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Abstract—In current sensor-based monitoring solutions, each
application involves a customized deployment and requires signif-
icant configuration efforts to adapt to changes in the sensor field.
This becomes particularly problematic for massive deployments
of battery-powered monitoring sensors.

In this paper, we propose a generic solution for sensor emission
scheduling to ensure overall regular sensor data emissions over
time (at a rate chosen by the user), with limited management
costs incurred by sensors’ arrivals and departure. Our objec-
tives include monitoring quality–which we quantify through a
“diversity” metric encompassing that information value depletes
with time–and some management cost–quantified by the number
of orders sent to sensors. Modeling arrivals and departures
as random processes, we compute those performance metrics
as functions of the overall data reception period selected, and
evaluate them against an alternative scheduling method existing
in the literature. We show that our solution provides similar
monitoring quality (diversity), but with significantly reduced
management costs, making it better suited for Massive IoT
contexts.

I. INTRODUCTION

A. New versatile monitoring solutions

Progress in electronics and signal processing has enabled the
development of miniaturized hardware. With the emergence of
new low-power telecommunications networks, a new genera-
tion of applications has emerged: large-scale deployed sensors
and actuators that can interact with their environment [1-3].

In a classical approach, a few very reliable sensors are
placed at pertinent locations to provide only relevant infor-
mation. Each solution is different and not very adaptable over
time. In contrast, the Massive Internet of Things (mIoT) takes
into account a large amount of cheap, energy-autonomous sen-
sors without prior information about their quality or position.
This paradigm shift changes the game for the development
of monitoring solutions, as it requires a high degree of
flexibility in sensor management [4]. This makes it possible
to develop versatile solutions that are independent of physical
development.

At a scale as large as that projected (500 billion connected
objects), automating and standardizing the integration and
management of these objects would remove a barrier to the
adoption of the mIoT. Interoperability, defined by the ability
to unify heterogeneous objects in a dynamic way, is therefore
an important step for the development of such solutions [4-7].

B. Existing methods for managing emissions from energy
autonomous sensors

Sensors are usually powered by batteries and consume
most of their energy when transmitting information. It is of
particular interest to manage sensor emissions appropriately in
order to limit the energy drain on the sensors.

First, since the early 2000s, energy saving features have
been proposed for devices [8,9]. Triggered and adaptive sens-
ing methods adapt the sensor sampling rate to variations in
the environment.

In 2018, [10] proposes to aggregate to a single sensor all
the information provided by the surrounding sensors in order
to limit the number of sends to the system. The article uses
the TOPSIS AHP method for the determination of the sensor
clusters. Other information aggregation methods, based on
index tree structures, are proposed in [11,12].

In 2014, [13] introduces the concept of ”Self-Organized
Things”. The authors introduce mechanisms that allow sensors
to be put to sleep if their spatial area is already covered by
other active sensors. In 2017, [14] proposes a energy-efficient
hierarchical network architecture. The authors propose an
adaptation of the sleep times of the sensors, depending on
the battery level, the standard variation of the returned values
and the proximity to the other sensors. New results of [14] are
depicted in 2019 [15], validating the relevance of exploiting
the deep sleep mode.

All of the studies mentioned above discuss different tech-
niques to save energy from IoT sensors. However, none of
them encompass hypothesis one can expect for mIoT. First, it
is considered standard sensors are emitting periodically on a
star topology, where it is possible to redefine their emission
period only when they send a message. Moreover, these
sensors are deployed with a minimum of human assistance: we
have no information about them, like positioning. Finally, one
of the main objectives of having a massive amount of sensors
is the adaptability to changes in the field of sensors: managing
the arrival of new sensors, the departure, the deactivation, etc.

More recently, [16] proposes a framework for developing
monitoring policies adhering to these requirements. The paper
gives a first instantiation, imposing one constraint: having
strict periodical receptions coming each time from one of the
sensors. We wish to build on that work, by proposing a more
realistic/applicable solution for mIoT.



C. Paper contributions and organization

Assume we wish to track the variations over time of a
physical quantity, using a large amount of sensors entering
and leaving the monitoring system. Our goal in this paper is
to receive a temporally homogeneous data stream, since this
is considered the simplest and most efficient way to track the
evolution of a physical quantity [17].

In addition, the proposed solution must reach the dynamic
level of the Conceptual Interoperability Model [18,19]: sensors
that enter and leave the environment must be dynamically
managed by the monitoring system. No matter how many
sensors are active, our goal is to rely on all the present
sensors in order to receive the same (average) number of
messages over time. This management of the sensors has
a cost, which is quantified by the number of order sent to
reconfigure sensor emission periods. Finally, the solution must
be easy to implement in order to be robust against packet loss
issues, common in most LPWAN technologies.

A typical example scenario is that of a connected wine
cellar, which would rely on connected objects supposedly em-
bedded in wine bottles (illustrating the mIoT paradigm). The
objective would be to take advantage of the bottles (sensors)
present in the cellar to control the interior temperature and
to detect a possible change. The solution should not be too
disrupted when new sensors arrive or leave, while making the
most of all the sensors present in the study area.
The main contributions of this paper are summarized below:
i) Based on a representation of sensors as the leaves of an
almost complete full binary tree, we develop a period update
function allowing the temporally homogeneous reception of
messages at the desired target rate, while limiting the number
of period change orders upon sensor arrivals and departures.
ii) Through a model with random sensor arrivals and depar-
tures, we compute performance metrics as a function of the
target reception rate set by the user.
iii) We compare our solution to existing sensor management
methods, and confirm its relevance in a posed framework such
as the one intended for mIoT.

The rest of the paper is organized as follows. section II
introduces the essential notions setting the framework for
the development of the solution proposed in the paper. In
section III, we construct the period update function and estab-
lish its properties. section IV develops the stochastic model
used to compute performance metrics. Simulations comparing
our solution to other existing methods and confirming the
analytical results are shown in section V. We conclude in
section VI, by proposing perspectives for future work.

II. PROBLEM STATEMENT

A. Hypothesis on sensors

We consider wireless sensors on battery, sending infor-
mation periodically about a physical quantity towards the
monitoring system. After each transmission, the sensor opens
a short listening time, to receive information from the outside
(LoRaWAN Class A standard), which we use to send sensor

period change orders. In particular, in this paper, we focus
on defining sensor management strategies that aim to enable
optimal monitoring while limiting sensor energy consumption.
We characterize a sensor emission management strategy by
a period update function f , which manages the sensor
emission period over time. The function takes as argument the
transmission history and the new message received, returning
a target transmission period. If this transmission period is
different from the current one, an order of period change is
made to the sensor during its listening window.

In our case, each message contains only the message content
and the ID of the sending sensor. One of the objectives of this
document is to manage the comings and goings of sensors
during monitoring. Receiving a message with an unknown
sensor ID means that it is a new sensor. Also, when a sensor
leaves the environment, we assume that a message with empty
content is received by the monitoring system during its next
transmission.

These assumptions help us handling new scenarios. Sensors
can enter the system at any time, the monitoring system
recognizes them as soon as they transmit and integrates them
into the management solution. Also, the departure of a sensor
can be caused by several reasons, which are now taken into
account in the policies we propose: (i) the sensor runs out of
energy, (ii) it physically leaves the environment, or no longer
describes the quantity in a relevant way (failure, description
of an isolated phenomenon).

B. Definition of metrics

By contrast with all already existing monitoring quality
metrics, where objectives are around the maximization of
coverage area [20,21], here we assume the position of the
sensors is unknown. Hence, to characterize the quality of a
data, we rely on the freshness function which quantifies the
relevance of a data, relatively to its age ∆t, compared to a
reference time T [22-24].

Applying the notion of freshness to a sensor, considering
its most recent emission, we will use the following definition
of diversity (developed in [16]).

Definition 1. The diversity at time t is defined as the sum of
the freshness of all sensors that were activated at that time.

We define the mean diversity as the average of the diversities
over a given monitoring time, denoted by D.

An understandable way to explain this would be to say
that the diversity at time t is the number of information
coming from different sources, all weighted by their age-
related relevance.

In addition to this monitoring quality metric, we are in-
terested in looking at the management cost, quantified by the
number of period change orders. When the gateway is giving
orders of period change, it cannot intercept messages sent by
other sensors. Moreover, the redefinition of the transmission
period implies an additional energy cost for the sensors.
Hence, this has direct impact on energy efficiency metric and



Fig. 1. Binary tree representation according to appearances and disappearance
of sensors; each sensor is represented with a colored circle with an ID. A
dotted line around a sensor means that its position was changed in the tree.
The part above represents the inclusion of 5 sensors one by one, indexed
from 1 to 5; the below one shows the departure of 3 sensors (symbolized by
a cross).
Horizontal dotted lines represent target emission periods so that a sensor
crossing a line have the corresponding emission period.

quality metric: lower lifetime of sensors, lower packet delivery
ratio.

A sensor emission management method induces a data-
flow received by the gateway. We are therefore interested in
quantifying the metrics defined above in relation to the same
number of sensor emissions per time unit, which should be
minimized to lower the overall consumption of the sensors.
Note that for the method developed in the paper, the number
of sensor emissions per time unit is a parameter chosen by the
user.

Hence, the objective for the user is then to guarantee a
sufficient diversity of reception, minimizing the number of
sensor emissions per time unit while limiting the number of
period changes orders.

III. DEVELOPMENT OF THE 2-LEVEL ROUND-ROBIN
MONITORING METHOD

1

A. Representation of the present sensors in a binary tree

Before developing the period update function which is the
subject of this paper, we first focus on the representation
structure of the sensors present in the environment, as leaf
nodes in a binary tree.

First, a sensor alone has an initial dept of 0 (on the root).
Then, when a second sensor arrives, the new tree is composed
of a 2 branches tree where each sensor is on a leaf. A
schematic principle is proposed in fig. 1.

More generally, sensors are represented as leaves of a binary
tree that is full: each node contains 0 or 2 sons. Moreover,
we constrained the tree to be almost complete (all levels are
filled except the last level) so that the tree doesn’t get too
unbalanced.

By these considerations, the present sensors can be grouped
into two categories representing the two maximum depths of
the tree, that we define as respectively maximum depth and
minimum depth categories.

1From Patrick: pourquoi ”development” dans le titre?

The tree changes as soon as the sensor field changes, i.e.
each time a sensor is added or removed.
•When a new sensor arrives in the environment, a minimum
depth sensor changes position by increasing its depth by
one, with the new sensor as a complementary sensor (only
2 branches to link them), both as maximum depth thereafter.
•When a sensor leaves, there are 2 cases :
· If the leaving sensor is of maximum depth. In this

case, as built, there is another sensor of maximum depth
complementary. This last one becomes of minimum depth by
decreasing its depth by one.
· If the leaving sensor is of minimum depth. A sensor of

maximum depth come in substitution to it. The complementary
of the latter becomes of minimum depth, decreasing its depth
by one.

B. Development of the period update function
2

We want to define a period update function so as to receive
a homogeneous quantity of information through time. Thus,
we define τ such that 1

τ is the target quantity of reception per
unit of time required, coming from one of the present sensors.
In other words, over a sufficiently long time, the receptions
are equivalent to the periodic reception of messages of regular
interval τ .

We rely on the binary tree representation of the sensors to
set the emission period of the sensors. In particular, we rely
on their depth in the binary tree. For a given τ , we define the
function as:

Definition 2. When receiving a new message:
- it may be necessary to update the binary tree, if the sensor

ID is new, or if the message content is empty (meaning that
the sensor is gone).

After this, considering a sensor which dept in the tree is d,
emitting a message at time t. Then 2-level round-robin with
parameter τ redefines the sensor period as: fτ (d) = 2d ∗ τ .3

Note that the metric of number of period change orders is
increased only if the sensor need to modify its emission period.

C. Outstanding properties

Here, we prove that the amount of information per unit of
time is invariant by adding and leaving sensors. Furthermore,
we quantify an upper bound for the number of period changes
upon arrival and departure of a sensor.

First, we need to introduce some notations, that will be used
both for the below properties, and section IV. We assume a
state where the period of a sensor of depth d is exactly 2d ∗ τ .
In reality, when a sensor position is changed, its period of
emission only changed during its next emission. Considering
n sensors, k is denoted as the largest power of 2 that is less
than n, k = 2⌊log2(n)⌋. Then, according to the binary tree
representation, we can say that:

2From Patrick: pourquoi ”development”?
3From Patrick: Eviter le symbole *, préférer soit rien soit ×



•nmin = 2k − n sensors emit at period kτ and are of
minimum depth. To understand this, if we add nmin additional
sensors, they become complementary to each of the sensors of
minimum depth to make the binary tree perfect, with exactly
2k sensors.
•nmax = 2(n− k) sensors emit with an emission period of 2k
and are of maximum depth.

Proposition 1. The sum of the inverses of the periods of the
active sensors4 remains unchanged at the addition of a new
sensor, and is equal to: ∑

i∈ present sensors

1

pi
=

1

τ

Proof. We consider n sensors. pi is the emission period of
sensor i. Thus, we can say that:∑

i present sensor
1
pi

= nmax
2kτ + nmin

kτ

= 2n−2k
2kτ + 2k−n

kτ
= 1

τ

Changing the position of a sensor in the tree results in a
change of its emission period, ordered at its next emission. If
the position is changed several times before a new emission,
the sensor changes it emission period only once. Then, we
depict an upper bound for the number of period change
orders when a new sensor arrives or leave an environment,
characterized by the number of sensor position changes in the
tree.

Proposition 2. When a new sensor arrives, the number
of position changes (counting the position definition of the
incoming sensor) is, by using 2-level round-robin r = 2.

At the exit of a sensor, the number of position changes of
the other sensors is, by using 2-level round-robin: r = 1 if the
sensor that dies is of maximum depth and r = 2 if the sensor
that dies is of minimum depth.

We can note that if the sensor field does not vary frequently,
then this upper bound gives a good approximation of the
number of period changes.

IV. MODELING THE ENTRANCES/DEPARTURES OF
SENSORS

A. Definition of sensor arrivals and departures by random
processes

We propose a modeling of sensor arrivals and departures by
random processes.

First, we model the time before the arrival of a new sensor
by an exponential law of parameter λ. The phenomenon
”sensor entry”, depicting the number of sensor inputs over
time, is then a Poisson process of intensity λ.

4From Patrick: Formulation bizarre, pourquoi ne pas juste dire qu’à tout
moment, le temps moyen entre deux envois est τ?

· · ·n· · ·10

λ λ

(n+ 1)µ+ γ
τ

nµ+ γ
τ

λ λ

2µ+ γ
τµ+ γ

τ

Fig. 2. Representation of the number of present sensors over time

Moreover, we consider that a sensor leaves the environment
for two main reasons:
• The sensor has consumed all its energy and switches off. We
assume that the sensor has an initial energy which follows an
exponential law of parameter γce, characterizing the variability
of the battery state when it arrives in the environment. The
sensor consumes an energy ce at each emission, and leaves
the environment if its energy is null. This model is strictly
equivalent to say that for a sensor which has a period p, the
time before running out of battery follows an exponential law
of parameter γ

p . ”out of battery”, representing the number of
sensors running out of battery over time, is a Poisson process
of intensity γ

τ thanks to Proposition 1 and the additionality
property of Poisson processes.
• The sensor leaves the environment for another reason.
This includes a physical departure from the environment, a
technical failure or other. Here, we consider that the maximum
time that a sensor can stay before leaving is an exponential
law of parameter µ. Each sensor follows this law. ”random
exit”, the number of sensors going out for other reasons over
time, is a Poisson process that for n present sensors in the
environment has an intensity nµ.

This leads to the definition of a continuous time Markov
chain representing the number of sensors over time, illustrated
in fig. 2.

B. Analytical expression related to monitoring metrics

We note Πn the probability of having n active sensors in the
steady state. By observing the transitions between n−1 and n
states in the steady state, we obtain the following recurrence
formulae:

λΠn−1 = (nµ+
γ

τ
)Πn

Thanks to
∑+∞

n=0 Πn = 1, this gives us the following formulae
for the expression of the probability of being in state n in the
steady state:

n ≥ 1, Πn =
(∏n

j=1
λ

jµ+ γ
τ

)
Π0

Π0 = 1

1+
∑+∞

n=1

(∏n
j=1

λ
jµ+

γ
τ

)

The series
(∏n

j=1
λ

jµ+ γ
τ

)
n∈N∗

converge, so Π0 ̸= 0 exist,
hence the existence of a steady state.

The number of position changes per unit of time considering
n present sensors, is denoted5 ṙn

6. From Proposition 2, by
splitting between small and maximum depth sensors, the

5From Patrick: denoted by
6From Patrick: notation bizarre : pour moi le point au-dessus d’une grandeur

marque la dérivée par rapport au temps de cette grandeur



sensors that die in minimum depth lead to 2 position changes,
and 1 for maximum depth. Thus ṙn is:

ṙn = 2
(

γ
τ

2nmin
2nmin+nmax

+ nminµ
)

+
(

γ
τ

nmax
2nmin+nmax

+ nmaxµ
)
+ 2λ

And so, the average position changes per time unit of
sensors in the tree, upper bound of the average number of
period changes per unit of time, is:

ṙ =

+∞∑
n=1

Πn ∗ ṙn (1)

Considering the freshness function uT (∆t) = e−
∆t
T , the

average diversity if there are n sensors in the environment is:

Dn = Tnmax
1− e

−2kτ
T

2kτ
+ Tnmin

1− e
−kτ
T

kτ

7 The average diversity at equilibrium is therefore the sum of
the diversities for each possible value of number of sensors
present, weighted by the probability Πn :

D =

+∞∑
n=1

Πn ∗Dn (2)

V. SIMULATIONS

This section applies the 2-level round-robin method that is
developed in the present paper. First, we show that it offers the
best results in a context that can be expected from mIoT, by
comparing it to other existing methods. Moreover, we confirm
that the simulation fits the theoretical model from section IV-B.

A. Simulation frame

We consider a monitoring by the use of sensors over a
given time. We evaluate the performance metrics after an
initial duration. We consider that the sensors enter and leave
the environment following the random processes defined in
section IV-A. For all methods, we apply the period update
function for each sensor message reception, and evaluate the
overall performance after the simulation is completed. The
parameters of the simulation are given in Table I, we use s
as reference of time. Performance results are shown in figs. 3
and 4.

Parameter Meaning Value
Beginning evaluation time 10000s
Ending evaluation time 100000s

λ parameter ”sensor entry” 0.1s−1

µ parameter ”random exit” 0.001s−1

γ parameter ”out of battery” 0.01

Freshness function Depletion over time e(−
∆t
T

)

T Relevance time of a data 20s

TABLE I
SIMULATION PARAMETERS

100 101
0

20

40

nb of emission per time unit

di
ve

rs
ity

Mean diversity periodic round-robin

95% confidence minimum diversity periodic round-robin

Mean diversity 2-level round-robin

95% confidence minimum diversity 2-level round-robin

Theoritical diversity 2-level round-robin (2)

Fig. 3. Mean diversity and 95% confidence minimum diversity based on the
standard variation of diversities over time, comparing periodic round-robin and
2-level round-robin methods, according to the average number of emission per
time unit. Depletion of theoretical curve fitting the mean diversity of 2-level
round-robin method.

B. Performance evaluation

To the best of our knowledge, the only solution presented
in the literature suitable for the context one can expect for
mIoT is [16]. Here, we do not make a comparison with other
methods, because they are quite out of the scope of this paper:
they rely on greater knowledge of the sensors. Moreover, for
the most part, they modify the emission period of the sensors
at each emission, which tends to disqualify them directly.

The function proposed by [16] allows the strict periodic
emission from one of the present sensors of a period τ , in
the form of a round-robin between all the present sensors. We
name this method periodic round-robin. This method would
give an optimal diversity value, since it makes different sensors
transmit in turn, while guaranteeing a strict periodic reception
of messages.

We want to compare all these methods with respect to the
same number of sensor emissions per unit of time. In our case,
this is directly related to the parameter of the two methods:
the number of sensor emissions per time unit corresponds to
1
τ . We propose to compare them with respect to the diversity,
and the number of period change orders.

First, from fig. 3, we notice that the average diversities of
the two methods are close. Since there is a strictly periodic
reception of messages with periodic round-robin, the threshold
allowing a 95% confidence minimum diversity is more cen-
tered around its mean than for 2-level round-robin, which does
not guaranty strict periodic reception of messages. Therefore,
periodic round-robin provides better results if a user has a
minimum diversity requirement of 95%.

Focusing exclusively on the diversity under the simpli-
fied consideration of the simulation, periodic round-robin

7From Patrick: Comment obtiens-tu cette expression ? Via une intégrale ?
Ou bien tu utilises des propriétés de la loi exponentielle ?
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Upper bound period change per unit of time 2-level round-robin (1)

Fig. 4. Number of period change per time unit, according to the number of
emission per time unit. Theoretical upper bound of the number of changes of
2-level round-robin method

is slightly better than 2-level round-robin. However, from
fig. 4, the 2-level round-robin method involves a low rate
of period change. For periodic round-robin, the number of
orders performed by the gateway is exorbitant; about the
same amount of transmission as performed by the sensors.
Using arguments given in section II-B, the periodic round-
robin solution lowers the QoS significantly, makes the sensors
consume more, and induces a diversity that will actually be
lower in real conditions.

Moreover, the strict periodic reception imposed by the
periodic round-robin method induces a high sensitivity to
packet losses. When a sensor is included in the environment,
it must perfectly receive 2 consecutive messages of period
modification order. On the contrary, the two-level round-robin
does not rely on the perfect reception of the sensors’ orders:
if an order is not well received, another order will be sent the
next time.

Hence, we can confidently state that our solution is the most
adaptable in a framework such as the one we initially posed,
modeling mIoT monitoring requirements.

From the theoretical model proposed in section IV-B, we
illustrate the link between the parameter of number of mes-
sages sent per unit of time target 1

τ and the average diversity
- the number of order of maximum depth modifications, in
figs. 3 and 4. As constructed, the theoretical mean diversity (2)
gives a similar result to the simulation. It is therefore possible,
starting from a mean diversity objective, to choose without
the help of the simulation to determine the value of τ for the
2-level round-robin method that will give the desired mean
diversity. For example, if we want a mean diversity D = 20,
we will choose a value of the parameter τ = 0.97 (graphically
depicted in fig. 3).

Moreover, thanks to the upper bound developed, we ensure
that the number of orders of period modifications will not
be too important (in particular in comparison with periodic
round-robin), whatever the value of the parameter τ chosen.

VI. CONCLUSION ET PERSPECTIVES

This paper proposes an efficient monitoring solution that
relies on miniaturized sensors on battery transmitting on a
highly constrained network such as LoRaWAN Class A. Our
method allows having an optimal diversity of sensor receptions
ensuring a limited cost of adaptation to sensor field changes.

Our solution allows the efficient monitoring of an average
physical quantity through the exploitation of highly con-
strained IoT objects in massive amount. This method, totally
generic and easily applicable to LPWANs in mIoT context,
validates the possibility of adopting such a paradigm for future
monitoring solutions.

A lot of work remains to be done: (i) we have shown that it
is possible to dynamically manage sensor inputs and outputs.
Here, it would be relevant to look for some conditions in order
to add and remove such sensors from information systems.
Conditions would be based on a geographical position or on
the relevance of the returned data, for instance. (ii) For the
moment, we have considered that each message constitutes an
atomic piece of information. However, each message contains
different information, which is very dependent on the sensors.
Incorporating these considerations into our monitoring policies
is also a next step.
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