces. Another term
corresponds to the waiting phenomenon. The baseline can be
explained by the first term, and the random component of the
delay by queuing (which depends on the traffic load in the
network).

Moreover, the delays between different (Origin, Destination)
pairs of nodes are sometimes correlated with each other.
Indeed, part of the paths between origins and destinations are
shared which creates spatial correlation.

Our delay simulator is based on an explanatory model. Let
us consider the case of a single Autonomous System (AS)
which is modeled as a graph where the nodes of the graph are
the routers. Some nodes can be the origin or destination of
traffic. The Origin Destination (OD) traffic matrix represents
the traffic demand (in bytes) between each origin node and
each destination node. To generate this traffic matrix, we use
a simple gravity model [25].

The gravity model assumes that the traffic between node i

and node j is proportional to the product of two terms, one
of them representing the proportion of traffic entering through
origin node i, and the other representing the proportion of
traffic which exits through the destination node j. So, T(i,j) =

T⇥y
(o)
i

⇥y
(d)
j

where T(i,j) is the traffic between nodes i and j

and T is the total traffic demand. y(o)
i

and y
(d)
j

are proportions
so that

P
i
y
(o)
i

=
P

j
y
(d)
j

= 1 and T =
P

i,j
T(i,j).

To be more precise, time is slotted so that T(i,j)(k) (re-
spectively T (k)) represent the traffic between nodes i and j

(respectively, the total traffic demand) in a time window k

(lasting a few minutes). Similarly, the proportions y
(o)
i

(k) and
y
(d)
j

(k) depend on k. The total traffic demand T (k) may not
be constant but may be a cyclical term to take into account
daily variability.

Once the OD traffic matrix has been generated, we can
deduce the traffic volumes on the links of the network.
If one considers a particular link l then the traffic T

l(k)
through link l is the aggregation of all the origin destina-
tion demands which routes go through link l. So, T

l(k) =P
{(i,j),l⇢P (i,j)} T(i,j)(k) where P (i, j) is the path from i to

j. In our simulator we have assumed that routes follow the
shortest paths.

The delay from node i to node j is then obtained as a
sum of delays along the path P (i, j). A delay is associated



with each of the links using an M/M/1 queue model. In an
M/M/1 model the average delay of a link l with capacity Cl

and offered traffic T
l(k) is equal to 1

µ

1
1�⇢

. Where 1
µ

is the
average service time, that is to say the packet size divided by
the bandwith of the router interface, and does not depend on
the offered traffic. ⇢ = T

l(k)
Cl

is the load (and ⇢ < 1 since we
assume that the queue is stable). Then, in the simulator the
delay Dij(k) from node i to node j is modeled by an M/M/1
and given by Dij(k) =

P
l,l⇢P (i,j)

Packet Size
Cl

1

1�Tl(k)
Cl

Finally, our goal is to simulate realistic time series, taking
into account in particular the spatial correlation but also the
temporal correlation of the delays. In particular, we want to
simulate abrupt changes in the statistical distribution of delays
as shown in Figure 1. In the case of an AS such abrupt changes
can be due to modifications of the external routing, which leads
to changing the entry or exit points of part of the traffic.

So, in our simulator the terms y
(o)
i

(k) and y
(d)
j

(k) of the
gravity model are not constant. They remain constant for a
while, and then, according to Markovian dynamics, a change
of state occurs. As the state of the Markov chain changes, the
values of the proportions y

(o)
i

(k) and y
(d)
j

(k) change, while
respecting the normalization constraints.

Figure. 2 displays some delay timeseries obtained from the
simulator. It can be observed that, the signals present abrupt
changes, some of which are synchronized between several
(Origin, Destination) pairs, with a baseline delay value over
stable periods. For the simulations we considered a network of
150 nodes with 8 origins and 8 destinations of traffic (n = 64
(Origin, Destination) pairs).
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Fig. 2. Simulated delay timeseries

B. Matrix completion results

The matrix D, is obtained by vectorizing the (Origin,
Destination) delays and by concatenating the successive values
of these vectors of delays. The low-rank property can be
justified by the strong decreasing attitude of its singular values.
In fact, the 5 greatest of the 64 singular values are 409.13,
10.12, 5.45, 3.65 and 2.45. So a small value of r is sufficient
to capture most of the energy of the matrix D.

To evaluate the performance of matrix factorization al-
gorithms we consider the convergence stress [26]. It mea-
sures the quality of reconstruction of the missing values
Dij (i.e. such that Sij = 0). It is defined as: P

k

stress =sP
i,j
(1� Sij)(Dij � [W kHk]ij)2P

i,j
(1� Sij)(Dij)2

, where k is the iteration

number in the matrix factorization algorithm.
Figure 3 represents the evolution of the convergence stress

of the alternating projected gradient algorithm as a function
of the number of iterations. We consider the first 100 and
10000 iterations and two different values � = 0 and � = 0.4.
The sampling rate is 0.7 that is to say that 70% of the delay
values Dij are known (i.e. Sij = 1) and 30% of the delays
are supposed to be unknown.

0 20 40 60 80 100

0
1

2
3

Stress evolution on the first iterations

Iteration number

C
on

ve
rg

en
ce

 s
tre

ss

Beta=0
Beta=0.4

0 2000 4000 6000 8000 10000

0.
04

0.
08

0.
12

0.
16

Stress evolution after 100 iterations

Iteration number

C
on

ve
rg

en
ce

 s
tre

ss

Beta=0
Beta=0.4

Fig. 3. Evolution of the convergence stress over the first 100 and 10000
iterations of the alternating projected gradient algorithm.

We can notice that the stress decreases rapidly in the first
iterations. But one can also notice oscillations of the stress
value over the long term when � 6= 0. These oscillations
are due to the choice of an L1 norm in the penalty term
L(H). Indeed the derivative @L(H)

@Hij
takes only three values

(2�, 0,�2�) and there are probably some abrupt changes in
the value during iterations. A L2 norm would probably lead
to a smoother evolution of the stress.

We are also interested in the impact of rank r on the quality
of the reconstruction. Table I gives the stress values of the
alternating projected gradient (APG) once the algorithm has
converged (after 150.000 iterations) and of the NeNMF (after
10.000 iterations). We considered � = 0 and a percentage of
missing data of 30%.

Rank r 1 2 3 4 6 8 10
Stress APG 0.031 0.031 0.014 0.011 0.007 0.005 0.003
Stress NeNMF 0.031 0.021 0.016 0.013 0.009 0.007 0.007

TABLE I
IMPACT OF RANK r ON THE STRESS.

We have also assessed the influence of the sampling rate. For
values ranging from 50% to 95% of delays known (i.e. Sij =
1), Table II gives the value of the stress after 150000 iterations
of alternating projected gradient (APG) , 10000 iterations of
the NeNMF method and for � = 0.

Table III gives the influence of � on the stress value for the
APG with a 30% missing data and after 150.000 iterations. As



Sampling rate 50% 60% 70% 80% 90% 95%
Stress APG 0.020 0.015 0.015 0.014 0.014 0.014
Stress: NeNMF 0.014 0.013 0.013 0.013 0.012 0.012

TABLE II
IMPACT OF SAMPLING RATE ON THE STRESS.

we can see, the effect of a regularization term is robust with
respect to the choice of �. Choosing � 2

⇥
10�2

, 5.10�2
⇤

yields a stress smaller than 2%. Finally, it is interesting to

� 0.001 0.01 0.05 0.1 0.3 0.5 0.7
Stress 0.017 0.015 0.015 0.019 0.018 0.017 0.019

TABLE III
IMPACT OF � ON THE STRESS.

observe the acceleration provided by Nesterov’s method in the
optimization of the criterion F (W,H). In Figure 4, the value
of the stress over the first 100 iterations of projected alternating
gradient and of the NeNMF algorithm is represented. While
the projected alternating gradient exhibits slow convergence
and numerical instabilities, the NeNMF algorithm converges
within fewer iterations. We also evaluated the execution time
of the alternating gradient method over 100.000 iterations and
the NeNMF method over 1000 iterations. We used a 2, 6
GHz Intel Core i7 processor with a 32Go 2667 MHz DDR4
memory. For the alternating gradient, the execution time was
16 minutes and for the NeNMF it was 472s. When considering
real-world data in the following section, this execution time
difference leads us to opt for the NeNMF algorithm.
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Fig. 4. Stress evolution over the first 100 iterations

C. RIPE Atlas RTT dataset

In this section, we analyze delay measurements from the
RIPE Atlas platform. RIPE Atlas [20] is a global and public
measurement platform held by RIPE NCC, that provides data
on Internet network availability. Our dataset corresponds to
delay measurements conducted each four minutes between a
set of anchors chosen randomly around the world. The mea-
surement campaign covers a period of one week. These delays
were collected using three ICMP pings, and the minimum
value is saved for each timestamp. This provides a dataset
of 720 RTT series of 2520 time slots each.

In this dataset, the overall missing delays represent 25%
of the measurements. We can observe on the heatmap Figure
5 that missing values are not distributed uniformly. Patterns
vary from a (Origin, Destination) pair to another. Missing
measurements may be due to a dysfunction of the origin or
destination anchor, and such problems can be temporary or
permanent. Only (Origin, Destination) pairs with a rate of
missing data lower than 80% were kept for the experiments.
Moreover, for each (Origin, Destination) time serie, we have
considered as outliers the points that are above (resp.below)
µ + 2�2 (resp. µ � 2�2) where µ is the mean of the known
delay values and �

2 is their variance. These values were
removed and considered as missing delays. So, the size of
matrix D is 572⇥ 2520 and the proportion of missing values
is 18% (i.e. Sij = 0). According to the previous results on the
synthetic data, we decided to apply only the NeNMF on the
Ripe dataset due to its speed. Since we lack ground truth for
the non-measured values for this dataset, we use the following
criterion to evaluate the factorization quality on observed

values Dij : P
k

error =

sP
i,j

Sij(Dij � [W kHk]ij)2P
i,j

Sij(Dij)2
, where

k is the iteration number. The algorithm converges within
hundreds of iterations, and we observe that the error decreases
with the rank. We fix the number of iterations to 1000 and the
rank to 100. In this experiment, the reconstruction error on
the observed values is 2%. This low error rate is highlighted
by Figure 6 which displays 5 different RTT series completed
using the NeNMF. We can notice that the completed segments
capture the overall baseline of the original RTT series.

Fig. 5. Heatmap showing the missing measurements (in black) in Ripe data

V. CONCLUSION AND FUTURE WORK

Network delays are of great importance in network mon-
itoring. Some of these measurements can be missing due to
infrastructure problems, packet loss, or simply to the mea-
surement strategy. In this paper, we addressed the problem
of inferring these missing delays within a matrix completion
approach. This was conceivable thanks to the stability of
delays throughout time that is a contributing factor to the
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Fig. 6. RTT completion using NeNMF

low rank property of the delay matrix. We used two Non-
negative matrix factorization algorithms: the alternating pro-
jected gradient and the NeNMF. We were able to test these
methods in a controlled environment by using a synthetic
delay generator and on real-world data with delays from Ripe
Atlas. The two approaches are simple, easy to implement and
show great accuracy on the completion task when applied
to synthetic data. The experiments however, pointed out the
speed difference between the two algorithms. The alternating
projected gradient converges slower than the NeNMF. Hence,
the scalability of the NeNMF was exploited by applying it to
real-world dataset. The completion given by this algorithm has
shown great accuracy within small number of iterations. De-
spite good performance demonstrated by the two approaches,
the regularization term using � wasn’t of interest in this
context, and we think that it can be explored in future work by
testing an L2-norm. This will provide more stability and can
be useful for change detection in network delays. We also plan
to validate NMF approaches on other real-world datasets, such
as the Abilene topology, the Harvard-226 dataset, and the full
anchoring mesh of Ripe Atlas. Finally, we intend to improve
this work by choosing strategies more sophisticated than the
uniform sampling.
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nonnegative matrix factorization,” in 2014 IEEE International Confer-

ence on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2014, pp. 6721–6725.

[3] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: A decentralized
network coordinate system,” ACM SIGCOMM Computer Communica-

tion Review, vol. 34, no. 4, pp. 15–26, 2004.

[4] T. E. Ng and H. Zhang, “Predicting Internet network distance with
coordinates-based approaches,” in Proceedings. Twenty-First Annual

Joint Conference of the IEEE Computer and Communications Societies,
vol. 1. IEEE, 2002, pp. 170–179.

[5] Y. Mao, L. K. Saul, and J. M. Smith, “Ides: An internet distance
estimation service for large networks,” IEEE Journal on Selected Areas

in Communications, vol. 24, no. 12, pp. 2273–2284, 2006.
[6] Y. Liao, W. Du, P. Geurts, and G. Leduc, “Dmfsgd: A decentralized ma-

trix factorization algorithm for network distance prediction,” IEEE/ACM

Transactions on Networking, vol. 21, no. 5, pp. 1511–1524, 2012.
[7] R. Zhu, B. Liu, D. Niu, Z. Li, and H. V. Zhao, “Network latency estima-

tion for personal devices: A matrix completion approach,” IEEE/ACM

Transactions on Networking, vol. 25, no. 2, pp. 724–737, 2016.
[8] G. Wang, B. Zhang, and T. E. Ng, “Towards network triangle inequality

violation aware distributed systems,” in Proceedings of the 7th ACM

SIGCOMM conference on Internet measurement, 2007, pp. 175–188.
[9] Y. Mao and L. K. Saul, “Modeling distances in large-scale networks

by matrix factorization,” in Proceedings of the 4th ACM SIGCOMM

conference on Internet Measurement, 2004, pp. 278–287.
[10] L. Chai, X. Luo, F. Zhao, M. Li, and S. Liu, “Network coordinate

system using non-negative matrix factorization based on KL divergence,”
in 2017 19th International Conference on Advanced Communication

Technology (ICACT), 2017, pp. 193–198.
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