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Abstract

Dealing with redundancy is one of the main challenges in frequency based data
mining and itemset mining in particular. To tackle this issue in the most ob-
jective possible way, we introduce the theoretical bases of a new probabilistic
concept: Mutual constrained independence (MCI). Thanks to this notion, we
describe a MCI model for the frequencies of all itemsets which is the least bind-
ing in terms of model hypotheses defined by the knowledge of the frequencies of
some of the itemsets. We provide a method for computing MCI models based
on algebraic geometry.

We establish the link between MCI models and a class of MaxEnt models
which has already known to be used in pattern mining. As such, our research
presents further insight on the nature of such models and an entirely novel
approach for computing them.

Keywords: pattern mining, itemset mining, interestingness, redundancy,
maximum entropy model, independence model

1. Introduction

Research in frequency based itemset mining and, more generally, frequency
based pattern mining has identified the reduction of the huge quantities of pat-
terns extracted through mining as a key objective [1, 21, 49]. End users prefer
quality over quantity and data miners should provide for adequate tools to tackle
this issue. One manner of considering this issue relies on the idea that some
knowledge may be sufficient to infer other elements of knowledge. Elements of
knowledge which can be inferred may then be considered as redundant informa-
tion with low interest to the user. In order to build a pattern mining process
based on this idea, three questions must be answered:
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1. What information can be inferred about a pattern or a set of patterns
from information about other patterns in the data?

2. How do we measure the redundancy within information about patterns
given the notion of inference defined above?

3. How do we extract information about patterns with low redundancy?

We focus here specifically on an answer to the first of these three questions.
As such, our work provides for novel theoretical approaches and algorithmic
methods with applications in pattern mining, as well as information theory.
Conversely, it is not the purpose of this article to present a complete method
for the mining of non-redundant itemsets. Note that redundancy is not the
only way to consider the interestingness of patterns in frequency based pattern
mining and there is a wide variety of alternative approaches, notably those based
on interestingness measures, for quantifying the interestingness of individual
patterns [16, 30, 29, 48, 28].

In itemset mining, the issue of redundancy was first addressed using exact
approaches: given the knowledge of the frequency of some itemsets it might
be possible, in some cases, to determine the exact frequency of other itemsets.
This gave rise to a number of concepts such as non-derivable itemsets [6, 7],
closed itemsets [50] or minimal generators [44]. However, the number of itemsets
needed to provide a full exact description of the frequencies of the itemsets in a
dataset can still be much too important to render such exact approaches entirely
satisfactory [49].

Furthermore, they do not solve the issue of redundancy completely. Indeed,
even though we may not infer the frequency of a particular itemset exactly from
the known frequencies of other itemsets, this does not mean we have no knowl-
edge about the frequency of this itemset at all. Certain values could be much
more surprising than others and the additional knowledge of the unsurprising
frequency of an itemset, based on the prior knowledge of the frequencies of other
itemsets, can be considered redundant with this prior knowledge. In order to
tackle the issue of redundancy from this perspective, it is necessary to deter-
mine how the prior knowledge of the frequencies of certain itemsets can provide
information about the frequencies of other itemsets. Various approaches have
been suggested to address this point based on randomization methods [17, 22],
maximum entropy (MaxEnt) models [24, 46, 47, 12, 33, 10] or constrained in-
dependence models [14].

We suggest a novel approach towards this issue based on a notion of mutual
constrained independence (MCI). This notion generalizes to all sets of itemsets
the notion of constrained independence introduced in [14], which applied only
to a very specific type of set of itemsets (the set of all proper itemsets of an
itemset). We present the theoretical and mathematical foundations of MCI,
together with a method for computing MCI models. Furthermore, by exhibiting
the relationship between MCI models and MaxEnt models, we show how our
computation method can help decrease computation times for MaxEnt models
in itemset mining by several orders of magnitude.

For readers familiar with the random-worlds framework [2, 19, 20], the ratio-
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nale underlying the construction of the MCI model, in the context of itemsets,
is closely related to the one behind the random-worlds framework, in the more
general context of formulas in first-order logic. In fact, the MCI model may be
seen as a specific instance of the random-worlds framework when considering
simplified constraints. As such, the main contribution of this article relies in
the algorithmic methods presented for the computation of MCI models as well
as the mathematical characterizations of the models on which these methods
are grounded. However, the mathematical and algorithmic tools presented in
this paper may only be applied within a similarly simplified context. Hence, as
the random-worlds framework is not necessary for the construction of the MCI
model and may also raise theoretical issues, the MCI approach is presented here
independently of this broader framework.

2. Preliminaries

2.1. Notations
Before we lay down the theoretical foundations to mutual constrained inde-

pendence, it is important to settle on a certain number of notations. Indeed,
standard notations can differ greatly between the computer science and data
mining literature, on the one hand, and the probability and statistics literature,
on the other hand. This is particularly the case when considering itemsets.

In an itemset mining context, focus is set on itemsets (i.e. subsets of a set
A = {a1, ..., am}) on a dataset of transactions (i.e. a list of subsets of A) and fX
typically designates the frequency of transactions within the considered dataset
that contain an itemset X. Hence, if X = {a} and Y = {b}, fX∪Y = f{a,b}
would designate the frequency of transactions in which both a and b are present.
Note also that brackets are generally dropped in the itemset mining literature
so that {a, b} is simply written ab. Conversely, in a statistics context, focus is
set on events. In this context, it would be more common to have X designate
the event associated to the presence of a and Y the event associated to b, so
that fX∩Y would typically designate the frequency referred to as fX∪Y in the
itemset literature. Similarly, standard notations in an itemset mining context
allow for f∅ = 1 to be true while standard notations in a statistics context allow
for f∅ = 0.

In order to avoid any confusion between these two conflicting notations, we
will use a third notation based on logical symbols and Boolean algebras which
should represent common ground for both computer scientists and mathemati-
cians. In the following, we will consider:

• a set A = {a1, ..., am} of m items;

• a free Boolean algebra B, generated by A, with operators ∧, ∨ and ¬, as
well as bottom and top elements ⊥ and >;

• d = 2m − 1;
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• a set I = (Ii)0≤i≤d ⊂ B corresponding to all itemsets ordered by natural
lexicographic order as illustrated in Table 1;

• a set Ω = (ωi)0≤i≤d ⊂ B corresponding to the atoms of B ordered by
natural lexicographic order as illustrated in Table 2.

In tables 1 and 2, we give the correspondence between the standard nota-
tions for itemsets and generalized itemsets of size m (see [7]) in the itemset
mining literature and our own notations when considering 3 items. Note that
the elements in I can easily be expressed as disjunctions of elements in Ω as
illustrated in Table 3.

Itemset X ∈ I
∅ I0 = >
a3 I1 = a3
a2 I2 = a2
a2a3 I3 = a2
a1 I4 = a1
a1a3 I5 = a1 ∧ a3
a1a2 I6 = a1 ∧ a2
a1a2a3 I7 = a1 ∧ a2 ∧ a3

Table 1: Correspondence between itemsets and elements in I for m = 3.

Generalized itemset X ∈ Ω
a1a2a3 ω0 = ¬a1 ∧ ¬a2 ∧ ¬a3
a1a2a3 ω1 = ¬a1 ∧ ¬a2 ∧ a3
a1a2a3 ω2 = ¬a1 ∧ a2 ∧ ¬a3
a1a2a3 ω3 = ¬a1 ∧ a2 ∧ a3
a1a2a3 ω4 = a1 ∧ ¬a2 ∧ ¬a3
a1a2a3 ω5 = a1 ∧ ¬a2 ∧ a3
a1a2a3 ω6 = a1 ∧ a2 ∧ ¬a3
a1a2a3 ω7 = a1 ∧ a2 ∧ a3

Table 2: Correspondence between generalized itemsets and elements in Ω for m = 3.

2.2. Measures on B and transfer matrix
As there is a natural isomorphism between (Ω,B) and the measurable space

({0, 1}m,P ({0, 1}m)) where P ({0, 1}m) is the powerset of {0, 1}m, we can con-
sider measures on B. If p is a measure on B, we will write pi in place of p(ωi),
for all i ∈ J0, dK, and pX in place of p(X), for all X ∈ B \ Ω.

Note that any measure on B is defined naturally by its values on the atoms Ω
of B so that (pi)0≤i≤d defines p entirely on B. Furthermore, a measure can also
be entirely defined by its values on the elements of I (i.e. the itemsets). Hence,
these two families of patterns can be seen as bases for representing probability
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I0 = ω0 ∨ ω1 ∨ ω2 ∨ ω3 ∨ ω4 ∨ ω5 ∨ ω6 ∨ ω7

I1 = ω1 ∨ ω3 ∨ ω5 ∨ ω7

I2 = ω2 ∨ ω3 ∨ ω6 ∨ ω7

I3 = ω3 ∨ ω7

I4 = ω4 ∨ ω5 ∨ ω6 ∨ ω7

I5 = ω5 ∨ ω7

I6 = ω6 ∨ ω7

I7 = ω7

Table 3: Elements in I as disjunctions of elements in Ω for m = 3.

measures on B. We will make this explicit by defining a transfer matrix that
allows to switch easily from one representation to the other and which will be
used extensively in the rest of this article.

Consider the binary matrix T of size 2m×2m such that Tk,l = 1 if and only if
(ωl =⇒ Ik). It results from the properties of a measure that, for any measure
g on B, we have the following equality:

TXg =

gI0...
gId

 where Xg =

g0...
gd


The values for the coordinates Tk,l of the matrix T can be computed directly

from the indices k and l. To do this, we note that k and l can both naturally be
represented by binary vectors k = (k1, ..., km) and l = (l1, ..., lm) to which we
associate them. The coordinates of the matrix T are then given by the following
equation (where · is the dot product).

Tk,l =

{
1 if (d− l) · k = 0
0 if (d− l) · k 6= 0

(1)

Furthermore, we can see that T is invertible and that the value for the coordi-
nates T−1k,l of its inverse are given by the following equation:

T−1k,l =

{
(−1)(l−k)·d if (d− l) · k = 0

0 if (d− l) · k 6= 0
(2)

Equation (1) is obtained quite directly from the definition of T . Indeed,
(ωl =⇒ Ik), if and only if, (∀i ∈ J1,mK, ki = 1 =⇒ li = 1), which is equivalent
to the equation (d− l) ·k = 0. Equation (2) can then be verified by multiplying
both matrices. Indeed, let M be the matrix obtained by multiplying T with the
matrix whose coordinates are defined by (2). The coordinates of M are given
by:

Mi,j =

d∑
k=0

(d−k)·i=0
(d−j)·k=0

(−1)(j−k)·d .
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From (d − k) · i = 0, we get that if i has a coordinate equal to 1, then the
coordinate with the same index in k is also equal to 1. Similarly, from (d−j)·k =
0, if j has a coordinate equal to 0, then the coordinate with the same index in k is
also equal to 0. Hence, if i > j,Mi,j = 0. Furthermore, if i = j, then necessarily
k = i from which we get Mi,j = 1. Finally, if i < j, then by grouping all the
values of k for which k has the same number r = (j− k) · d, we obtain:

Mi,j =

(j−i)·d∑
r=0

(
(j− i) · d

r

)
(−1)r = 0 .

Hence, M is equal to the identity matrix which proves the result. Notice also
that T−1 has all its coordinates in {−1, 0, 1} which will be used in the proof of
Theorem 2.

T =



1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 1 0 0 0 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1


, T−1 =



1 −1 −1 1 −1 1 1 −1
0 1 0 −1 0 −1 0 1
0 0 1 −1 0 0 −1 1
0 0 0 1 0 0 0 −1
0 0 0 0 1 −1 −1 1
0 0 0 0 0 1 0 −1
0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 1


Figure 1: The transfer matrix T and its inverse T−1 for m = 3.

3. Rationale of the MCI approach

3.1. Problem statement
Our aim is to define a means to determine what to expect from the frequen-

cies of all itemsets given the knowledge of the frequencies of some itemsets. In
other words, we need to determine a natural probability measure on B given
constraints for its values on a number of itemsets. We formalize this aim through
the following problem statement.

Let K ⊂ I be a set of itemsets and f|K be the restriction to K of a proba-
bility measure on B which corresponds to an empirical distribution in a dataset
of transactions. In the following, we will refer to such a set of itemsets K as a
constrained set, f|K as a constraint function and C =

(
K, f|K

)
as a con-

straint system on B. We say that a probability measure p on B satisfies the
constraints given by the constraint system C, if its restriction to K is equal to f|K
(i.e. ∀X ∈ K, pX = fX). We consider the problem of objectively hypothesizing
the values of a probability measure on B which satisfies a constraint system C.

In other words, we aim to define a probability measure p on B as a hypoth-
esis for the value of f , as naturally and objectively as possible, based on the
sole knowledge that is given about f by the constraint system C. Note that
this problem statement is not a purely mathematical problem as the notion of
objectivity is not a mathematical one per se. We must therefore model this
notion in order to transform this into a purely mathematical problem.
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3.2. Objective hypotheses
Before we provide an answer to the problem statement described above, let

us consider the wider issue of formulating a hypothesis about a mathematical
object based on partial knowledge of this object.

Consider an intelligent system whose representation of the world is given
by a mathematical model. The system has knowledge about the world stored
in its memory from which it can directly infer further knowledge about the
world using methods from mathematical reasoning1. For example, if the system
knows that a = 768, b = 453 and c = a × b as well as basic arithmetic, it will
be able to answer that c = 347, 904 to the question “What is c equal to?”. This
answer is part of the scope of the knowledge of the system even though it is not
necessarily part of the knowledge stored in its memory. In a sense, the fact that
the scope of the knowledge of the system reaches beyond the knowledge stored
in its memory is one of the defining characteristics of intelligence.

However, it would be quite limiting to consider that the scope of the knowl-
edge of a system can only be reached through exact mathematical reasoning.
Indeed, one might be interested in an exact numerical value as an answer to
a question when pure mathematical reasoning may only provide an interval.
For example, even if one does not know the exact age of the last person one
has met, and cannot derive it exactly from one’s knowledge, one can generally
still provide an answer if asked to guess that person’s age. In every day life,
such an answer is called an educated guess and is based on the person’s prior
knowledge about people and ages and the world in general (even though the
mechanisms that lead to its formulation are essentially a black box). Similarly,
we can formalize the notion of an educated guess in the case of an intelligent
system whose knowledge of the world is a mathematical model. As we do not
include any form of black box in our formulation process, we will use the term
objective hypothesis rather than educated guess.

In order to formulate such objective hypotheses, we rely on the principle
of indifference (also referred to as the principle of insufficient reason). This
principle states that, when confronted to a model in which different possibilities
arise and no information allows to differentiate between any of them, then each
possibility should be considered as equally likely. The system should therefore
consider every possible interpretation of the world as equally likely thus defining
a uniform distribution on the set of possible interpretations of the world (that
is, if such a probability measure is definable on this set, which is always the case
if the set is finite but not necessarily the case if the set is infinite). In the case
in which a value must be provided for a variable, such a uniform distribution
induces a distribution on the set of possible values for this variable. This last
distribution represents the best of our knowledge about this variable. Note
that this general approach is similar to the one presented in the random-worlds

1More generally, for an intelligent system, we can differentiate between its ability to acquire
knowledge from the world and its ability to reason based on its knowledge of the world. We
focus here on this second aspect.

7



framework [20, 19, 2]. However, as we show in section 6.3, our specific focus
on itemsets rather than the complete set of formulas within a logical structure
allows us to better address the issue of redundancy and leads us directly to the
algebraic approach described in section 7.

Now, several approaches can be used to determine an objective hypothetical
value for this variable from this distribution. A first approach, based on informa-
tion theory, considers the value which adds the least information to the system.
A second approach considers the value with the highest likelihood (which is not
necessarily possible if the distribution is not discrete). A third option, which
is the one we focus on here, is to consider the expected value for this variable
(which is possible only if the variable is numerical and the expected value is well
defined). As we will show in section 6.2, each of these options correspond to a
different approach towards the definition of MaxEnt models.

Note that we have not discussed the practical manner in which an intelligent
system may compute such hypotheses. This is of course a consideration of the
utmost importance, notably because the theoretical scope of the knowledge of
an intelligent system, which corresponds to the notion we have described above,
is not a priori equal to the practical scope of its knowledge, which comprises only
the conclusions the system might reach within the limits of its resources. There-
fore, a process resulting in the formulation of hypotheses must be defined and
its complexity must be taken into consideration. In particular, a naive process
which would consist in an exhaustive review of all the different interpretations
of the world would be practically infeasible in general. Hence, more elaborate
mathematical tools are necessary to compute hypotheses while bypassing the
costly computation of the underlying uniform distribution.

3.3. Application to the problem statement
Let us now try to understand how the approaches described in section 3.2

can apply to the problem statement defined in section 3.1. The world is repre-
sented here as a dataset of transactions on items whose empirical distribution
is described by a probability measure f on B. However, we only have partial
knowledge about the world. The knowledge we have is represented by the re-
striction f|K of f to a set of itemsets K ⊂ I. In other words, our knowledge of
the world is defined by the constrained system C =

(
K, f|K

)
. Our aim is to de-

fine a probability measure p on B which can be seen as an objective hypothesis
about f based on the partial knowledge defined by C. Given our representation
of the world, any interpretation of the world corresponds to a dataset whose
empirical distribution h satisfies the constraints given by the constraint system
C. As described in section 3.2, we would like to define p as the expected value
for h given a uniform distribution on the set of all these datasets. However,
this raises an issue as this set is infinite and there is no natural way to define a
uniform distribution on it.

One first approach is to consider only datasets of a given size (i.e. the number
of transactions n can therefore be seen as an additional constraint). We call this
approach the finite approach and discuss this in section 4. As we will show, this
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approach poses both theoretical and practical issues. Another approach is to
consider the limit, when n goes towards infinity, of the solutions obtained when
considering datasets of size n. As we will show, this limit is well defined and, in
contrast with the finite approach, it does not suffer from the same theoretical
issues and is more easily computed. This asymptotic approach, presented in
section 5, is central to the notion of mutual constrained independence described
in this article.

4. Finite approach

Consider a set of itemsets K ⊂ I and define K = K ∪ {>}. Let g|K be the
restriction to K of a measure on B with integer values so that g|K can be seen
as corresponding to a dataset with n transactions where n = g>. Then, the set
MK,g|K defined below as the set of all measures on B with integer values which

are equal to g|K for all itemsets in K is finite:

MK,g|K =
{
h = (hi)0≤i≤d ∈ Nd+1

∣∣∣ ∀X ∈ K, hX = gX

}
Furthermore, for each measure h ∈ MK,g|K , there are exactly n!

h! distinct

datasets which can be associated to h where h! =
d∏
i=0

hi!. Hence, we can define

the expected measure µ when considering a uniform distribution on all possible
datasets corresponding to a measure inMK,g|K by:

µ =

∑
h∈MK,g|K

1
h!h∑

h∈MK,g|K

1
h!

. (3)

By linearity, µ is of course a measure on B such that, ∀X ∈ K, µX = gX .
In particular, µ> = n. This measure is entirely defined by

(
K,g|K

)
. Note

that
(
K,g|K

)
is not a constraint system per se because g is not a probability

measure (excluding the trivial case for which n = 1). We can naturally bring this
problem down to probability measures and constraint systems by considering
the constraint system Cn =

(
K, 1

ng|K

)
and noticing that 1

nµ is a probability
measure satisfying Cn. However, this constraint system does not, in general,
uniquely define 1

nµ as we show in the third of the following three examples.

4.1. Particular constrained sets
Empty set. The first specific case which we consider is the case in which K = ∅
and, therefore, K = {>}. This case is quite trivial and can be seen as the case in
which there is only a constraint on the number of transactions. By symmetry,
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we see that all µi are equal. As there sum is equal to n, we get µi = n
2m for all

i ∈ J0, dK. Hence, 1
nµ corresponds to the theoretical probability distribution for

m random independent coin tosses.

Independence model. In this case, K = A = {a1, ..., am}. This corresponds to
the case in which the absolute frequencies na1 , ..., nam corresponding to each
item, as well as the total number of transactions n, are fixed constraints. Con-
sidering the natural representation of a dataset of n transactions on these m
items as a binary matrix, we see that the constraints correspond to the column
margins. As each constraint corresponds to an individual column, the set of
all n × m binary matrices satisfying the constraints has a natural one-to-one
correspondence with the Cartesian product of the m sets of column vectors of
size n corresponding to each individual constraint. Therefore, in this case, 1

nµ
corresponds to the distribution given by the independence model.

All proper subitemsets. The last specific case we consider here is the case in
which K contains all the proper subitemsets of a given itemset. This specific
case is considered in less general terms in [14] and other similar approaches have
been discussed in [35, 46]. Without any loss for generality, we may limit our

study to the case in which the itemset considered is Id (recall that Id =
m∧
i=0

ai)

and hence K = I \ {Id}.
We suppose that we are considering measures h on B constrained so that, for

all i ∈ J0, d − 1K, hIi = ni, where the integers ni correspond to some empirical
dataset (note that n0 = n necessarily). Then, for all j ∈ J0, dK, hj is determined
entirely by the values ni together with one variable k such that hId = k. More
precisely, considering the transfer matrix T and its inverse as defined in section
2.2, we have: h0(k)

...
hd(k)

 = T−1


n0
...

nd−1
k

 .
Furthermore, we know that the possible values for hId correspond exactly

to an interval Jl, uK whose bounds are entirely defined by the constraints ni.
This result, presented in [6] in the context of non-derivable itemsets, can be
rephrased using the transfer matrix. Indeed, recall that k ∈ Jl, uK is equivalent
to hi ≥ 0 for all i ∈ J0, dK. Hence, if we write the previous equation as:h0(k)

...
hd(k)

 = T−1


n0
...

nd−1
0

+ T−1


0
...
0
k

 = T−1


n0
...

nd−1
0

+ k


(−1)(d−0)·d

(−1)(d−1)·d

...
(−1)(d−d)·d

 ,

we can say that:

l = max
i∈J0,dK

(d−i)·d even

(−ci) and u = min
i∈J0,dK

(d−i)·d odd

(ci)
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where: c0...
cd

 = T−1


n0
...

nd−1
0

 .

We can therefore express µ(hId) through the following formula:

µ(hId) =

u∑
k=l

k
d∏

i=0
hi(k)!

u∑
k=l

1
d∏

i=0
hi(k)!

(4)

which can be computed directly using T−1. The value obtained allows in turn
to determine h entirely.

For the case in which m = 3, equation (4) becomes:

µ(hI7) =

u∑
k=l

k

(n0 − n1 − n2 + n3 − n4 + n5 + n6 − k)!(n1 − n3 − n5 + k)!
(n2 − n3 − n6 + k)!(n3 − k)!(n4 − n5 − n6 + k)!(n5 − k)!(n6 − k)!k!

u∑
k=l

1

(n0 − n1 − n2 + n3 − n4 + n5 + n6 − k)!(n1 − n3 − n5 + k)!
(n2 − n3 − n6 + k)!(n3 − k)!(n4 − n5 − n6 + k)!(n5 − k)!(n6 − k)!k!

where l = max(0,−n1 + n3 + n5,−n2 + n3 + n6,−n4 + n5 + n6) and u =
min(n0 − n1 − n2 + n3 − n4 + n5 + n6, n3, n5, n6).

This last formula allows us to check that 1
nµ is not, in general, uniquely

defined by Cn =
(
K, 1

ng|K

)
. Indeed, the two set of values for ni presented in

table 4 correspond to a same constraint system yet do not yield the same value
for µ(hI7

)

n .

Case 1 Case 2
n0 12 24
n1 7 14
n2 8 16
n3 4 8
n4 9 18
n5 5 10
n6 6 12

µ(hI7
)

n 0.241 0.237

Table 4: Finite constraints corresponding to a same constraint system.

This remark is important because it shows that the finite approach does not
allow to define a hypothetical value for a probability distribution in general:
the number of transactions must be defined. As such it does not provide for a
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generalization of the independence model (which can be defined regardless of
the number of transactions) even though we do obtain the same model as the
independence model when considering K = A.

4.2. Computing µ
Another one of the issues with the finite approach is the difficulty in com-

puting the value of µ. Indeed, if we set aside some trivial cases such as the one
corresponding to the independence model for which the formula simplifies easily,
computing µ directly from equation 3 becomes practically infeasible as soon as
n or m are too large. This is due to the combinatorial nature of this formula
which contains many factorials. In fact, even in the particular case that we have
described previously in which all proper subitemsets of an itemset are known
(which can be considered an easy case because the number of liberties for h is
equal to one), the formula cannot be reasonably computed if both m ≥ 3 and
n×m ≥ 103. Therefore, other means for computing µ must be envisaged.

One alternative approach is to use randomization methods in order to de-
termine an approximate value for µ. Such methods have been considered in
itemset mining for a similar yet distinct problem (see [22]) in which the ran-
domization method simulates a uniform distribution on all datasets of a given
size that share the same row and column margins as a given dataset as well as
constraints on the values of some itemsets. Such methods can be slightly more
scalable than a direct computation but the gain is still limited and, given the
results on complexity in [22], they cannot be reasonably computed if bothm ≥ 3
and n×m ≥ 106. Furthermore, there is no reason to believe that removing the
constraints on the row and column margins would help in this respect and more
likely the opposite as the methods suggested are based on methods for randomly
generating matrices based on their row and column margins.

Another means to approximate µ is through the mutual constrained inde-
pendence models which we will define in the following section. Indeed, we will
show in section 5 that 1

nµ converges towards a distribution and this limit may
be used to approximate µ. Moreover, we will show that this value is arguably a
more relevant theoretical choice than the measure µ which is tied to the number
of transactions.

5. Asymptotic approach

5.1. Mutual constrained independence (MCI) convergence theorem
The main principle behind the asymptotic approach is that, when consider-

ing finite constraints all corresponding to a same constraint system (or at least
corresponding to a converging sequence of constraint systems), the sequence of
probability distributions resulting from finite approaches converges towards a
limit. This is formalized through the following mathematical result.

Theorem 1 (MCI convergence theorem). Given a constraint system C =
(
K, f|K

)
on B, there exists a unique probability measure p such that, for any sequence of
functions

(
g
(k)

|K

)
k∈N

, the three following conditions:
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• ∀k ∈ N, g(k)

|K is the restriction to K of a measure on B with integer values;

• g
(k)
> −→

k→+∞
+∞;

• 1

g
(k)
>

g
(k)
|K −→

k→+∞
f|K;

imply that 1

g
(k)
>
µ(k) −→

k→+∞
p, where µ(k) is the measure defined by

(
K,g(k)

|K

)
as

in section 4.

5.2. Model justification
Assuming the validity of Theorem 1 (the proof of which is provided in section

5.3), we can consider p to represent the objective hypothesis regarding f given
the knowledge provided by the constraint system C as described by the problem
statement in section 3.1.

In comparison to the answer provided by the finite approach, this answer
is more satisfying theoretically in several respects. Indeed, in many cases the
transactions observed in a dataset are a sample of a much larger, potentially
infinite pool of transactions. This is notably the case if the aim is to use the
observed dataset to extrapolate about other unobserved datasets and, in par-
ticular, if the data is seen as being generated by a random variable which we
aim to describe. In such a case, a hypothesis on the distribution of this random
variable is better defined through this asymptotic behavior. Note also that, as
p is defined uniquely by the constraint system, this approach provides for a
true generalization of the notion of independence as we will formalize with the
definition of mutual constrained independence. On a practical note, as p is not
determined by any given number of transactions, the complexity for computing
this probability measure is not determined by the number of transactions in a
dataset. This allows to consider truly big data, at least in terms of the num-
ber of transactions n because the number m of items must still be taken into
account.

As we will make explicit in section 6.2, the link between p and MaxEnt
models further justifies the use of this asymptotic approach.

5.3. Proof of the convergence theorem
Our proof of Theorem 1 is a constructive one which allows to characterize

p. Hence, we will at the same time give the proof to a stronger version of this
Theorem. We start by setting up some notions which will be useful for the
characterization of p.

Preliminary step 1: Reduced transfer matrix. Recall that the aim is to define
the probability measure p from a constraint system C =

(
K, f|K

)
where K ⊂ I

is a set of itemsets. In the following, we will use the matrix T to transfer this
question around I towards Ω, where it is more easily answered. We will then
bring the problem back to I. For this purpose, we introduce the notion of
reduced transfer matrix and constraint vector.

13



Consider a constraint system C =
(
K, f|K

)
on B. We define the reduced

transfer matrix TK to be the submatrix of T composed of the lines of T
corresponding to the elements in K and the constraint vector K to be the
column vector with coordinates equal to fIk for all Ik ∈ K. Now, for any
probability measure g, we see that g satisfies C if and only if TKXg = K.

Table 5 gives an example of a constraint system and its corresponding matrix
equation for m = 3. The constraints are given here on three itemsets: a2, a3
and a1 ∧ a2 ∧ a3.

X ∈ K fX
> 1
a3 1/2
a2 1/3

a1 ∧ a2 ∧ a3 1/5

←→


1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 1


g0...
g7

 =


1
1/2
1/3
1/5


Table 5: A constraint system and its corresponding matrix equation.

As we will make explicit with Theorem 2, the kernel of the reduced transfer
matrix plays a significant role in obtaining the solution p to our problem. We
can notice here that we can obtain a basis BK of Ker(TK) by considering the
columns of T−1 which correspond to the lines removed from the matrix T .
Figure 2 gives the basis BK defined by the columns of T−1 for the constraint
system given as an example in Table 5.

BK =





1
−1
−1
1
0
0
0
0


,



−1
0
0
0
1
0
0
0


,



1
−1
0
0
−1
1
0
0


,



1
0
−1
0
−1
0
1
0




Figure 2: The basis BK of Ker(TK) with TK as in Table 5.

Preliminary step 2: Largest derivable constraint system. In order to prevent
issues related to boundary conditions, we distinguish between the information
that can be obtained directly through mathematical properties from the rest,
as described in section 3.2. This comes down to the same problem as distin-
guishing between derivable and non-derivable itemsets [6]. For this purpose,
we introduce the notions of derivable constraint system and largest derivable
constraint system.

Definition 1. Let C = (K, f|K) be a constraint system on B. A derivable
constraint system of K is a constraint system C′ = (K′, f ′|K) such that the
probability measures on B that satisfy C are exactly those that satisfy C′.
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Notice that, if C′ is a derivable constraint system of C, then we can define
the union constraint system C′′ = (K′′, f ′′|K′′) by K′′ = K ∪ K′, f ′′|K = f|K and
f ′′|K′ = f ′|K′ . Furthermore, C′′ is a derivable constraint system of C. Therefore, we
can define a largest derivable constraint system (LDCS) C∗ = (K∗, f∗|K∗)
of C by considering the union of C with all its derivable constraint systems. We
say that the LDCS is complete if C∗ = I and incomplete otherwise.

In terms of linear equations, a probability measure g satisfying C corresponds
to a vector Xg of [0, 1]2

m

such that TKXg = K. The set of all probability
measures satisfying C is therefore the convex polytope of R2m defined as the
intersection of the hypercube [0, 1]2

m

and the affine space of equations TKX =
K. A constraint system C′ is a derivable constraint system of C if and only if
the polytope defined as the intersection of the hypercube [0, 1]2

m

and the affine
space of equations TK′X = K ′ is the same as the one for C. Hence, the largest
derivable constraint system C∗ corresponds to the smallest affine space such
that the intersection with the polytope of probability measures gives the same
convex polytope as for C.

I ∈ K fI
a3 1/2
a2 1/2

a2 ∧ a3 1/6
a1 1/2

a1 ∧ a3 1/6
a1 ∧ a2 1/6

−→

I ∈ K∗ f∗I
> 1
a3 1/2
a2 1/2

a2 ∧ a3 1/6
a1 1/2

a1 ∧ a3 1/6
a1 ∧ a2 1/6

a1 ∧ a2 ∧ a3 0

Table 6: A complete LDCS

I ∈ K fI
> 1
a3 1/2
a2 1/2
a1 1/3

a1 ∧ a2 ∧ a3 1/3

−→

I ∈ K∗ f∗I
> 1
a3 1/2
a2 1/2
a1 1/3

a1 ∧ a3 1/3
a1 ∧ a2 1/3

a1 ∧ a2 ∧ a3 1/3

Table 7: An incomplete LDCS

In Table 6 and Table 7, we give examples of constraint systems and their
corresponding largest derivable constraint systems. In Table 6, the LDCS is
complete. This means that there is only one probability measure on B which
satisfies the constraints. In Table 7, the LDCS is incomplete. There is therefore
an infinite number of probability measures on B which satisfy these constraints.
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Preliminary step 3: Equations. As demonstrated further in the proof to Theo-
rem 2, the limit in Theorem 1 is obtained as the solution to two easily defined
equations which we present in this section.

The variable in these equations is a vectorX =

x0...
xd

 in [0, 1]d+1 The solution

corresponds to the vector

p0...
pd

, allowing to define the probability measure p.

We will also consider the vector ln(X) =

ln(x0)
...

ln(xd)

, where ln : [0,+∞) →

R[∞]; x 7→ ln(x) if x 6= 0 and −∞ if x = 0.

Lemma 1. Consider C, C∗, TK∗ and K∗, with notations as above. Then, there

exists at most one vector X =

x0...
xd

 in [0, 1]d+1 such that:

TK∗X = K∗ and ln (X) ∈ Ker (TK∗)
⊥

Proof. Suppose X and Y are two such vectors. Then Y − X ∈ Ker(TK∗) and
(Y − X)T ln(X) = (Y − X)T ln(Y ) = 0. Therefore, Y T ln(X) = XT ln(X) and
XT ln(Y ) = Y T ln(Y ). As XT ln(X) ∈ R, we get Y T ln(X) ∈ R. Therefore yi = 0
when xi = 0. By symmetry, we get xi = 0 ⇐⇒ yi = 0. We will therefore limit
ourselves to the case where yi 6= 0 for all i as the other indices may be dropped
for our current purposes.

Define the function ϕY : (0, 1]
d+1 → R; Z 7→ ZT ln(Z). We will consider

the problem of minimizing ϕ under the constraint that TK∗X = K∗. Via the
method of Lagrange multipliers we have the following necessary condition for a

local optimum: ∇ϕ(Z) ∈ Im(TTK∗). Now, on the one hand,∇ϕ(Z) =

1
...
1

+ln(Z)

and, on the other hand, as we are in finite dimension, Im(TTK∗) = Ker(TK∗)⊥.

Furthermore,

1
...
1

 ∈ Im(TTK∗), so the condition becomes ln(Z) ∈ Ker(TK∗)⊥.

By the strict concavity of ϕ, we conclude on the uniqueness of such an optimum
thus obtaining the desired result.

Strong version of Theorem 1 and proof. Lemma 1 is central in the proof we
provide to Theorem 1. As stated previously, this proof is constructive, leading
to the following stronger result.
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Theorem 2 (MCI convergence theorem, strong version). Let C =
(
K, f|K

)
be a

constraint system on B and
(
g
(k)

|K

)
k∈N

be a sequence of functions satisfying the
three following conditions:

• ∀k ∈ N, g(k)

|K is the restriction to K of a measure on B with integer values;

• g
(k)
> −→

k→+∞
+∞;

• 1

g
(k)
>

g
(k)
|K −→

k→+∞
f|K.

Consider:

• Xk = 1

g
(k)
>


µ
(k)
0
...

µ
(k)
d

 where µ(k) is the average finite measure defined by

(
K,g(k)

|K

)
as in section 4;

• C∗ = (K∗, f∗|K∗) the largest derivable constraint system of C;

• and TK∗ the reduced transfer matrix as defined above.

Then (Xk)k∈N converges towards the unique vector X ∈ [0, 1]d+1 such that:

TK∗X = K∗ and ln (X) ∈ Ker (TK∗)
⊥

Proof. As (Xk)k∈N is a sequence of vectors of [0, 1]d+1, which is a compact space,
it is sufficient to show that all convergent subsequences of (Xk)k∈N converge
towards the same limit. Rather than considering a subsequence, we will consider,
with no loss of generality, that (Xk)k∈N converges towards a limit and show that
this limit is uniquely defined by C.

Let X be the limit of (Xk)k∈N. We know that, for all k ∈ N, TK∗Xk = K∗k ,
and that Kk −→

k→+∞
K. Hence, by continuity, TK∗X = K∗, which is the first of

the two equations needed. Obtaining the second one is slightly more complex
and is detailed in the following.

Let Y be a vector from the basis BK∗ of Ker (TK∗) as defined previously. We
know that the coordinates of Y are in {−1, 0, 1} and that

∑d
i=0 yi = 0, so we

can set NY =
∑
yi=1 yi = −

∑
yi=−1 yi. Let n = g

(k)
> and consider k so that

n ≥ NY .
We consider the space Dk of all datasets of size n × m satisfying the con-

straints given by g
(k)

|K . If we look at a dataset in Dk, each line of the dataset
corresponds uniquely to an element ωi of Ω. Consider the subsets Dk,Y+ (resp.
Dk,Y −) of Dk of all matrices for which each of the NY first lines correspond to
one of the ωi such that yi = 1 (resp. yi = −1). Then |Dk,Y + | = |Dk,Y − |. Notice
here that xi 6= 0 if yi 6= 0. Indeed, if xi = 0, this means that the convex poly-
tope of the vectors Z which correspond to probability measures satisfying K∗ is
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contained in the affine space defined by the equation zi = 0. As the direction of
this affine space is Ker(TK∗), then for any vector Y from a basis of Ker(TK∗),
yi = 0.

Furthermore, we demonstrate that both |Dk,Y + |/NY !|Dk| −→
k→+∞

∏
yi=1

xi and

|Dk,Y− |/NY !|Dk| −→
k→+∞

∏
yi=−1

xi hold. To prove this point, we consider a proba-

bility with uniform distribution on the finite set of matrices Dk. We note this
probability Probk. Let [Lj = ωi] denote the set of matrices of Dk for which the
j-th row corresponds to ωi and [|ωi| = l] the set of matrices of Dk for which ex-
actly l rows correspond to ωi. We can hereafter express our previous quantities
as probabilities. For the first of the two fractions, this gives: |Dk,Y + |/NY !|Dk| =

Probk

(
NY⋂
j=1

[
Lj = ωσ(j)

])
where σ : J1, NY K → {i ∈ N | yi = 1} is any bijec-

tion. Note that we only need to consider one of the two cases as the following
demonstration is easily transposed to the other case. Moreover, by the defini-
tion of Xk, for all j ∈ J1, nK and i ∈ J0, dK, we have Probk (Lj = ωi) = xk,i
(where xk,i is the i-th coordinate of Xk). In addition, as Xk −→

k→+∞
X, we

have Probk (Lj = ωi) −→
k→+∞

xi. Hence, to prove our point, it is sufficient to

show that Probk

(
NY⋂
j=1

[
Lj = ωσ(j)

])
−

NY∏
j=1

Probk
(
Lj = ωσ(j)

)
−→
k→+∞

0 for any

bijection σ defined as previously. As this is obvious for NY = 1, let us consider
that NY ≥ 2. The convergence towards 0 corresponds to the following intuitive
idea. If NY is fixed while we consider larger and larger datasets (i.e. larger n),
the events that any given one of the NY first rows corresponds to any given
ωi become gradually independent because the incidence that the value of one
single row has on another single row becomes gradually negligible. We show
this is true for two rows and the rest follows easily by iteration.

Let us consider i 6= j such that yi = yj = 1 and the define a sequence (Hk)
by Hk = Probk ([L1 = ωi] ∩ [L2 = ωj ])−Probk (L1 = ωi)Probk (L2 = ωj). Our
aim is to show that the (Hk) converges towards 0 when k goes to infinity. We
see that Hk = Probk (L1 = ωi) (Probk (L2 = ωj | L1 = ωi)− Probk (L2 = ωj)).
But we also have Probk (L2 = ωj | L1 = ωi) = Probk (L2 = ωj | |ωi| ≥ 1) =

Probk (L2 = ωj)
Probk(|ωi|≥1 | L2=ωj)

Probk(|ωi|≥1) = Probk (L2 = ωj)
1−Probk(|ωi|=0 | L2=ωj)

1−Probk(|ωi|=0) .

Hence, Hk = Probk (L1 = ωi)Probk (L2 = ωj)
[
1−Probk(|ωi|=0 | L2=ωj)

1−Probk(|ωi|=0) − 1
]
.

But both Probk (|ωi| = 0) −→
k→+∞

0 and Probk (|ωi| = 0 | L2 = ωj) −→
k→+∞

0.

Therefore, Hk −→
k→+∞

0, quod erat demonstrandum. Note that the previous

demonstration is only valid because, if yi = 1, both xi 6= 0 and the sequence
(xk,i)k≥1 is strictly positive for large enough k.

Now, the results of the two previous paragraphs can be combined and we
get

∏
yi=1

xi =
∏

yi=−1
xi. Hence,

∑
yi=1

ln(xi) −
∑

yi=−1
ln(xi) = 0, which can also be

written Y T ln (X) = 0. As this is true for all Y from the basis BK∗ of Ker(TK∗),
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this gives ln (X) ∈ Ker (TK∗)
⊥.

We conclude from lemma 1 that X is uniquely defined by K which ends the
proof.

Note that this result is not limited to the case in which f|K is necessarily the
restriction of a probability measure corresponding to an empirical distribution.
Indeed, the density of the rationals in the reals, together with the continuity
of the functions defining the equations, ensure that it still holds if f|K is the
restriction of any probability measure on B. More precisely, such a condition on
f|K is only necessary for defining constraint systems in the finite approach and
can be omitted when defining the asymptotic constraint system here.

6. Mutual constrained independence

6.1. Formal definitions
In section 3, we have presented an approach for formulating an objective

hypothesis on the values of a probability measure for the distribution of items
given constraints on the values of this measure for certain itemsets. In section 5,
we have shown that this approach leads to a solution which we can characterize
mathematically as the unique solution to a system of equations. Conversely,
this characterization may be seen as a property of distributions of items which
indicates how the items relate to each other: tied by a certain number of interre-
lations and entirely free otherwise. Because this characterization corresponds to
the intuitive notion of independence under constraint and because it generalizes
the mathematical notion of mutual independence, we have named this property
mutual constrained independence. We give its formal definition below.

Definition 2 (Mutual constrained independence). Consider a probability mea-

sure p on B and a set of itemsets K ⊂ I. Let X =

p0...
pd

 be the vector rep-

resentation of p in the basis Ω. We say that the items a1, ..., am are mutually
constrainedly independent in B with regards to the constraints defined by K, if
and only if ln (X) ∈ Ker (TK∗)

⊥. (See notations preceding lemma 1 for the
definition of ln.)

Note that this definition is not restricted to the context of itemsets and to
applications in data mining. It applies more generally to the field of probabili-
ties, as any finite family of events A1, ..., Am of a probability space can naturally
be associated to a set of items a1, ..., am. It is a straight forward generalization
of the notion of mutual independence. Indeed, the mutual independence of m
items corresponds to the mutual constrained independence of these items with
regards to K = {a1, ..., am}. It is therefore quite natural to consider statistical
tests for mutual constrained independence similarly as the well known tests of
independence performed by statisticians. This implies that one might define
a statistical MCI model from a dataset in the same fashion as one defines an
independence model.
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Definition 3 (MCI model). Let f be a probability measure on B defined as the
empirical distribution of a dataset of transactions on items and K ⊂ I be a set
of itemsets. The MCI model for the data defined by K is the probability measure

p defined by its vector representation X =

p0...
pd

, such that:

TK∗X = K∗ and ln (X) ∈ Ker (TK∗)
⊥

where K∗ is the vector representation of f reduced to K∗.

6.2. Relation to MaxEnt models
As stated in the introduction, the notion we have defined is related to Max-

Ent models. This is made explicit in the following theorem.

Theorem 3. Consider notations as in section 6.1. Then a1, ..., ap are mutually
constrainedly independent in B with regards to the constraints defined by K if
and only if

X = argmax
TK∗Z=K∗

Z∈[0,1]2
p

H(Z)

where H is the information entropy function and K∗ is the reduction of X to
K∗.

Proof. The proof to this theorem is already contained in the proof to lemma 1.
Indeed, we have shown the unicity of X (which corresponds to the solution to
the mutual constrained independence problem) by showing that, if X exists,
it is the minimum of a function which is none other than the opposite of the
entropy function. As we have shown its existence in Theorem 2, it coincides
therefore with this optimum.

This result implies that the MCI models which we have constructed are
in fact MaxEnt models, where the maximization of the information entropy is
constrained by the values of the empirical frequencies of the itemsets within
the constrained set K. As such, our general approach towards the definition of
MCI models brings further insight to the maximum entropy principle. Indeed,
there are two main and complementary views towards the rationale of MaxEnt
models: the standard approach based on Shannon’s original interpretation of
entropy as an information measure, in which MaxEnt models are seen as the
models that add the least information to the system [41, 9]; and E. T. Jaynes ap-
proach presented in his famous article “On The Rationale of Maximum-Entropy
Methods” [25, 26], in which MaxEnt models are seen as models that have the
maximum likelihood given the asymptotic behavior of a uniform distribution
on the set of all possible models (similarly to our own asymptotic approach).
In our own approach, the MaxEnt models considered are seen as an average
model given the asymptotic behavior of a uniform distribution on the set of all

20



possible models. Note that this view is not limited to the context of itemsets
and mutual constrained independence. In fact, we can also derive directly from
Jayne’s entropy concentration theorem [25] that both the model with highest
likelihood and the average model asymptotically converge towards the same
MaxEnt model.

Through the expression of MCI models as MaxEnt models given by Theo-
rem 3, we can see that models of this precise nature have already been consid-
ered for pattern mining [35, 46, 32, 33, 49] based either on Shannon’s or Jayne’s
approach towards MaxEnt models (or both). As discussed above, the MCI ap-
proach brings further justification for the use of maximum entropy methods in
pattern mining. But more importantly, the MCI characterization of these mod-
els allows to envisage new methods for computing them, which we present in
section 7.

6.3. Relation to the random-worlds framework
The MCI approach is closely related to the random-worlds framework [20,

19, 2] as well as methods for probabilistic propositional reasoning [38, 18] which
can also be embedded in the random-worlds framework [19]. However, in the
MCI approach, the constraints are purposefully limited to constraints on the
frequencies of itemsets, while the random-worlds framework considers a wider
range of logical formulas.

While such a limitation on the scope of the constraints may be due to an
initial focus on applications in itemset mining, it is in fact necessary in order to
obtain the mathematical characterization of the MCI model in Definition 3 and
apply the algorithmic method presented in section 7 on which it is grounded.
More precisely, both the mathematical characterization of the MCI model and
the algorithmic method for computing it are based on the notion of the transfer
matrix T and its inverse T−1, which are necessary in order to express the con-
straints on the model. As this matrix represents the decomposition of elements
of I (i.e. itemsets) as disjunctions of elements in Ω (i.e. the set of atoms of
B), constraints must be limited to itemsets. Note that this would still work
similarly if we considered any other family of patterns F ⊂ B such that the
corresponding transfer matrix is invertible, instead of the set of itemsets I, but
the method described would not hold when considering a wider range of logical
formulas as the transfer matrix would no longer be invertible.

More generally, the invertibility of the transfer matrix can be related to
the notion of redundancy. Indeed, if the transfer matrix associated to a set
of patterns F is not injective this implies that a description of a probability
measure on B given by its values on the elements of F contains redundant
information. On the other hand, the surjectivity of the matrix ensures that
such a description entirely defines the probability measure. Therefore, if the
aim is to reduce redundancy in information, it makes sense to consider a family
of patterns for which the transfer matrix is invertible. Moreover, the set of
itemsets is arguably the simplest family of patterns satisfying this condition
[13].
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7. Algebraic geometry for computing MCI models

As MaxEnt models are normally presented as the solution to an optimization
problem, they are traditionally computed using numerical methods. This is the
case for all the examples from the itemset mining literature that we have found
in which MaxEnt models are explicitly computed [35, 46, 32, 33]. However,
the models described in [14], of which MCI models are a generalization, are
presented as the solution of an algebraic problem and computed as such. This
led us to research the possibility of computing MCI models using algebraic
methods. In the following section, we present a method for computing such
models based on algorithms from real algebraic geometry. As we will show, our
method may be used to reduce computation times for MaxEnt models by several
orders of magnitude in itemset mining contexts.

Note that this is not the first attempt to describe such models through
algebraic geometry. In fact, Berd Sturmfels uses a similar description for a more
general class of maximum likelihood models in [43]. However, the algorithm he
suggests remains an analytical one.

7.1. Algebraic geometry for polynomial system solving
As we show, the equations defining the MCI model can easily be transposed

into a multivariate polynomial system. Solving a multivariate polynomial sys-
tem is a difficult task in general which has been mostly addressed within the field
of algebraic geometry and a number of algorithms for solving real polynomial
systems are now known to exist [43, 3, 5].

We present here the main result on which our approach is based. However,
we do not include a detailed presentation of the mathematical background in
algebraic geometry which is necessary to fully grasp the concepts which we cover
in this section. We refer the reader to the aforementioned literature for further
insight on this topic. Furthermore, to avoid any ambiguity, we have conformed
the terminology in algebraic geometry used in this article with the terminology
defined in [3].

The following notations will be used within this section. For any field F,
let F[X] = F[X0, ..., Xd] be the ring of polynomials in d+ 1 variables X0, ..., Xd

with coefficients in F. The fields we will consider here all satisfy Q ⊂ F ⊂ C.
To maintain consistency with previous notations, X will be used to refer to
an element of Fd+1 with coordinates equal to x0, ..., xd. The term polynomial
system will refer to a finite subset of F[X] and we will generally note such a
system P. Solving a system P in C means determining the set of zeros of P in
Cd+1, which is the set:

ZP =

{
X ∈ Cd+1

∣∣∣∣∣ ∧
P∈P

P (X) = 0

}

and we will generally note Z for ZP unless there is some cause for ambiguity.
The dimension of a polynomial system will refer to the dimension of its set of
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zeros in C. Hence, a polynomial system is zero-dimensional if its set of zeros in
C is finite.

Our approach is based on the fact that, given a zero-dimensional polynomial
system P ⊂ F[X], there are algebraic algorithms (see, for example, algorithm
12.12 p.468 in [3]) which allow us to determine (given sufficient computational
resources) d + 3 univariate polynomials Q,B,A0, ..., Ad with coefficients in F
such that Q and B are coprime and:

Z =

{(
A0

B

)
, ...,

(
Ad
B

)
∈ Cd+1

∣∣∣∣ t ∈ C ∧Q(t) = 0

}
In this case, (Q,B,A0, ..., Ad) is called a univariate representation of P. This
implies that, if we manage to express the equations defining an MCI model as
a zero-dimensional polynomial system P, we could break down the problem of
determining the MCI model into two steps:

• determining a univariate representation of Z;

• determining the MCI model from this univariate representation.

If the first step is performed, then the second step follows quite easily. In fact, we
will show that the first step of the process may be performed only once for any
K∗ which then allows for a very fast computation of MCI models in common
cases of K∗. Hence, the main focus here is on accomplishing the first step.
However, computing a univariate representation raises two important issues.

Firstly, the polynomial system P which we consider must be zero-dimensional
and, as we show, this is not entirely straightforward. Secondly, algebraic algo-
rithms do not tolerate approximate values well. In particular, floating point
representations may not be used in the algorithms which we consider here. In-
stead, the coefficients of the polynomials considered in the algorithms, as well
as the operations performed on these coefficients, must be considered within a
formal calculus structure. While this is not technically infeasible, it may re-
quire significant computational resources both in time and memory. In order
to accomplish this, two main options can be considered. The first option is to
represent P as a system of polynomials in Q[X] (which is technically the case
if the constraints given by K are defined by an empirical dataset) and perform
operations in a formal representation of Q[X]. This is the easier option of the
two to code and is also generally faster to compute (when performing a single
computation), but it only allows to determine a univariate representation cor-
responding to a particular constraint system defined by

(
K∗, f|K∗

)
. The other

option is to consider that the polynomials in P belong to Q(f1, ..., fd)[X] which
requires a formal representation of Q(f1, ..., fd). While the latter option implies
more elaborate programming, and calculations in Q(f1, ..., fd) may, in this case,
represent the computational bottleneck of the general process, it does allow us
to determine a definite univariate representation which can be used multiple
times very efficiently for any MCI model corresponding to a given K∗.
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7.2. A zero-dimensional polynomial system
Let

(
K∗, f|K∗

)
be a constrained system and X the vector associated to the

MCI model as in Definition 3. The vector X is characterized as the unique
solution to a linear and loglinear problem (Theorem 2). We will show how we
can transpose the equations of this characterization into a roughly equivalent
zero-dimensional polynomial system in R[X].

Linear part. Firstly, let us define, polynomials Li for all i ∈ J0, dK such that:

Li =

 d∑
j=0

ti,jXj

− fi
in which ti,j are the coordinates of the matrix T . For example, when m = 3,
this gives:

L0 = X0 +X1 +X2 +X3 +X4 +X5 +X6 +X7 − 1
L1 = X1 +X3 +X5 +X7 − f1
L2 = X2 +X3 +X6 +X7 − f2
L3 = X3 +X7 − f3
L4 = X4 +X5 +X6 +X7 − f4
L5 = X5 +X7 − f5
L6 = X6 +X7 − f6
L7 = X7 − f7

The linear equation TK∗X = K∗ is then equivalent to the polynomial system
PL = (Lj)j∈J where J = {j ∈ J0, dK | Ij ∈ K∗}. We note r = |J | the number of
polynomials in PL and we can easily notice that the dimension of PL is equal
to s = 2m − r (because it is equal to the dimension of its set of zeros ZL as a
vector space). The algorithm for computing PL is here entirely straightforward:

1 . PL ← ∅ ;
2 . f o r j in J :
3 . add Lj to PL ;

Algorithm 1: Computing PL

Loglinear part. Secondly, let Y =

y0...
yd

 ∈ Ker (TK∗) ∩ Zd+1. Then, we can

define the following polynomial:

MY =

d∏
i=0
yi>0

Xyi
i −

d∏
i=0
yi<0

X−yii ∈ R[X]

and the equation ln (X) ∈ Ker (TK∗)
⊥ implies that MY (X) = 0. Our aim now

is to pick a family of vectors in Ker (TK∗) ∩ Zd+1 which defines a polynomial
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system PM that can be concatenated with PL to obtain a polynomial system P
which allows to characterize the MCI model X.

The first idea which comes to mind is to consider the basis BK∗ of Ker (TK∗)
(see section 5.3). However, this does not always result in a zero-dimensional
polynomial system. Indeed, consider Mj be the polynomial defined by the j-th
column of T−1, for each j ∈ J1, dK. This gives, for example, when m = 3:

M1 = X1 −X0

M2 = X2 −X0

M3 = X0X3 −X1X2

M4 = X4 −X0

M5 = X0X5 −X1X4

M6 = X0X6 −X2X4

M7 = X1X2X4X7 −X0X3X5X6

Now, suppose that we define PM from these polynomials. Then PM = (Mj)j∈J
where J = {j ∈ J0, dK | Ij /∈ K∗} and P = (Lj)j∈J t (Mj)j∈J . Considering the
case in which m = 3 and K∗ = {>}, we get:

P =



X0 +X1 +X2 +X3 +X4 +X5 +X6 +X7 − 1 (L0)
X1 −X0 (M1)
X2 −X0 (M2)
X0X3 −X1X2 (M3)
X4 −X0 (M4)
X0X5 −X1X4 (M5)
X0X6 −X2X4 (M6)
X1X2X4X7 −X0X3X5X6 (M7)

We can see that P is at least 3-dimensional. Indeed, consider Z ′ as below:

Z ′ =
{
X ∈ Rd+1

∣∣ x0 = x1 = x2 = x4 = 0
}

Then, we get the following intersection between the set Z of zeros of P and Z ′:

Z ∩ Z ′ =

{
X ∈ Rd+1

∣∣∣∣ ∧ x0 = x1 = x2 = x4 = 0
x3 + x5 + x6 + x7 − 1 = 0

}
which is a 3-dimensional linear space. Hence, in this case, P is at least 3-
dimensional.

The issue in the example given here is that the dimension of PM is at least
equal to 4 (as Z ′ ⊂ ZM ) while we could expect it to be equal to 1. Indeed,
the dimension of Ker (TK∗)

⊥ is equal to r = 2m − s so that the set of all
X ∈

(
R∗+
)d+1 satisfying ln (X) ∈ Ker (TK∗)

⊥ is a smooth r-manifold. Hence,
ZM is locally of dimension r around all X ∈ ZM ∩

(
R∗+
)d+1. This property

extends to all X ∈ ZM ∩ (R∗)d+1 because X ∈ ZM implies |X| ∈ ZM where

|X| =

|x0|...
|xd|

 ∈ (R+)
d+1.
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Indeed, ∀MY ∈ PM , MY (X) = 0 ⇐⇒
d∏
i=0
yi>0

xyii −
d∏
i=0
yi<0

x−yii = 0 ⇐⇒

d∏
i=0
yi>0

xyii =
d∏
i=0
yi<0

x−yii =⇒

∣∣∣∣∣∣
d∏
i=0
yi>0

xyii

∣∣∣∣∣∣ =

∣∣∣∣∣∣
d∏
i=0
yi<0

x−yii

∣∣∣∣∣∣ ⇐⇒
d∏
i=0
yi>0

|xi|yi =
d∏
i=0
yi<0

|xi|−yi

⇐⇒
d∏
i=0
yi>0

|xi|yi −
d∏
i=0
yi<0

|xi|−yi = 0 ⇐⇒ MY (|X|) = 0.

Therefore, if the dimension of ZM is greater than r, this is necessarily due

to its behavior within Rd+1 ∩
(

d⋃
i=0

Hi
)

where Hi is the hyperplane defined by

Xi = 0.
In other words, if PM is determined by a generating family of vectors of

Ker (TK∗) ∩ Zd+1, its dimension should be equal to r, unless there is a sub-
set S′ ⊂ J0, dK with cardinality s′ = |S′| < s defining a linear space Z ′ ={
X ∈ Rd+1

∣∣ ∀i ∈ S′, xi = 0
}
of dimension r′ = 2m − s′ > r such that Z ′ ⊂

ZM . Hence, in order to show that there is a family of generating vectors of
Ker (TK∗) ∩ Zd+1 such that the associated polynomial system PM has dimen-
sion r, we must show the following lemma.

Lemma 2. There is a family of generating vectors of Ker (TK∗) ∩ Zd+1 which
defines a polynomial system PM such that:

{S′ ⊂ J0, dK | (s′ < s) ∧ (Z ′ ⊂ ZM )} = ∅

The proof of lemma 2 relies on the other following lemma from linear algebra.

Lemma 3. Let V be a vector space of Rd+1 such that:

∃S ⊂ J0, dK, ∀X ∈ V \ {0}, S+(X) ∩ S 6= ∅ and S−(X) ∩ S 6= ∅

where S+(X) = {i ∈ J0, dK | xi > 0} and S−(X) = {i ∈ J0, dK | xi < 0}. Then:

dim (V) ≤ s

where s = |S|.

Proof of lemma 3. Consider S ⊂ J0, dK such that,

∀X ∈ V \ {0}, S+(X) ∩ S 6= ∅ and S−(X) ∩ S 6= ∅

Let X,X ′ ∈ V \ {0} such that xi = x′i for all i ∈ S. Then, Y = X − X ′ ∈ V
and yi = 0 for all i ∈ S. Hence, S+(Y ) ∩ S = S−(Y ) ∩ S = ∅. Thus, Y = 0.
Therefore, X = X ′ and the dimension of V is at most s.

Proof of lemma 2. Let Y be a family of generating vectors of Ker (TK∗) ∩ Zd+1

and PM the corresponding polynomial system. Note S ′ the set defined by:

S ′ = {S′ ⊂ J0, dK | (s′ < s) ∧ (Z ′ ⊂ ZM )}
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and suppose S ′ 6= ∅. Let S′ ∈ S ′. Then, based on the converse of lemma 3, as
dim (Ker (TK∗)) = s > s′, there exists a vector Y ′ ∈ Ker (TK∗) ∩ Zd+1 \ {0}
with S+(Y ′) ∩ S′ = ∅ or S−(Y ′) ∩ S′ = ∅. Note that this implies neces-
sarily that Y ′ /∈ Y as Z ′ cannot be contained in the set of zeros of MY ′ .
Hence, if Y ′ is equal to the family Y augmented by Y ′ and P ′M is the cor-
responding polynomial system, then Z ′ 6⊂ Z ′M while Z ′M ⊂ ZM so that S ′′ =
{S′′ ⊂ J0, dK | (s′′ < s) ∧ (Z ′′ ⊂ Z ′M )} is strictly included in S ′.

If S ′′ = ∅, we are done. Otherwise, we can repeat the process and define
a strictly increasing sequence Y ⊂ Y ′ ⊂ ... ⊂ Y(k) associated to a strictly
decreasing sequence ZM ⊃ Z ′M ⊃ ... ⊃ Z(k)

M together with a strictly decreasing
sequence J0, dK ⊃ S ′ ⊃ S ′′ ⊃ ... ⊃ S(k−1), until S(k−1) = ∅, which is bound to
happen eventually as J0, dK is finite.

Hence, Y(k) is a generating family of vectors of Ker (TK∗) ∩ Zd+1 satisfying
the desired property.

Through lemma 2, we see that we can consider a polynomial system PM
based on a generating family of vectors of Ker (TK∗)∩Zd+1 which has dimension
r and which defines a zero-dimensional P when concatenated with PL.

Computing P. The proof to lemma 2 is a constructive one, which provides a
baseline for an algorithm to determine PM as desired: initialize Y to BK∗ and
incrementally add vectors to Y until S ′ = ∅. However, a family of vectors Y
obtained through such a process would not, a priori, have minimal cardinality.
In the previous example, in which m = 3 and K∗ = {>}, the cardinality of Y
would be necessarily greater than 7, which is th cardinality of BK∗ , while the
family W defined by:

W =





1
−1
0
0
0
0
0
0


,



1
0
−1
0
0
0
0
0


,



1
0
0
−1
0
0
0
0


,



1
0
0
0
−1
0
0
0


,



1
0
0
0
0
−1
0
0


,



1
0
0
0
0
0
−1
0


,



1
0
0
0
0
0
0
−1




satisfies the conditions of lemma 2. Hence, we resort to a number of heuristics
in order to obtain concise forms of Y, leading to simpler polynomial systems to
solve.

First, we can see that if Y is such that yi = 0 for all i ∈ J0, dK \ {j, j′},
yj = 1 and yj′ = −1, for some j, j′ ∈ J0, dK with j 6= j′, then MY is a linear
function. Hence, if there is such a Y ∈ Ker (TK∗) ∩ Zd+1, then we can consider
MY within the linear part of the system, which can be solved first to reduce
the general complexity of the problem. Therefore, we start by determining a
subfamily of Y, corresponding to such linear functions, which we note YL. This
can be accomplished through the following algorithm:
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1 . i n i t i a l i z e J ← ∅ ;
2 . i n i t i a l i z e YL ← () ;
3 . f o r j from 0 to d− 1 :
4 . i f j /∈ J :
5 . add j to J ;
6 . f o r j′ from j + 1 to d :
7 . i f j′ /∈ J :

8 . Y =

0
...
0

 , yj = 1 , yj′ = −1 ;

9 . i f Y ∈ Ker (TK∗) :
10 . add j′ to J ;
11 . add Y to YL ;

Algorithm 2: Computing YL

Then, we need to add a family YNL to YL, corresponding to the strictly
non-linear part of PM , in order to define Y. To do this, we can complete
YL to form a basis of Ker (TK∗) ∩ Zd+1, initialize Y to be equal to this ba-
sis and then incrementally add vectors to Y until S ′ = ∅ as described pre-
viously. Notice that, in this process, it suffices to consider the subset T ′ =
{S′ ⊂ J0, dK | (s′ = s− 1) ∧ (Z ′ ⊂ ZM )} of S ′ rather than S ′ because T ′ = ∅
necessarily implies S ′ = ∅. Furthermore, there is no need to iterate more than
once over the elements of {S′ ⊂ J0, dK | s′ = s− 1} because T ′ decreases when
we add elements to Y. Hence, the outline of the algorithm becomes as follows:

1 . i n i t i a l i z e Y ← YL ;
2 . complete Y to form a ba s i s o f Ker (TK∗) ∩ Zd+1 ;
3 . f o r S′ ∈ {S′ ⊂ J0, dK | s′ = s− 1} :
4 . i f Z ′ ⊂ ZM :
5 . choose Y ′ approp r i a t e l y ;
6 . add Y ′ to Y ;

Algorithm 3: Computing YNL

The issue of choosing Y ′ in step 5 of the previous algorithm can be resolved as
follows:

1 . c on s id e r the matrix B such that each row corresponds
to an element from BK∗ ;
2 . r eo rde r the columns o f B so that the f i r s t s′ columns
correspond to the columns with i n d i c e s in S′ ;
3 . reduce B to i t s reduced row eche lon form ;
4 . s e t Y ′ to the l a s t row o f B ;
5 . r ea r range the columns o f Y ′ back to the o r i g i n a l order
o f i n d i c e s ;

Algorithm 4: Computing Y ′
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Furthermore, the cardinality of Y may eventually be reduced as it can contain
a subfamily which satisfies the condition from lemma 2. We reduce the size of
Y using a greedy algorithm:

1 . whi l e ∃Y ∈ YNL such that Y \ Y i s a gene ra t ing fami ly
o f v e c t o r s o f Ker (TK∗) and T ′ = ∅ :
2 . remove Y from Y ;

Algorithm 5: Reducing YNL

By combining all these algorithms, we obtain an algorithm for computing
PM :

1 . compute YL v ia a lgor i thm 2 ;
2 . compute YNL v ia a lgor i thm 3 and algor i thm 4 ;
3 . reduce YNL v ia a lgor i thm 5 ;
4 . i n i t i a l i z e PML

← ∅ ;
5 . f o r Y ∈ YL :
6 . add MY to PML

;
7 . i n i t i a l i z e PMNL

← ∅ ;
8 . f o r Y ∈ YNL :
9 . add MY to PMNL

;
10 . PM ← PML

t PMNL
;
Algorithm 6: Computing PM

Finally, we can determine P through algorithm 1 and algorithm 6:

1 . compute PL v ia a lgor i thm 1 ;
2 . compute PM v ia a lgor i thm 6 ;
3 . P ← PL t PM ;

Algorithm 7: Computing P

Note that the reduction of the problem to a zero-dimensional polynomial
system is critical in order to use an algorithm for determining a univariate rep-
resentation of the system. To the best of our knowledge, the solution provided
above is the first one which allows to unlock this possibility.

7.3. General structure of the algorithm
We have shown in the previous section that we can transpose the equations

characterizing an MCI model into a zero-dimensional polynomial system. This
system can be solved using algorithms from algebraic geometry as mentioned
in section 7.1 and we can check each solution of the system (of which there is a
finite number) until we find the one which corresponds to the characterization
of the MCI model.

As any coordinate of the vector X defining the MCI model is equal to zero
if and only if this can be derived directly from the constraints (in the sense
of derivable itemsets, see section 5.3), the MCI model corresponds to the only
X ∈ Z such that xi = 0, ∀i ∈ D and xi > 0, ∀i ∈ J0, dK \D, where D is the set
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of indices for which we can derive xi = 0 directly. Hence, the general structure
of the algorithm may be summarized as follows:

1 . compute D ; 2

2 . determine P from
(
K∗, f|K∗

)
v ia a lgor i thm 7 ;

3 . add Xi to P f o r a l l i ∈ D ;
4 . s o l v e P ( i . e . determine a un i va r i a t e r ep r e s en t a t i on
o f Z us ing an algor i thm as mentioned in s e c t i o n 7.1 ) ;
5 . f i nd X ∈ Z such that xi > 0, ∀i ∈ J0, dK \D ;

Algorithm 8: Computing the MCI model

Note that this algorithm corresponds to the case in which the values in f|K∗
are specified (otherwise D cannot be computed). By contrast, if the values
in f|K∗ are seen as formal variables, we can only perform steps 2 and 4 and,
eventually, step 5 if it may be solved formally (or at least reduced) under the
assumption that D = ∅ (as all cases in which D 6= ∅ can be obtained by
continuity from cases in which D = ∅).

7.4. Speed-up for independence cases
The computational complexity of this algorithm is quite difficult to charac-

terize because the computational complexity for determining a univariate rep-
resentation of Z is itself quite difficult to characterize (unless a Gröbner basis
for P is provided but this is not the case here). Obviously, the computational
complexity increases at least exponentially with m as the number of variables
considered is equal to d + 1 = 2m. But given m, the complexity varies also
enormously with the structure of K∗. Cases such as K∗ = {>} or K∗ = I \ {Id}
are extremely easy cases to compute while cases corresponding to standard (un-
constrained) mutual independence between items or itemsets appear to be the
most difficult ones. Hopefully, such cases may be identified and divided into
cases corresponding to strictly smaller values of m which prove to be easier to
compute.

Consider for example thatm = 5 andK∗ = {>, a1∧a2, a3∧a4, a4∧a5, a3∧a5}.
None of the constraints on a1 and a2 are linked in any way to the constraints
on a3, a4 and a5. Hence, we can consider two MCI models: the probability
distribution p1 over the Boolean lattice B1 associated to A1 = {a1, a2}, defined
by
(
K∗1, f|K∗1

)
where K∗1 = {>, a1 ∧ a2}, on the one hand; and the probability

distribution p2 over the Boolean lattice B2 associated to A2 = {a3, a4, a5},
defined by

(
K∗2, f|K∗2

)
where K∗2 = {>, a3 ∧ a4, a4 ∧ a5, a3 ∧ a5}, on the other

hand. The MCI model p is then obtained by the independence of these two
models via:

p (a∗1, a
∗
2, a
∗
3, a
∗
4, a
∗
5) = p1 (a∗1, a

∗
2)p2 (a∗3, a

∗
4, a
∗
5)

where a∗i ∈ {ai, ai} for all i ∈ J1, 5K.

2This is a simple problem in linear programming which can be solved through the use of a
simplex algorithm for example.
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More generally, we can define the undirected graph G = (V,E) of the mutual
constraints between items by:

• V = {a1, ..., am};

• {ai, aj} ∈ E if and only if ∃I ∈ K∗ such that I =⇒ (ai ∧ aj).

Let nc be the number of connected components of G and V1, ..., Vnc
the set of

items associated to each component. Then, each set of items Vi corresponds to
an MCI model pi over the Boolean lattice associated to Vi, defined by

(
K∗i , f|K∗i

)
where:

K∗i =

I ∈ K∗
∣∣∣∣∣∣
∧
aj∈Vi

aj =⇒ I


and the MCI model p is entirely defined by:

p

 m∧
j=1

a∗j

 =

nc∏
i=1

pi

 ∧
aj∈Vi

a∗j


If G has only one connected component, then there is no gain, but the cost

of computing G and its connected components is highly negligible in comparison
to the gain that occurs when G has at least two components. This is true when
the MCI model is computed through algorithms in algebraic geometry, but it is
also true if they are seen as MaxEnt models and computed through algorithms
in optimization theory and a similar process is described in [33].

7.5. Speed-ups for step 4
As stated previously, the bottleneck of algorithm 8 in terms of computational

complexity resides in its step 4, in which a univariate representation of Z is
computed. In order to speed this step up, we can use substitutions to reduce
significantly the number of variables considered before solving the polynomial
system. These speed-ups were essential to compute the algebraic forms of all
MCI models for m = 3 and m = 4.

The first trick is to reduce the linear part of P separately and perform
substitutions in the nonlinear part of P based on this reduction. The linear part
of P comprises the polynomials in PL, as well as the polynomials in PM which
correspond to the family of vectors YL as determined by algorithm 2 (noted PML

in algorithm 6) and the polynomials added to P in step 3 of algorithm 8 (we will
note these PD). Each of these polynomials corresponds naturally to a vector
with coordinates in (X0, ..., Xd, 1) so that we can see the linear part of P as a
matrix with d+2 columns and as many row as polynomials in the sets mentioned
above. We can then consider its reduced row echelon form and obtain a set of
free variables from which the remaining pivot variables are entirely determined.
The pivot variables are then substituted in the remaining polynomials of P
(noted PMNL

in algorithm 6) by their expressions as affine functions of the free
variables. In this manner, a new zero-dimensional polynomial system is obtained
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whose variables are the free variables determined previously. The reduction in
terms of number of variables is quite substantial. For m = 3, this brings down
the number of variables down from 8 to 1, 2 or 3 depending on K∗. For m = 4,
this brings down the number of variables down from 16 to 7 or less. Note
that the part of this reduction which is based on the elements of PML

is mostly
equivalent to the reduction based on blocks described in [33] for the computation
of MaxEnt models.

Now that we have obtained this reduced polynomial system, the second trick
is to find any variable for which at least one polynomial in the system has degree
exactly 1. Indeed, if a polynomial P has degree 1 in a variable, say X0, then
P (X0, ..., Xd) = A(X1, ..., Xd)X0 +B(X1, ..., Xd) and, therefore:

P (X0, ..., Xd) = 0 ⇐⇒ A(X1, ..., Xd)X0 = −B(X1, ..., Xd)

(Note that we write X0, ..., Xd for simplicity even though we are now considering
a set of variables which is strictly contained in {X0, ..., Xd}.)

Furthermore, as we have P (x0, ..., xd) = 0 and x0 6= 0 when considering the
MCI model (because the variables equal to zero have already been set aside in
the reduction described above), then either A(x1, ..., xd) = B(x1, ..., xd) = 0 or
A(x1, ..., xd)B(x1, ..., xd) 6= 0. Each of these cases can be associated to a zero-
dimensional polynomial system which is easier to solve than the current one.
On one side, if A(x1, ..., xd) = B(x1, ..., xd) = 0, we can consider the polynomial
system in which P has been replaced by A and B. And, on the other side, if
A(x1, ..., xd)B(x1, ..., xd) 6= 0, we can consider that X0 = −BA (where A and
B can be reduced so that they contain no common factors because x0 does
not correspond to a root of A or B) and thus substitute X0 by −BA in all the
polynomials of the system and multiply each of these by A as many times as
necessary to obtain a polynomial (which corresponds to the degree of X0 in
the polynomial). In this case, the new polynomial system has one polynomial
less (the polynomial P initially considered) and one variable less (X0 in this
example). Note that, in all the cases which we have computed for m = 3 and
m = 4, when such a reduction was possible, the solution of the system associated
to the MCI model always corresponded to the reduced polynomial system in
which a variable was substituted by a rational expression −BA . Hence, though
we have not proved this generally, for all the cases which we have computed, such
a reduction corresponds to decreasing the number of variables in the polynomial
system by one.

This process may be repeated until the system may no longer be reduced
in this manner. However, note that, if at one point in the process there is
more than one variable which may be considered, the choice of the variable may
influence how much the system may be reduced. In practice, the gain provided
by reducing the number of variables is such that we explore all possible choices
until we have found one which gives an optimal reduction in terms of number
of variables.
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7.6. Algebraic solutions for all cases when m ≤ 4
In section 7.1, we explained that the computations for determining a uni-

variate representation may be performed in Q, based on specific rational values
for f1, ..., fd, or in Q(f1, ..., fd), based on formal values for f1, ..., fd. In the case
in which formal values are employed, the univariate representation obtained for
a given K∗ corresponds to a formal and simplified algebraic representation of
the MCI model (for this given K∗). This representation can be stored allowing
for a fast and precise computation of the corresponding MCI models given any
specific values for f|K∗ .

In the course of this research, we have computed such formal univariate
representations for a sufficient number of cases of K∗ such that m ≤ 4, allowing
for a fast computation of all MCI models in which m ≤ 4 or consisting of
independent groups of items satisfying this condition. The number of different
cases of K∗ for a given m is equal to 22

m−1 which is the number of subsets of I
that contain >. However, it is sufficient to consider only a fraction of these cases
because if a set K∗1 may be obtained from a set K∗2 by a simple permutation of the
items defining the itemsets, then a formal univariate representation associated
to K∗1 may be obtained from the formal univariate representation computed for
K∗2. Hence, we need only consider a single representative for each equivalence
class defined by the set of permutations on items which brings down the number
of cases to compute significantly enough. This corresponds to sequence A000612
in [42], which is described as the number of non-isomorphic sets of nonempty
subsets of an n-set. The number of cases to compute can be brought down
slightly further still by computing only the cases which do not correspond to
independence cases using the principles described in section 7.4. The number of
such cases corresponds to sequence A323819 in [42], which is described as the
number of non-isomorphic connected set-systems covering n vertices.

m 22
m−1 A000612 A323819

2 8 6 3

3 128 40 30

4 32,768 1,992 1,912

5 2,147,483,648 18,666,624 18,662,590

6 9.223× 1018 1.281× 1016 1.281× 1016

7 1.701× 1038 3.376× 1034 3.376× 1034

Table 8: Sequences for the number of cases to compute.

The number of cases to compute is therefore reasonable enough for us to en-
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visage computing all the cases for m ≤ 4 on a personal computer. Given more
computational power, computing the cases for m = 5 may also be considered.
However, though the gain in terms of number of cases to compute is asymptot-
ically a factor m!, this is not sufficient to envisage an exhaustive computation
of all cases for any value of m beyond m = 5.

Setting aside the question of computing a large number of cases, the issue
with performing computations in the field Q(f1, ..., fd) (or, more precisely, in the
polynomial space Q(f1, ..., fd)[X0, ..., Xd]) resides in the augmented cost of basic
operations and simplifications of expressions which must be performed both a
great many times and with expressions that are potentially quite long. However,
in order to curtail the size of the expressions considered, the coefficients of the
polynomials can always be reduced to an irreducible rational fraction (based
on the continuity of the solution with regards to the variables f1, ..., fd). This
means that we can also consider operations on polynomials with coefficients in
Q[f1, ..., fd] that are setwise coprime, which is the option we have adopted in
our implementation.

Last, once a formal univariate representation is computed it may possibly
be reduced. Indeed, it may appear, in some cases, that one or several of the
roots of the polynomial Q of a univariate representation (Q,B,A0, ..., Ad) can be
ignored: either because they lead to solutions which can be formally identified as
not satisfying the conditions of the MCI model (necessarily leading to negative or
non real values for x0, ..., xd); or because they lead to solutions which necessarily
correspond to a situation of derivability (where one of the values for x0, ..., xd
at least is equal to zero which can be ignored because of the continuity of the
MCI model with regards to f1, ..., fd).

7.7. Solutions for m = 3

We list below the computed algebraic expressions corresponding to repre-
sentatives for each of the 30 different equivalence classes described in section
7.6 when m = 3. For each case, we give the subset of {f1, f2, f3, f4, f5, f6, f7}
corresponding to the fixed frequencies. If solving the system includes computing
the roots of a polynomial Q with coefficients in Z[f1, ..., f7], we indicate this in
the upper right corner and give the corresponding polynomial below. We then
list the algebraic expressions for each xi based on the values f1, ..., f7 as well
as the previously computed values of xi and a root t of Q. The MCI model is
obtained by considering a root t of Q such that all xi are positive.

{f7} {f6, f7} {f5, f6} Q

x0 =
1−f7

7
x0 =

1−f6
6

x7 = t

x1 = x0 x1 = x0 x0 =
1−f5−f6+x7

5
x2 = x0 x2 = x0 x1 = x0
x3 = x0 x3 = x0 x2 = x0
x4 = x0 x4 = x0 x3 = x0
x5 = x0 x5 = x0 x4 = x0
x6 = x0 x6 = f6 − f7 x5 = f5 − x7
x7 = f7 x7 = f7 x6 = f6 − x7

Q = 4T2 − (1 + 4(f5 + f6))T + 5f5f6
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{f5, f6, f7} {f4, f7} {f4, f6, f7}

x0 =
1−f5−f6+f7

5
x0 =

1−f4
4

x0 =
1−f4

4

x1 = x0 x1 = x0 x1 = x0
x2 = x0 x2 = x0 x2 = x0
x3 = x0 x3 = x0 x3 = x0
x4 = x0 x4 =

f4−f7
3

x4 =
f4−f6

2
x5 = f5 − f7 x5 = x4 x5 = x4
x6 = f6 − f7 x6 = x4 x6 = f6 − f7
x7 = f7 x7 = f7 x7 = f7

{f4, f5, f6} {f4, f5, f6, f7} {f3, f5, f6} Q

x7 =
f5f6
f4

x0 =
1−f4

4
x7 = t

x0 =
1−f4

4
x1 = x0 x0 =

1−f3−f5−f6+2x7
4

x1 = x0 x2 = x0 x1 = x0
x2 = x0 x3 = x0 x2 = x0
x3 = x0 x4 = f4 − f5 − f6 + f7 x3 = f3 − x7
x4 = f4 − f5 − f6 + x7 x5 = f5 − f7 x4 = x0
x5 = f5 − x7 x6 = f6 − f7 x5 = f5 − x7
x6 = f6 − x7 x7 = f7 x6 = f6 − x7

Q = 20T3 + 4(1 − 5(f3 + f5 + f6))T2 + ((1 − (f3 + f5 + f6))2 + 16(f3f5 + f3f6 + f5f6))T − 16f3f5f6

{f3, f5, f6, f7} {f3, f4, f7} {f3, f4, f6} Q

x0 =
1−f3−f5−f6+2f7

4
x0 =

1−f3−f4+f7
3

x7 = t

x1 = x0 x1 = x0 x0 =
1−f3−f4+x7

3
x2 = x0 x2 = x0 x1 = x0
x3 = f3 − f7 x3 = f3 − f7 x2 = x0
x4 = x0 x4 =

f4−f7
3

x3 = f3 − x7

x5 = f5 − f7 x5 = x4 x4 =
f4−f6

2
x6 = f6 − f7 x6 = x4 x5 = x4
x7 = f7 x7 = f7 x6 = f6 − x7

Q = 2T2 + (f4 − 2f3 − 3f6 − 1)T + 3f3f6

{f3, f4, f6, f7} {f3, f4, f5, f6} Q {f3, f4, f5, f6, f7}

x0 =
1−f3−f4+f7

3
x7 = t x0 =

1−f3−f4+f7
3

x1 = x0 x0 =
1−f3−f4+x7

3
x1 = x0

x2 = x0 x1 = x0 x2 = x0
x3 = f3 − f7 x2 = x0 x3 = f3 − f7

x4 =
f4−f6

2
x3 = f3 − x7 x4 = f4 − f5 − f6 + f7

x5 = x4 x4 = f4 − f5 − f6 + x7 x5 = f5 − f7
x6 = f6 − f7 x5 = f5 − x7 x6 = f6 − f7
x7 = f7 x6 = f6 − x7 x7 = f7

Q = 4T3 + (1 − 4(f3 + f5 + f6))T2 + (3(f3f5 + f3f6 + f5f6) + (1 − f3 − f4)(f4 − f5 − f6))T − 3f3f5f6

{f2, f4, f7} Q {f2, f4, f6, f7} {f2, f4, f5, f7}

x6 = t x0 =
1−f2−f4+f6

2
x6 =

(f4−f5)(f2−f7)
1−f5

x0 =
1−f2−f4+f7+x6

2
x1 = x0 x0 =

1−f2−f4+f7+x6
2

x1 = x0 x2 =
f2−f6

2
x1 = x0

x2 =
f2−f7−x6

2
x3 = x2 x2 =

f2−f7−x6
2

x3 = x2 x4 =
f4−f6

2
x3 = x2

x4 =
f4−f7−x6

2
x5 = x4 x4 = f4 − f5 − x6

x5 = x4 x6 = f6 − f7 x5 = f5 − f7
x7 = f7 x7 = f7 x7 = f7

Q = T2 + (2 − f2 − f4)T − (f4 − f7)(f2 − f7)

{f2, f4, f5, f6} {f2, f4, f5, f6, f7} {f2, f3, f4, f5} Q

x7 =
f5f6
f4

x0 =
1−f2−f4+f6

2
x6 = t

x0 =
1−f2−f4+f6

2
x1 = x0

x7 = x6 − 1 − f2 + 2f3 − f4 +

2f5 +
2(f2−f3)(f4−f5)

x6
x1 = x0 x2 =

f2−f6
2

x0 =
1−f2−f4+x6+x7

2

x2 =
f2−f6

2
x3 = x2 x1 = x0

x3 = x3 x4 = f4 − f5 − f6 + f7 x2 = f2 − f3 − x6
x4 = f4 − f5 − f6 + x7 x5 = f5 − f7 x3 = f3 − x7
x5 = f5 − x7 x6 = f6 − f7 x4 = f4 − f5 − x6
x6 = f6 − x7 x7 = f7 x5 = f5 − x7

Q = T3 + (1− (1 + f2 − f3)(1 + f4 − f5)− (1− f3)(1− f5))T2 + (f2 − f3)(f4 − f5)(f2 − 2f3 + f4 − 2f5 + 3)T −
2(f2 − f3)2(f4 − f5)2
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{f2, f3, f4, f5, f7} Q1 {f2, f3, f4, f5, f6} Q2 {f2, f3, f4, f5, f6, f7}

x6 = t x7 = t x0 =
1−f2−f4+f6

2

x0 =
1−f2−f4+f7+x6

2
x0 =

1−f2−f4+f6
2

x1 = x0

x1 = x0 x1 = x0 x2 = f2 − f3 − f6 + f7
x2 = f2 − f3 − x6 x2 = f2 − f3 − f6 + x7 x3 = f3 − f7
x3 = f3 − f7 x3 = f3 − x7 x4 = f4 − f5 − f6 + f7
x4 = f4 − f5 − x6 x4 = f4 − f5 − f6 + x7 x5 = f5 − f7
x5 = f5 − f7 x5 = f5 − x7 x6 = f6 − f7
x7 = f7 x6 = f6 − x7 x7 = f7

Q1 = T2 − (1 + f2 − 2f3 + f4 − 2f5 + f7)T + 2(f2 − f3)(f4 − f5)

Q2 = 2T3+(f2−2f3+f4−2f5−3f6)T2+(f2f4−f2f5−f2f6−f3f4+2f3f5+2f3f6−f4f6+2f5f6+f2
6 )T−f3f5f6

{f1, f2, f4, f7} Q {f1, f2, f4, f6, f7} {f1, f2, f4, f5, f6}

x6 = t x5 =
(f1−f7)(f4−f6)

1−f6
x7 =

f5f6
f4

x5 =
(f1−f7)(f4−f7−x6)

1−f7−x6
x3 =

(f2−f6)(f1−f7−x5)
1−f4

x3 =
(f1−f5)(f2−f6)

1−f4

x3 =
(f1−f7−x5)(f2−f7−x6)

1−f4

x0 =
1−f1−f2−f4+f6+f7+x3+x5

x0 = 1−f1−f2−f4+f5+f6+x3

x0 =
1−f1−f2−f4+2f7+x3+x5+x6

x1 = f1 − f7 − x3 − x5 x1 = f1 − f5 − x3

x1 = f1 − f7 − x3 − x5 x2 = f2 − f6 − x3 x2 = f2 − f6 − x3
x2 = f2 − f7 − x3 − x6 x4 = f4 − f6 − x5 x4 = f4 − f5 − f6 + x7
x4 = f4 − f7 − x5 − x6 x6 = f6 − f7 x5 = f5 − x7
x7 = f7 x7 = f7 x6 = f6 − x7

Q = (1 − f1)T2 − (1 − 2f7 − f1f2 − f1f4 + 2f1f7 + f2f4)T + (f2 − f7)(f4 − f7)(1 − f1)

{f1, f2, f4, f5, f6, f7} {f1, f2, f3, f4, f5, f6} Q {f1, f2, f3, f4, f5, f6, f7}

x3 =
(f1−f5)(f2−f6)

1−f4
x7 = t

x0 =
1−f1−f2 +f3−f4 +f5 +f6−f7

x0 = 1−f1−f2−f4+f5+f6+x3
x0 =
1−f1−f2+f3−f4+f5+f6−x7

x1 = f1 − f3 − f5 + f7

x1 = f1 − f5 − x3 x1 = f1 − f3 − f5 + x7 x2 = f2 − f3 − f6 + f7
x2 = f2 − f6 − x3 x2 = f2 − f3 − f6 + x7 x3 = f3 − f7
x4 = f4 − f5 − f6 + f7 x3 = f3 − x7 x4 = f4 − f5 − f6 + f7
x5 = f5 − f7 x4 = f4 − f5 − f6 + x7 x5 = f5 − f7
x6 = f6 − f7 x5 = f5 − x7 x6 = f6 − f7
x7 = f7 x6 = f6 − x7 x7 = f7

Q = T3− (f3 +f5 +f6−f1f2−f1f4−f2f4 +f1f6 +f2f5 +f3f4)T2 +(f3f5 +f3f6 +f5f6 +f1f2f4−f1f2f5−
f1f2f6−f1f3f4−f1f4f6+f1f2

6−f2f3f4−f2f4f5+f2f2
5+f2

3 f4+2f3f5f6)T+f3f5f6(f1+f2−f3+f4−f5−f6−1)

7.8. Pros and cons of the algebraic method
As stated previously, one of the important advantages of the algebraic method

is that it allows us to determine reduced algebraic expression for MCI models in
a generic case, from which we can then compute specific MCI models very effi-
ciently. When the corresponding generic cases have been computed, the increase
in computation speed is quite astounding in comparison to standard methods
for computing MaxEnt models. Note that this can be reasonably expected as
the problem of computing the MCI model (with rational constraints) in general
is an NP-hard problem [45]3 and any algorithm which computes MCI models in
general is affected by this difficulty (including the algebraic approach). However,
the main difference between the algebraic approach versus any other algorithm
based on optimization methods is that this high complexity will only affect
the computation of the univariate representation in a generic case for a given
set of itemsets but it will not affect the computation of any specific instance
corresponding to this set of itemsets based on this univariate representation
(which breaks down to determining the roots of a rational polynomial which
has polynomial complexity [34]).

3The proof of NP-hardness in [45] is relative to the computation of models which are a
subclass of MCI models.
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In order to check this empirically, we chose 20 different samples of m = 3
items among the 70 items of the plants database [36], each corresponding to an
empirical distribution f such that no single fi could be derived from the other
fj for which j 6= i (i.e. D = ∅). For each of these distributions, we considered
the computation of 30 different MCI models, each of which corresponded to
one of the pre-computed cases in section 7.7 above. Each of these computations
were performed 100 times using the pre-computed algebraic expressions and 100
times using an implementation of the Iterative scaling procedure by Darroch and
Ratcliff for computing MaxEnt models [11]4. In order to make comparisons in
terms of execution as meaningful as possible, the computations were performed
on the same computer (Intel Core i7-8550U CPU 1.80GHz × 8, 7.7 GiB RAM)
and both were based on a Python3 implementation. The total execution time
using the algebraic expressions was approximately equal to 2.14 seconds, while it
took approximately 6 minutes and 21 seconds for the purely numerical method.
Hence, the method based on the algebraic expressions was about 150 times
faster here. Note that a more detailed observation of the execution times in
the process described above allowed us to ensure that the gain in time was not
concentrated on any distribution or constrained set in particular (though there
was some variations between constraint sets).

Even though the gain in terms of execution time obtained here is quite
impressive, it must be put into perspective. Such a gain can only be obtained if
we consider specific cases corresponding to previously computed generic cases,
the computation of which is itself quite time consuming. As mentioned in section
7.6, we have managed to compute all generic cases corresponding to m ≤ 4 but
we also acknowledge that doing so is intractable for any value of m ≥ 6.

Nevertheless, the inability to compute the exhaustive list of all generic cases
for larger values of m does not necessarily represent a serious limitation to the
the interest of the MCI approach, for both practical and theoretical applica-
tions. Regarding practical applications, it must be noted that it is, in general
and regardless of the method employed, practically infeasible to consider a full
description of a probability measure on B, for even a limited number of itemsets,
because such a description requires the definition of 2m − 1 individual values
a priori. In itemset mining, global models (i.e. probability distributions where
B is defined by all items) are not considered directly in practical applications.
Instead, they are replaced by numerous small local models (where B is defined
by a small subset of itemsets). If we are considering a large number of local MCI
models, each of which are defined around 3 or 4 items, the algebraic method
becomes highly relevant. Furthermore, the explicit computation of reduced al-
gebraic expressions for MCI models can be useful from a theoretical perspective,
as it may bring insight on the structure of these models. Notably, we have hope
that the explicit computation of reduced algebraic expressions for MCI models
based on the frequencies of all itemsets of size 1 and 2 for low values of m can

4This specific algorithm was chosen based on the fact that it has been commonly used for
computing such MaxEnt models in the context of itemset mining [24, 39, 46, 47, 33]
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help us determine an explicit algebraic formula for such models and provide an
interesting alternative to Chow-Liu tree models [8].

Lastly, the previous remarks only apply to the approach in which we try
to compute an MCI model using the algebraic method in a generic case before
considering a specific case (that is we perform computations in Q(f1, ..., fd)
before substituting the fi by their values). If we compute the MCI model
using the algebraic method in a specific case (that is we perform computations
directly in Q), the computation time is individually much lower than computing
the generic case. Though we speculate that, for the computation of a specific
individual case, the numerical method is faster still than the algebraic method,
we have yet to perform comparisons between these two approaches. As the
algebraic method on a specific case performs better when the values for the
numerators and denominators of the fi are small (which can notably be the case
if the number of transactions is not too large), it is possible that the algebraic
approach (eventually combined with an approximation scheme) may outperform
the numerical method in a number of cases.

8. Conclusion

Given the knowledge of the frequencies of a set of itemsets, what frequencies
can one reasonably expect for the remaining itemsets? In the course of this
paper, we have presented a solution to this question based on a new notion of
mutual constrained independence: the MCI model. As we have made explicit,
the theoretical basis to our answer is very solid and it has been designed to be the
most objective possible answer to this question. We present mathematical proofs
for the existence and characterization of MCI models, as well as a complete
method for computing them explicitly.

Furthermore, we have shown that our solution to this question coincides
exactly with other solutions to the same question which can be obtained when
considering objectivity in a different light: MaxEnt models. As such, the MCI
approach sheds a new light on the maximum entropy principle and provides a
new means to compute such models. We show that our computation method
can provide these models at a much greater speed (by a factor over 100) when
considering models with a small number of items in comparison with standard
numerical methods.

As this paper focuses on theoretical and computational aspects of MCI mod-
els, we have not presented an explicit application of the MCI approach. However,
the link we have established between MCI models and a specific class of MaxEnt
models already used in itemset mining allows to assert that our approach has
applications in a wide variety of domains such as text mining, bioinformatics
or sociology to list just a few [37, 15, 31] . Furthermore, we believe the notion
of mutual constrained independence can also find simple and straightforward
applications in statistical hypothesis testing. Indeed, as mutual constrained in-
dependence is a natural generalization of independence, we can easily define a
generalization of the χ2 test of independence to a χ2 test of mutual constrained
independence (based on a χ2 test of goodness of fit for the corresponding MCI
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model). For example, one could test a hypothesis that the interactions between
multiple variables are simply the result of their pairwise interactions using a
test of mutual constrained independence. These tests could suitably be used in
a wide variety of domains, ranging from the study of comorbidities in medical
research to research on intersectionality, which are two current hot topics in
which the difficulty of defining adequate quantitative methods has been clearly
pointed out [27, 23, 40, 4].
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