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Abstract—In current sensor-based monitoring solutions, each
application involves a customized deployment and requires signif-
icant configuration efforts to adapt to changes in the sensor field.
This becomes particularly problematic for massive deployments
of battery-powered monitoring sensors.

In this paper, we propose a generic solution for LPWAN
sensors emissions scheduling, to ensure overall regular sensor
data emissions over time (at a rate chosen by the user), while
limiting management costs incurred by sensors’ arrivals and
departure. Our objectives include monitoring quality that we
evaluate through a “diversity” metric encompassing that infor-
mation value depletes with time, plus management cost quantified
by the number of orders sent to sensors. Modeling arrivals and
departures as random processes, we compute those performance
metrics as functions of the overall data reception period selected,
and evaluate them against alternative scheduling methods. We
show that our solution is better suited for Massive IoT contexts.

I. INTRODUCTION

A. New versatile monitoring solutions

Progress in electronics and signal processing has enabled the
development of miniaturized hardware. With the emergence of
new low-power telecommunications networks, a new genera-
tion of applications has emerged: large-scale deployed sensors
and actuators that can interact with their environment [1-3].

In a classical approach, a few very reliable sensors are
placed at pertinent locations to provide only relevant infor-
mation. Each solution is different and not very adaptable over
time. In contrast, the Massive Internet of Things (mIoT) takes
into account a large amount of cheap, energy-autonomous sen-
sors without prior information about their quality or position.
This paradigm shift changes the game for the development
of monitoring solutions, as it requires a high degree of
flexibility in sensor management [4]. This makes it possible
to develop versatile solutions that are independent of physical
development.

At a scale as large as that projected (500 billion connected
objects for 2030 1), automating and standardizing the inte-
gration and management of these objects would remove a
barrier to the adoption of the mIoT. Interoperability, defined
by the ability to unify heterogeneous objects in a dynamic
way, is therefore an important step for the development of
such solutions [4-7].

1https://emarsonindia.com/wp-content/uploads/2020/02/Internet-of-Things.
pdf

B. Literature on management of energy autonomous sensors

Sensors are usually powered by batteries and consume
most of their energy when transmitting information. It is of
particular interest to manage sensor emissions appropriately in
order to limit the energy drain on the sensors.

First, since the early 2000s, energy saving features have
been proposed for devices [8,9]. Triggered and adaptive sens-
ing methods adapt the sensor sampling rate to variations in
the environment.

In 2018, [10] proposes to aggregate to a single sensor all
the information provided by the surrounding sensors in order
to limit the number of sends to the system. The article uses
the TOPSIS AHP method for the determination of the sensor
clusters. Other information aggregation methods, based on
index tree structures, are proposed in [11,12].

In 2014, [13] introduces the concept of ”Self-Organized
Things”. The authors introduce mechanisms that allow sensors
to be put to sleep if their spatial area is already covered by
other active sensors. In 2017, [14] proposes a energy-efficient
hierarchical network architecture. The authors propose an
adaptation of the sleep times of the sensors, depending on
the battery level, the standard variation of the returned values
and the proximity to the other sensors. New results of [14] are
depicted in 2019 [15], validating the relevance of exploiting
the deep sleep mode.

All of the studies mentioned above discuss different tech-
niques to save energy from IoT sensors. However, none of
them encompass hypothesis one can expect for mIoT. First, it
is considered standard sensors are emitting periodically on a
star topology, where it is possible to redefine their emission
period only when they send a message. Moreover, these
sensors are deployed with a minimum of human assistance: we
have no information about them, like positioning. Finally, one
of the main objectives of having a massive amount of sensors
is the adaptability to changes in the field of sensors: managing
the arrival of new sensors, the departure, the deactivation, etc.

More recently, [16] proposes a framework for developing
monitoring policies adhering to these requirements. The paper
gives a first instantiation, imposing one constraint: having
strict periodical receptions coming each time from one of the
sensors. We wish to build on that work, by proposing a more
realistic/applicable solution for mIoT.



C. Paper contributions and organization

Assume we wish to track the variations over time of a
physical quantity, using a large amount of sensors entering
and leaving the monitoring system. Our goal in this paper is
to receive a temporally homogeneous data stream, since this
is considered the simplest and most efficient way to track the
evolution of a physical quantity [17].

In addition, the proposed solution must reach the dynamic
level of the Conceptual Interoperability Model [18,19]: sensors
that enter and leave the environment must be dynamically
managed by the monitoring system. No matter how many
sensors are active, our goal is to rely on all the present
sensors in order to receive the same (average) number of
messages over time. This management of the sensors has
a cost, which is quantified by the number of order sent to
reconfigure sensor emission periods. Finally, the solution must
be easy to implement in order to be robust against packet loss
issues, common in most LPWAN technologies.

A typical example scenario is that of a connected wine
cellar, which would rely on connected objects supposedly em-
bedded in wine bottles (illustrating the mIoT paradigm). The
objective would be to take advantage of the bottles (sensors)
present in the cellar to control the interior temperature and
to detect a possible change. The solution should not be too
disrupted when new sensors arrive or leave, while making the
most of all the sensors present in the study area.
The main contributions of this paper are summarized below:
i) Based on a representation of sensors as the leaves of an
almost complete full binary tree, we develop a period update
function allowing the temporally homogeneous reception of
messages at the desired target rate, while limiting the number
of period change orders upon sensor arrivals and departures.
ii) Through a model with random sensor arrivals and depar-
tures, we compute performance metrics as a function of the
target reception rate set by the user.
iii) We compare our solution to existing sensor management
methods, and confirm its relevance in a posed framework such
as the one intended for mIoT.

The rest of the paper is organized as follows. section II
introduces the essential notions setting the framework for
the development of the solution proposed in the paper. In
section III, we construct the period update function and estab-
lish its properties. section IV develops the stochastic model
used to compute performance metrics. Simulations comparing
our solution to other existing methods and confirming the
analytical results are shown in section V. We conclude in
section VI, by proposing perspectives for future work.

II. PROBLEM STATEMENT AND MODEL

A. A dynamic set of battery-powered sensors

We consider wireless sensors on battery, sending infor-
mation periodically about a physical quantity towards the
monitoring system. After each transmission, the sensor opens
a short listening time, to receive information from the outside,
which we use to send sensor period change orders. These

considerations respect the specifications of LPWANs and keep
being suitable for all types of star topology networks.

In this paper, we focus on defining sensor management
strategies that approach optimal monitoring while limiting
sensor energy consumption. We characterize a sensor emission
management strategy by a period update function f , which
manages the sensor emission period over time. The function
takes as argument the transmission history, and returns a new
transmission period to be applied by the sensor that sent the
latest message. If this transmission period is different from the
current one, an order of period change is sent to the sensor
during the listening window.

In our case, each message sent by sensors contains the
message content and the ID of the sending sensor. One of the
objectives of this paper is to manage arrivals and departures
of sensors during monitoring. Receiving a message with an
unknown sensor ID means that it is a new sensor. Also, when
a sensor leaves the environment, we model it as a message
with empty content received by the monitoring system on its
next transmission.

These assumptions help us handling new scenarios. When a
new sensor first emits, the monitoring system recognizes it and
integrates it into its management policy. Also, the departure of
a sensor can be caused by several reasons, taken into account
in the policies we propose: (i) the sensor runs out of energy,
(ii) it physically leaves the environment, or no longer describes
the quantity in a relevant way (sensor that would be identified
as irrelevant).

B. Performance metrics

By contrast with already existing monitoring quality met-
rics, where objectives are around the maximization of the
coverage area [20,21], here we assume the position of the
sensors is unknown and we will want to get information from
a large number of sensors. To characterize the quality of data,
we rely on its freshness, which we quantify through a function
that decreases as data ages [22,23].

In this paper, we use as a performance metric the sum of
the freshness values of the latest data from each sensor, which
we will call diversity (as also developed in [16]).

Definition 1. The diversity at time t is the sum of the freshness
of the latest emission of all sensors that are (or were) in the
environment.

Diversity at time t can be interpreted as the current value
of information, accumulated from different sources: since the
goal is to track the evolution of a physical quantity (e.g.,
temperature), only the latest emission from each sensor needs
to be considered, and each piece of data is weighted by its
age-related relevance (freshness).

In addition to this monitoring quality metric, we are inter-
ested in the management cost, quantified by the number of
period change orders. When the gateway is giving orders
of period change, it cannot intercept messages sent by other
sensors; plus, the redefinition of the transmission period can
imply an additional energy cost for the sensors. Therefore, a



large number of period change commands has a direct impact
on monitoring quality: sensors die sooner and packages are
more likely to be lost.

The objective for the user will be to find a satisfying
trade-off between those metrics, by ensuring an accurate
monitoring (high diversity) while controlling the management
costs (number of period change orders). Note that setting
(fixed) short emission periods for all sensors might satisfy
both objectives, but this would accelerate battery depletion,
ultimately degrading the diversity metric as sensors die.

III. THE 2-LEVEL ROUND-ROBIN MONITORING METHOD

This section presents our proposed solution to compute
individual sensors’ emission periods, while maintaining a
constant “overall” period τ of data receptions. The basic idea
is to have all sensors emit with a “similar” (up to a factor 2)
period, while needing to send only one or two period change
orders for each sensor arrival or departure. This is in contrast
to [16], where all sensors had the exact same period, but each
arrival/departure involved an order sent to each sensor.

A. Construction of the period update function

To ensure the emission periods of all sensors never differ by
more than a factor 2, we will represent sensors as the leaves
of a full balanced binary tree, and impose that a sensor with
depth d in the tree have an emission period set to 2dτ . Figure 1
illustrates how the tree evolves as sensors enter and leave the
system.

Fig. 1. Evolution of the binary tree representation as sensors enter (top) or
leave (bottom) the system; each sensor is represented with a colored circle
with an ID, and horizontal dotted lines represent the emission periods of the
sensors at that depth. A dotted line around a sensor means that its position
(and height) was changed in the tree (hence a period change order is needed).
The top part represents the successive arrivals of sensors indexed from 1
to 5; the bottom one shows the successive departure of sensors 4, 2, and 3
(departures are symbolized by a cross).

The binary tree being balanced means that all levels are
filled except possibly the last one, hence leaves only exist in
the last (and possibly penultimate) level(s). The active sensors
can therefore be grouped into two categories, whether their
representation in the tree is in the last or second-last level in
the tree, that we define as respectively high-depth and low-
depth categories. We should note that if all the sensors belong
to the same category, by convention we consider them all high-
depth.
•When a new sensor arrives in the environment, if all sensors
are high-depths, we now consider all of them being low-
depths, so that in all cases there is a low-depth sensor.

Hence, one of these (low-depth sensors) changes position by
increasing its depth by one, and the new sensor becomes its
sibling (with a same parent), both being high-depth thereafter.
•When a sensor leaves, there are 2 cases:
· If the leaving sensor is of high-depth, by construction it

has a sibling, which becomes of low-depth by decreasing its
depth by one. This is the case for the exits of sensors 2 and
3 in fig. 1.
· If the leaving sensor is of low-depth, it is substituted with

a high-depth sensor, whose displacement is treated like the
departure of a high-depth sensor (described above). This is
the case for the departure of sensor 4 in fig. 1.

For a sensor i that just sent a message, the period update
function f that we suggest is then simply f(H) = 2diτ , with
di the depth of node i in the current version of the tree that
the gateway maintains thanks to the history H of messages
received so far.

B. Properties

We show here that our suggested period update function
meets the objectives initially set, regarding the reception at
a global rate of τ , with a limited number of period change
orders over time. To that goal, we make the approximation
that the period of a sensor of depth d is exactly 2dτ at any
moment, while in reality, when a sensor changes positions in
the tree (because of another sensor’s arrival or departure), its
emission period is only modified after its next emission.

For n sensors, let us denote by k the minimum depth of
the tree, h = ⌊log2(n)⌋. Then, according to the binary tree
representation, we can say that:
• nmin = 2h+1−n sensors emit at period 2hτ and are of low-
depth. To understand this, if nmin additional sensors are added
in the environment, they become complementary to each of the
sensors of low-depth in order to make the binary tree perfect,
with exactly 2h+1 sensors.
• nmax = 2(n − 2h) sensors emit with an emission period of
2h+1 and are of high-depth.

Proposition 1. At any moment, the average time between two
sensor emissions is τ . Mathematically, if S denotes the current
set of sensors in the tree, and pi the emission period of sensor
i, we have∑
i∈S

1

pi
=

nmax

2h+1τ
+

nmin

2hτ
=

2n− 2h+1

2h+1τ
+

2h+1 − n

2hτ
=

1

τ
.

Changing the position of a sensor in the tree results in a
change of its emission period, ordered at its next emission. If
the position is changed several times before a new emission,
the sensor changes its emission period only once. Therefore,
counting the number of position changes in the tree of a
sensor provides us with an upper bound for the actual number
of period change orders over time, a useful insight on the
management cost of our method. From our tree construction,
those position changes are quantified below.
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Fig. 2. Markov modeling of the number of active sensors over time

Proposition 2. When a new sensor arrives, the number of
position changes in the tree (counting the position definition
of the incoming sensor) is r = 2.

When a sensor leaves the environment, the number of
position changes is r = 1 if the sensor that dies is of high-
depth and r = 2 if it is of low-depth.

IV. A MARKOVIAN MODEL FOR PERFORMANCE
EVALUATION

In this section, we develop a model to analyze as a Markov
chain the evolution over time of the number n of jointly used
sensors. This will be used to estimate the steady-state values
of our performance metrics.

A. Modeling sensor arrivals and departures

We model sensor arrivals as a Poisson process, with an
average arrival rate of λ sensors per time unit.

Regarding departures, we assume that a sensor can leave
the environment for two main reasons:
• The sensor has consumed all its energy and switches off. We
consider that the sensor has an initial energy which follows an
exponential law with mean ce/γ, with ce the energy consumed
for each emission, and γ a parameter characterizing the
variability of the battery state when joining the environment.
To have a continuous-time Markov chain, we slightly relax the
periodic-emission assumption from sensors, by assuming that
each sensor i with period pi emits messages according to a
Poisson process with rate 1/pi (note that in our simulations,
emissions are really). With this model, the time before running
out of battery follows an exponential law of parameter γ

pi
.

At any moment, the time before one sensor leaves because
of battery depletion is then exponentially distributed, with
parameter

∑
i∈S

γ
pi

= γ/τ , thanks to Proposition 1.
• The sensor leaves the environment because it has been
physically removed, turned off, or has undergone a technical
failure. For each sensor, the time before this occurs is modeled
through an exponential law of parameter µ, hence with n
sensors the time before one departure for this reason is
exponentially distributed with parameter nµ.

With those assumptions, the continuous-time process de-
scribing the number n of sensors in the system is a Markov
chain, whose transition diagram is displayed in fig. 2.

B. Performance metrics estimation

We now use the Markov chain previously described to
derive the steady-state distribution on n, and corresponding
expected values for our performance metrics (approximating
the actual ones).

Denoting by πn the steady-state probability of having n
active sensors, we have λπn−1 = (nµ + γ

τ )πn for all
n ≥ 1, leading to πn =

(∏n
j=1

λ
jµ+ γ

τ

)
π0 with π0 =

1

1+
∑+∞

n=1

(∏n
j=1

λ
jµ+

γ
τ

) .

The number ṙn of position changes of sensors in the
tree per time unit if there are n sensors is, by splitting
between low and high-depth sensors (from Proposition 2):
ṙn = 2

(
γ
τ

2nmin
2nmin+nmax

+ nminµ
)
+
(

γ
τ

nmax
2nmin+nmax

+ nmaxµ
)
+2λ.

An upper bound for the average number of period change
orders sent per time unit is then ṙ =

∑+∞
n=1 πnṙn.

Considering the freshness function uT (x) = e−
x
T , the

average diversity for one sensor of emission period p is
T/p(1− e−p/T ). Then, we can estimate the average diversity
Dn for n sensors as

Dn = Tnmax
1− e

−2h+1τ
T

2h+1τ
+ Tnmin

1− e
−2hτ

T

2hτ
,

and the (steady-state) average diversity D as

D =

+∞∑
n=1

πnDn. (1)

V. SIMULATION RESULTS

This section compares the 2-level round-robin method de-
veloped in this paper to other existing strategies, highlighting
that it is the best fitted method under the hypotheses and
objectives considered. Moreover, we show that the analytical
study can help find the user parameter τ maximizing the
diversity.

A. Comparative performance evaluation

1) Simulation frame: We consider an initially empty sys-
tem, with sensors entering and leaving as per the random
processes described in section IV-A, except emissions are
really periodic. We assume two consecutive phases: in the
first one, many sensors enter the environment, while in the
second one, sensors enter the environment more rarely. We
start observing the environment (i.e., computing the metrics)
after an initialization time.

For all three methods, we apply the period update function
after each sensor message reception, and evaluate the overall
performance after the simulation is completed. The parameters
of the simulation are given in Table I.

Recall our two metrics are diversity (that varies over time)
and management cost (overall number of period update or-
ders). Rather than the average diversity value over time, we
display here its 5th percentile, that is, the diversity value that
is guaranteed 95% of the time. For the management cost, we
just count the period update orders sent per time unit.

2) Other scheduling methods for comparison: To the best
of our knowledge, the only solution from the literature that is
suitable for the context one can expect for mIoT is from [16].
Indeed, other existing methods tend to be outside our scope:
they rely on much greater knowledge of the sensors. Moreover,
for the most part, the methods modify the emission period of



Parameter Meaning Value
Initialisation time 20000s
Duration of the first phase 50000s
Duration of the second phase 50000s

λ1 Sensor arrival rate - first phase 0.1s−1

λ2 Sensor arrival rate - second phase 0.001s−1

1/γ Average battery level 1000 emissions
µ Departure rate (other than battery depletion) 0.00002s−1

Freshness Value depletion with time x e−x/T

T Relevance time of data 100s

TABLE I
SIMULATION PARAMETERS

the sensors at each emission, which tend to disqualify them
since our objective is to minimize the number of orders given
by the monitoring system.

The function proposed by [16] allows to receive strictly
periodic transmissions globally with a period τ , through a
synchronized round-robin scheduling over all active sensors.
Let us call that method periodic round-robin; its main
drawback regards managements costs, since for each arrival or
departure all the active sensors have to change their emission
period.

Moreover, we propose to compare to the simplest sensor
management method, that fixes the same (given) emission
period p to all newly arrived sensors. That method, that we
call static, minimizes the number of period change order, but
does not adapt to the changing number of present sensors.

3) Performance evaluation: fig. 3(a) illustrates a simulation
trajectory, showing the diversity over time for the 3 man-
agement methods, with parameters τ = 0.1s for the two
round-robin methods, and p = 150s for the static one. The
curves show how the period update function manages sensor
emissions, in particular how it adapts to sensor field changes.
We graphically show our overall diversity metric, that is the
5th-percentile over the observation period: 95% of the time,
the instantaneous diversity exceeds that value.

The overall performance metrics of the three methods for
different parameters are shown in fig. 3(b,c), for different
parameter values (τ on the bottom x-axis for round-robin
methods, and p for static on the top).

From fig. 3(b), the best methods under the simulation
conditions are the round-robin ones, each insuring the best
monitoring quality for τ around 0.1s. The static method
performs a little less well in our simulations, even with the
most favorable fixed period p. One reason for this is that it
does not adapt to the number of present sensors, hence may
overuse the sensors when there is a high density, rather than
saving their energy for later.

Note also that the periodic round-robin and the 2-level
round-robin provide fairly similar diversity over time, although
the periodic round-robin leads to a more stable diversity, due
to the periodic round-robin method ensuring strict periodic
message receptions.

However, those strict periodic receptions come with a high
management cost, as illustrated in fig. 3(c). For τ = 0.1,
periodic round-robin implies 59 times more period update

messages to the sensors than 2-level round-robin. This is due
to our tree structure, that limits the number of period change
orders to 1 or 2 for each arrival or departure, instead of n for
periodic round-robin.

B. Search for the optimal parameter

We show here how to choose the parameter τ to have the
best monitoring quality, in a steady-state situation (we take
here the second phase of our simulation, as an example). In
fig. 4(a), we show the instantaneous diversity over time when
τ = 5, with a steady-state behavior around the theoretical
expected value computed in (1) from the Markovian model.
In fig. 4(b), we compare that theoretical mean diversity from
(1) with the simulated fifth percentile for different values of
τ .

From these results, if sensor arrivals and departures are
reasonably modeled with Markovian models, then we can
approximate the mean diversity in the steady state, for a
given user parameter τ . This can be used to choose a well-
performing τ , which should also be close to optimal for the
fifth percentile, as suggested by fig. 4 (b).

VI. CONCLUSIONS AND PERSPECTIVES

This paper proposes a data emission strategy for monitoring
solutions relying on miniaturized battery-powered sensors,
transmitting on a highly constrained network. Our method
guarantees the quality of the monitoring (in the sense of a
diversity metric), with a limited cost of adaptation to sensor
field changes.

Our solution can for example be used to monitor an average
physical quantity with a large number of IoT objects. It is
generic and easily applicable to LPWANs in the mIoT context,
and validates the possibility of adopting such a paradigm for
future monitoring solutions.

A lot of work remains to be done: (i) it could be relevant to
not always use all the sensors that are present, e.g., turn some
off because of their geographical position or the quality of the
data they return, for instance. (ii) For the moment, we have
considered that each message constitutes an atomic piece of
information. However, each message contains different infor-
mation, which is very dependent on the sensor. Incorporating
these considerations into our monitoring policies is also a next
step.
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