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Abstract

Wepresent aCalderón preconditioner for the electric field integral equation (EFIE), which does not require a barycentric
refinement of the mesh and which yields a Hermitian, positive definite (HPD) system matrix allowing for the usage
of the conjugate gradient (CG) solver. The resulting discrete equation system is immune to the low-frequency and
the dense-discretization breakdown and, in contrast to existing Calderón preconditioners, no second discretization of
the EFIE operator with Buffa-Christiansen (BC) functions is necessary. This preconditioner is obtained by leveraging
on spectral equivalences between (scalar) integral operators, namely the single layer and the hypersingular operator
known from electrostatics, on the one hand, and the Laplace-Beltrami operator on the other hand. Since our approach
incorporates Helmholtz projectors, there is no search for global loops necessary and thus our method remains stable
on multiply connected geometries. The numerical results demonstrate the effectiveness of this approach for both
canonical and realistic (multi-scale) problems.

Keywords: Electric field integral equation (EFIE), Calderón preconditioning, preconditioner, hierarchical basis,
multilevel, wavelet

1. Introduction

The electric field integral equation (EFIE), which is used for solving electromagnetic scattering and radiation
problems, results in an ill-conditioned linear system of equations when discretized with Rao-Wilton-Glisson (RWG)
basis functions—the common choice in standard codes. The ill-conditioning stems from two issues: the low-frequency
breakdown, which is due to the different scaling of the vector and the scalar potential in frequency, and the dense-
discretization breakdown, which is due to the fact that the vector and the scalar potential are pseudo-differential
operators of negative and positive order [1], a property that leads in general to ill-conditioned system matrices.
Altogether, the condition number of the EFIE system matrix grows as (kh)−2, where k is the wavenumber and h is the
average edge length of the mesh, leading to slowly or non-converging iterative solvers [2].

The low-frequency breakdown has been overcome in the past by using explicit quasi-Helmholtz decompositions
such as the loop-star or the loop-tree decomposition [3–7]. While these decompositions cure the low-frequency
breakdown, the dense-discretization breakdown persists and is even worsened to a 1/h3 scaling of the condition
number in the case of the loop-star decomposition [8]. Some other low-frequency stable methods have been proposed
in the past such as the augmented EFIE, the rearranged loop-tree decomposition, or the augmented EFIE with normally
constrained magnetic field and static charge extraction [9–11], yet all of them suffer from h-ill-conditioning.

Different strategies have been presented to overcome the dense-discretization breakdown. A first class of techniques
relies on algebraic strategies such as the incomplete LU factorization [12, 13], sparse approximate inverse [14, 15],
or near-range preconditioners [16]. While they improve the conditioning, the condition number still grows with
decreasing h.
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In recent years more elaborate explicit quasi-Helmholtz decompositions have been presented, the so-called hi-
erarchical basis preconditioners for both structured [17–20] and unstructured meshes [21, 22] (in the mathematical
community, the hierarchical basis preconditioners are typically termed multilevel or prewavelet preconditioners). The
best of these methods can yield a condition number that only grows logarithmically in 1/h [20, 22] meaning that there
is still space left for improvement.

In fact, Calderón identity-based preconditioners yield a condition number that has an upper bound independent
from h [23–27]. In the static limit, however, the Calderón strategies stop working due to numerical cancellation in both
the right-hand side excitation vector and the unknown current, since solenoidal and non-solenoidal components scale
differently in k [28]. Explicit quasi-Helmholtz decompositions do not suffer from this cancellation since the solenoidal
and non-solenoidal components are stored separately. To make Calderón preconditioners stable in the static limit, one
could combine the Calderón multiplicative preconditioner (CMP) with an explicit quasi-Helmholtz decomposition.

Such an approach has a severe downside: if the geometry is multiply connected, then the quasi-harmonic global
loop functions have to be added to the basis of the decomposition [6]. In contrast to loop, star, or tree functions, (or
any of the hierarchical bases mentioned here), the construction of the global loops becomes costly if the genus g is
proportional to the number of unknowns N resulting in the overall complexity O(N2 log(N)), where N is the number of
unknowns (see, for example, the discussion in [29]). In order to avoid the construction of the global loops, a modified
CMP has been presented which leverages on an implicit quasi-Helmholtz decomposition based on projectors [30].
These projectors require the application of the inverse primal (i.e., cell-based) and the inverse dual (i.e., vertex-based)
graph Laplacian, a task for which blackbox-like preconditioners such as algebraic multigrid methods can be used for
rapidly obtaining the inverse.

In order to avoid the inversion of graph Laplacians, one could think that an alternative might be the Calderón
preconditioner combined with an explicit loop-star quasi-Helmholtz decomposition as described in the penultimate
paragraph, at least if no global loops are present. However, the inverse Gram matrices appearing in such a scheme are
all spectrally equivalent to discretized Laplace-Beltrami operators. Different from the graph Laplacians, these Gram
matrices are not symmetric since the loop-star basis is applied to a mixed Gram matrix, that is, Buffa-Christiansen
(BC) functions are used as expansion and rotated RWG functions are used as testing functions [8, 30]. In general, this
complication makes it more challenging to stably invert these Gram matrices compared with the graph Laplacians of
the Helmholtz projectors since, for example, many algebraic multigrid preconditioners require symmetric matrices.

The work in [25, 30] demonstrated a Calderón scheme that can be relatively easily integrated in existing codes.
Instead of discretizing the operator on the standard mesh with RWG and BC functions, only a single discretization
with RWG functions on the barycentrically refined mesh is necessary. The disadvantage of this approach is that the
memory consumption as well as the costs for a single-matrix vector product are increased by a factor of six.

In this work, we propose a refinement-free Calderón multiplicative preconditioner (RF-CMP) for the EFIE. In
contrast to existing Calderón preconditioners, no BC functions are employed, so that a standard discretization of the
EFIE with RWG functions can be used. What is more, we get a system matrix, which is Hermitian, positive definite
(HPD). We obtain this result by leveraging on spectral equivalences between the single layer and the hypersingular
operator known from electrostatics on the one hand and the Laplace-Beltrami operator on the other hand. Similar
to [30], graph Laplacians need to be inverted. Since the new system matrix is HPD, we are allowed to employ the
conjugate gradient (CG) solver. Different from other Krylov subspace methods, it guarantees convergence and has the
least computational overhead. The numerical results corroborate the new formulation. Preliminary results have been
presented at conferences [31, 32].

The paper is structured as follows. Section 2 sets the background and notation; Section 3 introduces the new
formulation and provides the theoretical apparatus. Numerical results demonstrating the effectiveness of the new
approach are shown in Section 4.

2. Notation and Background

In the following, we denote quantities residing in R3, such as the electric field E, with an italic, bold, serif font.
For any other vectors and matrices we use an italic, bold, sans-serif font, and we distinguish matrices from vectors
by using capital letters for matrices and minuscules for vectors. The expression a . b has to be read as a ≤ Cb,
where C > 0 is a constant independent of the mesh parameter h (i.e., the average edge length). Furthermore, a � b
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Figure 1: Dual piecewise linear function λ̃n : the gray area denotes the support.

means that a . b and b . a holds. Let fn ∈ Xf and gn ∈ Xg be functions of the basis function spaces Xf and Xg,
respectively; the Gram matrix of these functions is defined and denoted as[

G f g

]
mn
B ( fm, gn)L2 , (1)

where ( fn, gn)L2 B
∫
Γ

fn(r)gn (r) dS(r) is the L2-inner product. Furthermore, quantities related to the dual mesh are
denoted with a wide tilde symbol .̃

In the following, several basis functions appear. On the primal mesh, we define the piecewise linear functions

Xλ 3 λn(r) =


1 for r ∈ vn ,
0 for r ∈ vm , vn ,

linear elsewhere,
(2)

where vn ⊂ Γ is the nth vertex of mesh, the piecewise constant functions

Xp 3 pn(r) =
{

1/An r ∈ cn ,
0 elsewhere,

(3)

where cn denotes the domain of the nth cell of the mesh, and the RWG functions

Xf 3 f n(r) =


r − r+n
2Ac+n

for r ∈ c+n ,

r−n − r

2Ac−n

for r ∈ c−n ,
(4)

where c+n and c−n are the domains of the adjacent cells at the nth edge, Ac+n and Ac−n are the areas of these cells, and r+n
and r−n are the position vectors of the free vertices opposite to the nth edge.

In addition, we require basis functions defined on the dual mesh: on the one hand, we need the so-called BC
functions f̃ n ∈ X f̃ , which are the counterpart to the RWG functions. Since they do not play a crucial role in this
article, we refer the reader to their definition in [24].

On the other hand, we need the dual counterparts to the primal piecewise linear functions Xλ, which have also been
defined in [24]. These dual piecewise linear functions λ̃n ∈ Xλ̃ are attached to the dual vertices, which are located at
the barycenter of the cells of the primal mesh. Similar to λn, the dual piecewise linear functions λ̃n have to be zero
at the boundary of their support. In addition, it is required that the dual piecewise linear functions form a partition of
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unity. Thus the value that each λ̃n assumes on the primal vertices of the primal cell on which it is defined must be
one over the total number of λ̃n neighboring the respective primal vertex. Likewise, the value that λ̃n assumes on the
midpoints of the edges of the primal cell on which it is defined must be one over the total number of λ̃n neighboring
the respective midpoint (i.e., for closed meshes without junctions the value is always 1/2). To illustrate this definition,
consider the example in Figure 1. The gray area depicts the support of a dual piecewise linear function λ̃n. The boxes
in Figure 1 show the value of λ̃n at the respective vertices or midpoints of the primal cell on which λ̃n is defined on.
Between the vertices, midpoints, and the boundary of the support, λ̃n is linear.

Let Ω be a closed, perfectly electrically conducting, simply or multiply connected Lipschitz polyhedral domain
and the surface Γ = ∂Ω be a triangulation embedded in a space described by the permittivity ε and the permeability
µ. An electromagnetic wave

(
Ei,H i) impinges on Ω exciting the electric surface current density j, which radiates the

scattered wave (Es,H s) subject to the boundary condition

n̂ × E = 0 for all r ∈ Γ (5)

with the total electric field E = Ei + Es, Maxwell’s equations

∇ × E = +iωµH , (6.a) ∇ × H = −iωεE , (6.b)

and the Silver-Müller radiation condition [33, 34]

lim
r→∞
(ηH s × r − rEs) = 0 , (7)

where r = ‖r ‖ and η =
√
µ/ε is the wave impedance. The EFIE operator

T j =
(
ikTk

A + 1/(ik)Tk
Φ

)
j , (8)

where

TκA j = n̂ ×
∫
Γ

eiκ |r−r′ |

4π|r − r ′ | j(r
′)dS(r ′) (9)

is the vector potential operator and

TκΦ j = −n̂ × ∇
∫
Γ

eiκ |r−r′ |

4π|r − r ′ | ∇
′
Γ · j(r ′)dS(r ′) (10)

is the scalar potential operator and k the wavenumber, relates Ei and j by the EFIE

T j = −n̂ × Ei . (11)

An e−iωt time dependency is assumed and suppressed throughout the article. The radiated wave (Es,H s) can be
computed by first solving for j and then evaluating the EFIE forward operator. We note that j is normalized with the
wave impedance η.

For obtaining a numerical solution, we apply the Petrov-Galerkin method, where we use RWG functions f n ∈ Xf

as expansion and rotated n̂ × f n as testing functions resulting in the system

T j B
(
ikT k

A + 1/(ik)T k
Φ

)
j = −e , (12)

where [
T κA

]
mn
=

(
n̂ × f m,TκA f n

)
L2 , (13)[

T κ
Φ

]
mn
=

(
n̂ × f m,TκΦ f n

)
L2 , (14)[

e
]
n
=

(
n̂ × f n, n̂ × Ei

)
L2

(15)
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and j ≈ ∑N
n=1

[
j
]
n
f n, where (a, b)L2 =

∫
Γ
a · bdS(r) is the L2-inner product and L2 =

(
L2)3. For simplifying the

analysis, we deviated in (4) from the original definition of the RWG functions by not normalizing them with edge
length, that is, the relationship to the original RWG f

Original
n as defined in [35] is given by f n B f

Original
n /ln, where ln

is the length of the nth edge.
The matrix T is ill-conditioned both in k and h [23]. An optimal preconditioner is given by T itself: the Calderón

identity
T2 = −I/4 +K2 , (16)

whereK is a compact operator, leading to the (stable) discretization

G−T
n̂×f , f̃

T̃G−1
n̂×f , f̃

T (17)

is well-conditioned with
[
T̃
]
mn
=

(
n̂ × f̃ m,T f̃ n

)
L2
, and

[
Gn̂×f , f̃

]
i j
=

(
n̂ × f i, f̃ j

)
L2

and G−T
n̂×f , f̃

B
(
G−1
n̂×f , f̃

)T
.

The matrix in (17) is, however, not numerically stable down to the static limit since it comprises a null space
associated with the harmonic Helmholtz subspace [30]. In addition, the excitation e and the unknown current vector j
suffer from numerical cancellation. A first approach to overcome the numerical cancellation could be to use an explicit
quasi-Helmholtz decomposition. While this could succeed in preventing the numerical cancellation and in preserving
the quasi-harmonic Helmholtz subspace, it also comes with several drawbacks as will be discussed in the following.

In more detail, let Λn ∈ XΛ be loop functions, Hn ∈ XH be global loops and Σn ∈ XΣ be star functions (for a
definition of these functions, see for example [3, 4, 6, 36]). As Xf = XΛ ⊕ XH ⊕ XΣ , there are transformation matrices
Λ ∈ RN×NV , H ∈ RN×NH , and Σ ∈ RN×NC that link the expansion coefficients of the current in the loop-star basis to
the expansion coefficients in the RWG basis, that is, we have

j = ΛjΛ +HjH +ΣjΣ (18)

and
N∑
n=1

[
j
]
n
f n =

NV∑
n=1

[
jΛ

]
n
Λn +

NH∑
n=1

[
jH

]
n
Hn +

NC∑
n=1

[
jΣ

]
n
Σn , (19)

where jΛ, jH , and jΣ are the unknown vectors in the loop-star basis, and NV is the number of vertices (inner vertices,
when Γ is an open surface), NC the number of cells, and NH = 2g, where g is the genus of Γ. The global loops are not
uniquely defined. For simplifying the analysis we assume that ΛTH = 0 (such global loops can always be constructed,
though at increased computational costs compared with the case where we do not enforce the orthogonality of the
transformation matrices Λ and H). We note that loop and star functions are not linearly independent; the all-one
vectors

[
1Λ

]
n
= 1, n = 1, . . . , NV, and

[
1Σ

]
n
= 1, n = 1, . . . , NC, are in the null spaces of Λ and Σ, that is, Λ1Λ = 0

and Σ1Σ = 0. The linear dependency generates a null space in the transformed system matrix. To avoid this null
space, the classic approach is to eliminate a loop and a star function. For the new formulation that we are presenting
here no elimination is necessary. We define the transformation matrix as Q B

[
Λ/
√

ik H/
√

ik Σ
√

ik
]
. If we

were to eliminate loop and star functions so that Q ∈ CN×N has full rank (i.e., this follows the classical loop-star
preconditioner approach), then QTTQ is well-conditioned in frequency and(

QTGn̂×f , f̃Q
)−T

QTT̃Q
(
QTGn̂×f , f̃Q

)−1
QTTQ (20)

is well-conditioned in frequency down to the static limit.
There are two drawbacks: First, the global loops Hn have to be constructed, which costs, in general, O(N2) for

g � N and H is dense (a sparse matrix H can be obtained, but then the cost for finding the global loops is O(N3))
(see [29] and references therein). Second, the Gram matrix QTGn̂×f , f̃Q is ill-conditioned with a condition number
that grows as O(1/h2). The reason for this is that loop and star functions are not L2-stable, their Gram matrices are
equivalent to discretized Laplace-Beltrami operators, for which the condition number grows with 1/h2, that is, we
have for the loop-loop and the star-star Gram matrix [8]

ΛTGf fΛ = ∆ (21)
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and
ΣTG f̃ f̃Σ = ∆̃ , (22)

where [
∆
]
mn
= (∇Γλm,∇Γλn)L2 (23)

is the Laplace-Beltrami operator discretized with piecewise linear functions λn, and[
∆̃
]
mn
=

(
∇Γ λ̃m,∇Γ λ̃n

)
L2

(24)

is the Laplace-Beltrami operator discretized with dual piecewise linear functions λ̃n. The matrix QTGn̂×f , f̃Q is even
more difficult to invert since unlike ∆ it is no longer a symmetric matrix anymore due to Gn̂×f , f̃ .

Recently a scheme has been presented that leverages on quasi-Helmholtz projectors [8, 30]. These projectors were
defined as

PΣ B Σ
(
ΣTΣ

)+
ΣT (25)

and
PΛH B I − PΣ , (26)

where “+” denotes the Moore-Penrose pseudoinverse and I is the identity matrix with dimensions fitting to the other
matrices in the respective equation. The projectors are based on the fact that ΛTΣ = 0, ΛTH = 0, and ΣTH = 0.
Hence, PΣj yields the non-solenoidal part of j expressed in RWG expansion coefficients as can be seen by considering
(18), that is, PΣj = ΣjΣ since PΣΣ = Σ and PΣΛ = 0 and PΣH = 0. The subscript of PΛH denotes the fact that it
projects to the union of the solenoidal and quasi-harmonic Helmholtz subspace. For f̃ n, dual projectors are defined
as

PΛ B Λ
(
ΛTΛ

)+
ΛT (27)

and
PΣH B I − PΛ . (28)

This allows defining the primalM B PΛH/
√

k+ iPΣ
√

k and the dual decomposition operator M̃ B PΣH/
√

k+ iPΛ
√

k.
Then the matrix

G−T
n̂×f , f̃

(
M̃T̃ M̃

)
G−1
n̂×f , f̃

(MTM) (29)

is well-conditioned [30]. In contrast to (20), the costly global loop finding and construction of the (dense) matrixH is
avoided. Instead of dealing with the non-symmetric matrixQTGn̂×f , f̃Q, in (29) only symmetric, positive semi-definite
graph Laplacians ΛTΛ (vertex-based) and ΣTΣ (cell-based) appear. As has been pointed out [8, 30], a plethora of
(black box) algorithms exists for inverting these matrices efficiently.

3. New Formulation

The formulation for which we are going to show that the system matrix is well-conditioned in the static limit reads

P †o T
†PmTPoi = −P †o T †Pme , (30)

where the outer matrix Po is
Po B PΛH/

√
k + iPgΣ

√
k (31)

with
PgΣ B Σ

(
ΣTΣ

)+
G−1
λ̃p
ΣT , (32)

and the middle matrix Pm is
Pm B PmΛ/k + PmΣk (33)

6



using

PmΛ B ΛG
−1
λλΛ

T + PΛH , (34)

PmΣ B Σ
(
ΣTΣ

)+
G−1
pp

(
ΣTΣ

)+
ΣT , (35)

and with the conjugate transpose P †o = Po
T
. The unknown vector j is recovered by j = Poi .

The use of the imaginary unit +i in the definition of Po is motivated for the same reason as it was forM: to prevent
the numerical cancellation due to different scaling of the solenoidal and non-solenoidal components in e and j (for a
detailed analysis, see [30]).

In the new formulation, dual basis functions only appear in the mixed Gram matrix Gλ̃p . For this matrix, we have
the analytic formula

[
Gλ̃p

]
mn
=



2
18

(
9
2
+

3∑
i=1

1
NoC(VoC(m, i))

)
if m = n ,

2
18

(
1
2
+

1
NoC(e+) +

1
NoC(e−)

)
if cells m and n share edge e ,

2
18

(
1

NoC(v)

)
if cells m and n are only connected by vertex v ,

0 otherwise,

(36)

where the function NoC(v) returns the number of cells attached to vth vertex of the mesh, the function VoC(c, i)
returns the global index of the ith vertex of the cth cell, and e+ and e− are the indices of the vertices of the eth edge.

For proving that the system matrix in (30) is well-conditioned, we first decompose the EFIE into two scalar
operators. In the static limit k → 0 and for simply connected geometries (i.e., the quasi-harmonic Helmholtz subspace
is not present), we have the well-established equality (see, for example, a more detailed derivation in [22])

lim
k→0

QTTQ =

[
ΛTT 0

AΛ 0
0 ΣTT 0

Φ
Σ

]
=

[
W 0
0 ΣTΣV ΣTΣ

]
, (37)

with [
W

]
mn
= (λm,Wλn)L2 (38)

and [
V

]
mn
= (pm,Vpn)L2 , (39)

where
Wλ = n̂r · ∇Γ ×

∫
Γ

1
4π|r − r ′ | ∇

′
Γ × n̂r′λ(r ′)dS(r ′) (40)

is the hypersingular operator, and

Vp =
∫
Γ

1
4π|r − r ′ | p(r

′)dS(r ′) (41)

is the single layer operator; both operators are well-known from electrostatics. A detailed derivation of the equality

T 0
Φ
= ΣV ΣT (42)

used in (37) can be found in Section 3.1 in [22]. From (37), (38), and (39), we can see that T discretized with the
loop-star basis (where the loop and the star functions need to be appropriately rescaled in k) decouples into the scalar
operatorsW andV in the static limit, where the latter is accompanied by the graph Laplacian ΣTΣ. Given that this
graph Laplacian can be removed by using its (pseudo-)inverse, it remains the task to find preconditioners for W and
for V .

7



In order to show the well-conditioning of (30) in the static limit, we need to establish spectral equivalences
between W and ∆ as well as V and ∆̃. These equivalences will be established by using Rayleigh quotients: we call
two symmetric, positive definite matrices A,B ∈ Rn×n spectrally equivalent if they satisfy

xTAx � xTBx for all x ∈ Rn . (43)

An immediate implication of this inequality is that

cond(B−1A) < C , (44)

where C ∈ R+ is a constant independent from h.
What makes it difficult is that for exampleW possesses a null space and if we need to form the inverse of a product

of matrices where some matrices have a null space and some matrices do not, then the inverse of such a product
cannot be simplified easily. To avoid the null space issue, we follow a standard approach by defining operators that
are identical toW and ∆Γ for mean-value free functions, but have no null space [37]: we introduce the operator
Ŵ : H1/2 → H−1/2 defined by the bilinear form(

v,Ŵw
)
L2(Γ)

B (v,Ww)L2(Γ) + (1,w)L2(Γ) (1, v)L2(Γ) (45)

for all w, v ∈ H1/2(Γ). We note that the unique solution w of

Ŵw = g (46)

is also a solution of
Ww = g (47)

when g satisfies the solvability condition
∫
Γ
gdS(r ′) = 0. This can be seen when v = 1 in (45) and we find that

(1,Ŵw)L2(Γ) = (1, g)L2(Γ) reduces to (1,w)L2(Γ) (1, 1)L2(Γ) = 0, which means that the solution of (46) is mean-value if
g is so. Likewise, if we let ∆Γ : H1/R→ H−1 be the Laplace-Beltrami operator [1], then we consider the H1-elliptic
modified Laplace-Beltrami operator ∆̂Γ to be defined by the bilinear form(

v,−∆̂Γw
)
L2(Γ)

B (∇Γw,∇Γv)L2(Γ) + (1,w)L2(Γ) (1, v)L2(Γ) . (48)

When λi are used for the discretization of Ŵ and ∆̂Γ , the resulting matrices are

Ŵ = W + GT
λλ1Λ1T

Λ
Gλλ (49)

and
∆̂ = ∆ + GT

λλ1Λ1T
Λ
Gλλ . (50)

If λ̃i are used for the discretization, the resulting matrices read

ˆ̃
W = W̃ + GT

λ̃λ̃
1Σ1T

ΣGλ̃λ̃ (51)

and
ˆ̃
∆ = ∆̃ + GT

λ̃λ̃
1Σ1T

ΣGλ̃λ̃ . (52)
In addition, we need to define

W̌ B W + 1Λ1T
Λ

h4 (53)
and

∆̌ B ∆ + 1Λ1T
Λ

h4 . (54)
In the following, we assume the spectral equivalences

xTŴG−1
λλŴ x � xT∆̂x for all x ∈ RNV (55)

and
xT ˆ̃
WG−1

λ̃λ̃

ˆ̃
Wx � xT ˆ̃

∆x for all x ∈ RNC . (56)
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Remark. As shown in the Appendix for (55), such a spectral equivalence can be established when we have a nested
sequence of function spaces by using a hierarchical basis. Thus in this section, we assume a structuredmesh refinement,
which gives rise to a nested sequence of piecewise constant and a piecewise linear function space, respectively. We
note that the structured refinement implies a quasi-uniform family of meshes, that is

hmax/hmin < cQ , (57)

where hmax is the length of the largest edge, hmin is the length of the smallest edge and cQ is a constant independent
from h. Similarly to preconditioning strategies such as algebraic multigrid, the new formulation remains effective even
on unstructured meshes as can be seen from the numerical results in Section 4. Moreover, we note that G−1

λλ could
be replaced by h2 I. By using G−1

λλ, however, the bounding constants in (55) are typically sharper when the bounding
constant cQ is large and thus the overall condition number is reduced.

For proving the well-conditionedness of new formulation, we start with making the frequency dependency explicit
by considering

P †o T
†PmTPo = P

†
ΛH

(
T k

A

)†
PmΛT

k
APΛH + P

†
gΣ

(
T k
Φ

)†
PmΣT

k
ΦPgΣ

+ k2P †gΣ

(
T k

A

)†
PmΛT

k
APgΣ + k4P †gΣ

(
T k

A

)†
PmΣT

k
APgΣ

+ ikP †
ΛH

(
T k

A

)†
PmΛT

k
APgΣ − ikP †gΣ

(
T k

A

)†
PmΛT

k
APΛH

+ ik3P †
ΛH

(
T k

A

)†
PmΣT

k
APgΣ − ik3P †gΣ

(
T k

A

)†
PmΣT

k
APΛH

− ikP †
ΛH

(
T k

A

)†
PmΣT

k
ΦPgΣ + ikP †gΣ

(
T k
Φ

)†
PmΣT

k
APΛH . (58)

Thus we find in the static limit

lim
k→0

P †o T
†PmTPo = P

†
ΛH

(
T 0

A

)†
PmΛT

0
APΛH + P

†
gΣ

(
T 0
Φ

)†
PmΣT

0
Φ
PgΣ . (59)

Due to the orthogonality of the null spaces of PΛH and PgΣ, the matrix P †o T †PmTPo is well-conditioned if
P †
ΛH

(
T 0

A
)†
PmΛT

0
APΛH and P †gΣ

(
T 0
Φ

)†
PmΣT

0
Φ
PgΣ are well-conditioned, respectively. The well-conditionedness of

the latter two matrices is proved in Section 3.1 and Section 3.2.
Before proving the well-conditionedness rigorously, we like to give a heuristic argument by assigning orders to

the matrices corresponding to the order of the underlying pseudo-differential operator. Thus, we have that TA is of
order −1 and TΦ, Λ, and Σ are each of order +1. The Gram matrices, PΛH, and PgΣ are of order 0. By simply
counting the orders, we note that the total order of P †

ΛH
(
T 0

A
)†
PmΛT

0
APΛH and of P †gΣ

(
T 0
Φ

)†
PmΣT

0
Φ
PgΣ, respectively,

is 0. Consequently, the order of the sum of these two matrices is also 0. Since pseudo-differential operators of order 0
result in a well-conditioned matrix if an L2-stable basis has been used for their discretization, this suggests that the
new formulation is well-conditioned.

3.1. Vector Potential
3.1.1. Simply Connected Case

Here we prove that

PΛ

(
T k

A

)†
ΛG−1

λλΛ
TT k

APΛ (60)

is well-conditioned up to its null space. To this end, we first need to establish several spectral equivalences.

Lemma 1. We have the spectral equivalences

xT∆̂x � xT∆̌x for all x ∈ RNV (61)

and
xTŴ x � xTW̌ x for all x ∈ RNV . (62)
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Proof. Here we prove (61); the proof for (62) follows analogously. We note that the null space of ∆ is spanned by 1Λ.
Furthermore, we note

1T
Λ
GT
λλ1Λ1T

Λ
Gλλ1Λ = A2

Γ � 1 , (63)

where AΓ is the area of Γ, and ‖1Λ‖2 =
√

NV � 1/h and thus

1T
Λ

1Λ1T
Λ

1Λh4 � 1 . (64)

First, consider that we have
xT1Λ1T

Λ
h4x . xTxh2 for all x ∈ RNV (65)

and
xTGT

λλ1Λ1T
Λ
Gλλx . xTxh2 for all x ∈ RNV , (66)

where the last inequality follows from the well-known equivalence

xTGλλx � xTxh2 for all x ∈ RNV , (67)

the submultiplicativity of the matrix norm and (63), that is,

‖GT
λλ1Λ1T

Λ
Gλλ‖2 ≤ ‖GT

λλ‖2‖1Λ1T
Λ
‖2‖Gλλ‖2 . h2 . (68)

Let x = x‖ + x⊥ be an orthogonal splitting with x‖ ∈ span 1Λ. If x⊥ = 0Λ, then

xT∆̂x = xTGT
λλ1Λ1T

Λ
Gλλx � xT1Λ1T

Λ
h4x = xT∆̌x (69)

due to (63), (64) (noting that x‖ is a multiple of 1Λ). Since we have [8]

xTxh2 . xT∆x . xTx for all x ∈ (span 1Λ)⊥ , (70)

we note that for x⊥ , 0Λ the leading contribution xT∆x scales at least O(h2) and at most O(1). The contribution
from xTGT

λλ1Λ1T
Λ
Gλλx and xT1Λ1T

Λ
x adds a positive quantity that scales at most O(h2) due to (66), (67), and the fact

that GT
λλ1Λ1T

Λ
Gλλ and 1Λ1T

Λ
are positive semi-definite rank-1 matrices. Hence for h → 0, we can conclude that the

eigenvalues of ∆̂ and ∆̌ which scale with O(hα), 0 ≤ α < 2 (and their associated eigenvectors) are spectrally identical
and the eigenvalues scaling by O(h2) are shifted at most by a constant factor. Thus (61) follows.

For (62), the same argumentation can be used noting that

xTxh2 . xTWx . xTxh for all x ∈ (span 1Λ)⊥ (71)

holds. �

Remark. This lemma will be frequently used in order to replace GT
λλ1Λ1T

Λ
Gλλ by 1Λ1T

Λ
. In essence, we are allowed

to do so if the accompanying matrix has a null space spanned by 1Λ and where the smallest non-zero singular value
scales at most quadratically in h.

Lemma 2. We have the spectral equivalences

xTŴG−1
λλŴ x � xT

(
WG−1

λλW + G
T
λλ1Λ1T

Λ
Gλλ

)
x � xT

(
WG−1

λλW + 1Λ1T
Λ

h4
)
x for all x ∈ RNV . (72)

Proof. We have

ŴG−1
λλŴ =

(
WG−1

λλ + Gλλ1Λ1T
Λ

) (
W + Gλλ1Λ1T

Λ
Gλλ

)
= WG−1

λλW + Gλλ1Λ1T
Λ
Gλλ1Λ1T

Λ
Gλλ (73)

usingW1Λ = 0 and 1T
Λ
W = 0T. Since 1T

Λ
Gλλ1Λ =

∫
Γ

dS(r) = AΓ is a constant, we yield

xTŴG−1
λλŴ x � xT

(
WG−1

λλW + Gλλ1Λ1T
Λ
Gλλ

)
x for all x ∈ RNV , (74)
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which proves the first equivalence in (72). For the second equivalence, we have due to (67)

xTWG−1
λλWx � xTWWx/h2 for all x ∈ RNV (75)

and using (71), we have
xTxh2 . xTWWx/h2 . xTx for all x ∈ (span 1Λ)⊥ . (76)

Then using the argumentation of Lemma 1, we obtain

xT
(
WG−1

λλW + G
T
λλ1Λ1T

Λ
Gλλ

)
x � xT

(
WG−1

λλW + 1Λ1T
Λ

h4
)
x for all x ∈ RNV . (77)

�

Lemma 3. We have the spectral equivalence

xT∆̌x � xT
(
ΛTΛ + 1Λ1T

Λ
h4

)
x for all x ∈ RNV . (78)

Proof. From (21) and [8]
xTGf f x � xTG f̃ f̃ x � x

Tx for all x ∈ RN , (79)
we obtain

xT∆x � xTΛTΛx for all x ∈ RNV . (80)
Equation (80) remains true when we add 1Λ1T

Λ
h4 to the matrices since all matrices appearing are positive, semi-

definite. �

Proposition 1. We have the spectral equivalence

xTPΛ

(
T k

A

)†
ΛG−1

λλΛ
TT k

APΛx � x
TPΛx for all x ∈ RN , (81)

with PΛ B Λ
(
ΛTΛ

)+
ΛT.

Proof. By combining the previous lemmas, we can establish

xT
(
WG−1

λλW + 1Λ1T
Λ

h4
)
x � xT

(
ΛTΛ + 1Λ1T

Λ
h4

)
x for all x ∈ RNV , (82)

that is in more detail, we have

xT
(
WG−1

λλW + 1Λ1T
Λ

h4
)
x

Lemma 2� xTŴG−1
λλŴ x

Proposition 6
� xT∆̂x

Lemma 1� xT∆̌x

Lemma 3� xT
(
ΛTΛ + 1Λ1T

Λ
h4

)
x for all x ∈ RNV . (83)

We apply the substitution x =
(
ΛTΛ

)+
ΛTy and obtain

yTΛ
(
ΛTΛ

)+
WG−1

λλW
(
ΛTΛ

)+
ΛTy � yTPΛy for all y ∈ RN , (84)

where we used PΛ ≡ Λ
(
ΛTΛ

)+
ΛT. We note that ΛTT 0

AΛ = W = W
†; for k , 0, the dynamic kernel introduces a

compact perturbation [38]: the operator Tk
A − T0

A . Such a perturbation may deteriorate the condition number for a
given frequency k, but since it is compact, the eigenvalues of the discrete counterpart accumulate at zero for h → 0.
Hence we still have an h-independent upper bound for the condition number. This allows us to choose T †A instead of
TA resulting in (81). �

Remark. ThematrixPΛ
(
T k

A
)†
ΛG−1

λλΛ
TT k

APΛ is Hermitian and positive semi-definite, which can be seen by considering

PΛ

(
T k

A

)†
ΛG−1

λλΛ
TT k

APΛ =
(
G
−1/2
λλ ΛTT k

APΛ

)†
G
−1/2
λλ ΛTT k

APΛ . (85)
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3.1.2. Multiply Connected Case
Now, we are ready to consider the case that Γ is multiply connected: we have to establish that

PΛH

(
T k

A

)† (
ΛG−1

λλΛ
T + PΛH

)
T k

APΛH (86)

is well-conditioned up to its null space. For deriving this result, some preliminary considerations are necessary, and
again, we start with considering the static limit k → 0.

Proposition 2. We have the spectral equivalence

xT
(
Λ̆TΛ̆

)−1/4
Λ̆TT 0

AΛ̆
(
Λ̆TΛ̆

)−1/4
x � xTx for all x ∈ (span 1Λ)⊥ , (87)

where we used the substitution Λ̆ B Λ/h.

Proof. Proposition 1 implies that

xTPΛT
0
AΛG

−1
λλΛ

TT 0
APΛx � x

TPΛx for all x ∈ XΛ (88)

with
XΛ B {x ∈ Rn | x = PΛx} (89)

holds. In what follows, the expression
(
ΛTΛ

)−1/2 has to be read as
( (
ΛTΛ

)+)+1/2
. We apply the substitution

y = (ΛTΛ)−1/2ΛTx noting that (ΛTΛ)−1/2ΛT : XΛ → (span 1Λ)⊥ is one-to-one and onto and that

PΛ = Λ(ΛTΛ)−1/2(ΛTΛ)−1/2ΛT (90)

so we obtain
yT

(
ΛTΛ

)−1/2
ΛTT 0

AΛG
−1
λλΛ

TT 0
AΛ

(
ΛTΛ

)−1/2
y � yTy for all y ∈ (span 1Λ)⊥ . (91)

By using (67), we obtain

xT
(
ΛTΛ

)−1/2
ΛTT 0

AΛ
(
h−2

)
ΛTT 0

AΛ
(
ΛTΛ

)−1/2
x � xTx for all x ∈ (span 1Λ)⊥ (92)

We define Λ̆ = Λ/h noting that(
ΛTΛ

)−1/2
ΛTT 0

A Λ
(
h−2

)
ΛTT 0

AΛ
(
ΛTΛ

)−1/2
=

(
Λ̆TΛ̆

)−1/2
Λ̆T

(
T 0

A

)†
Λ̆Λ̆TT 0

AΛ̆
(
Λ̆TΛ̆

)−1/2
. (93)

Furthermore, we notice that the singular values of

Λ̆TT 0
AΛ̆

(
Λ̆TΛ̆

)−1/2
(94)

are by definition of the singular value decomposition (SVD) the square roots of the singular values of(
Λ̆TΛ̆

)−1/2
Λ̆TT 0

AΛ̆Λ̆
TT 0

AΛ̆
(
Λ̆TΛ̆

)−1/2
, (95)

which implies that the matrix in (94) is well-conditioned.
The absolute value of the largest eigenvalue can always be bounded from above by the largest singular value and

the smallest eigenvalue can always be bounded from below by the smallest singular value. The second half of this
statement is not entirely helpful since the smallest eigenvalue and singular value are both zero. However, since the left
null space and the right null space of (94) are identical, we can show that the smallest non-zero absolute eigenvalue
νmin can be bounded from below by the smallest non-zero singular value smin .
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To see this, let v be the unit eigenvector associated with νmin and use the abbreviation A = Λ̆TT 0
AΛ̆(Λ̆

TΛ̆)−1/2. We
have

|νmin |2 = vTATAv ≥ min
‖x ‖2=1∧x⊥1Λ

xTATAx = s2
min (96)

following the properties of the SVD and noting that ‖v ‖2 = 1 and v ⊥ 1Λ.
Similar matrices have the same eigenvalues and thus A and (ΛTΛ)−1/4A(ΛTΛ)1/4 have the same eigenvalues. Since(

Λ̆TΛ̆
)−1/4

A
(
Λ̆TΛ̆

)1/4
=

(
Λ̆TΛ̆

)−1/4
Λ̆TT 0

AΛ̆
(
Λ̆TΛ̆

)−1/4
(97)

is a symmetric, positive semidefinite matrix, the eigenvalues and singular values coincide and thus(
Λ̆TΛ̆

)−1/4
Λ̆TT 0

AΛ̆
(
Λ̆TΛ̆

)−1/4
(98)

is well-conditioned up to its null space. �

Given Proposition 2, we can conclude that if the matrix Λ̆(Λ̆TΛ̆)−1/4 is used as solenoidal basis, we obtain a well-
conditioned matrix with bounded norm. Thus if we were to pursue a classical explicit quasi-Helmholtz decomposition
scheme, we could use the basis

[
Λ̆(Λ̆TΛ̆)−1/4 H

]
as preconditioner for TA on multiply connected geometries.

We note that HTT 0
AH is well-conditioned since the global loops are associated with the geometry of Γ; therefore,

Hn and subsequently
(
Hm,TκA Hn

)
L2 remain the same when h→ 0, since we assumed a structured mesh refinement,

so that we have nested sequences of function spaces. Thus we have

xTHTT 0
AHx � x

THTHx � xTx for all x ∈ RNH . (99)

Using (99), it follows that the matrix [(
Λ̆TΛ̆

)−1/4
Λ̆T

HT

]
T 0

A

[
Λ̆

(
Λ̆TΛ̆

)−1/4
H

]
(100)

is well-conditioned in h up to the null space of the loop functions since the basis transformation matrix has full rank
(up to the null space of the loop functions) and since the blocks on the main diagonal are well-conditioned and all
blocks are bounded: the boundedness ofHTT 0

AΛ̆(Λ̆
TΛ̆)−1/4 and of (Λ̆TΛ̆)−1/4Λ̆TT 0

AH follows from the boundedness of
the blocks on the main diagonal. We note that we cannot exclude that some singular values are shifted close to zero
by the off-diagonal block matrices (though an h-refinement would not further alter these singular values). In practice,
however, we did not observe such behavior.

Now, it remains to return from the explicit quasi-Helmholtz decomposition of (100) to the new formulation in (86).

Proposition 3. We have the spectral equivalence

xTPΛH

(
T k

A

)† (
ΛG−1

λλΛ
T + PΛH

)
T k

APΛHx � xTPΛHx for all x ∈ RN . (101)

Proof. We define

TΛ̆H B

[
Λ̆T

HT

]
T 0

A
[
Λ̆ H

]
, (102)

QΛ̆H B

[(
Λ̆TΛ̆

)−1/4
0

0 I

]
, (103)

and observe [(
Λ̆TΛ̆

)−1/4
Λ̆T

HT

]
T 0

A

[
Λ̆

(
Λ̆TΛ̆

)−1/4
H

]
= QΛ̆HTΛ̆HQΛ̆H . (104)

In other words, we can interpret QΛ̆H as a preconditioner for the standard loop/global loop discretized TΛ̆H .
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We note that TΛ̆H and QΛ̆H are symmetric matrices and that they have the same null space (i.e., the null space due
to the linear dependency of the loop functions). Summarizing, we have the Rayleigh quotient

xTQΛ̆HTΛ̆HQΛ̆Hx � x
Tx for all x ∈

(
nullQΛ̆H

)⊥
. (105)

By using the substitution y = QΛ̆Hx , we obtain

yTTΛ̆Hy � y
TQ−2

Λ̆H
y for all y ∈

(
nullQΛ̆H

)⊥ (106)

from which immediately
yTT 2

Λ̆H
y � yTQ−4

Λ̆H
y for all y ∈

(
nullQΛ̆H

)⊥ (107)
and thus

xTQ2
Λ̆H
T 2
Λ̆H
Q2
Λ̆H
x � xTx for all x ∈

(
nullQΛ̆H

)⊥ (108)
follows.

In addition, we observe that

T 2
Λ̆H
=

[
Λ̆T

HT

]
T 0

A
[
Λ̆ H

] [
Λ̆T

HT

]
T 0

A
[
Λ̆ H

]
=

[
Λ̆T

HT

]
T 0

A

(
Λ̆Λ̆T +HHT

)
T 0

A
[
Λ̆ H

]
(109)

using HTΛ̆ = 0.
The global loop transformation matrix is not uniquely defined, but a possible transformation matrix can always be

constructed from PH B I−PΛ −PΣ by using its SVD so thatH is the column space of it. Hence, we can always obtain

PH = HH
T . (110)

By using (109) and (110), we yield

Q2
Λ̆H
T 2
Λ̆H
Q2
Λ̆H
=

[(
Λ̆TΛ̆

)−1/2
Λ̆T

HT

]
T 0

A

(
Λ̆Λ̆T + PH

)
T 0

A

[
Λ̆

(
Λ̆TΛ̆

)−1/2
H

]
. (111)

We also note that the transformation
[
Λ̆(Λ̆TΛ̆)−1/2 H

]
is well-conditioned, in fact,[

Λ̆
(
Λ̆TΛ̆

)−1/2
H

] [(
Λ̆TΛ̆

)−1/2
Λ̆T

HT

]
= PΛH . (112)

Thus we have

xT
[
Λ̆

(
Λ̆TΛ̆

)−1/2
H

]
Q2
Λ̆H
T 2
Λ̆H
Q2
Λ̆H

[(
Λ̆TΛ̆

)−1/2
Λ̆T

HT

]
xT � xTPΛHx for all x ∈ RN , (113)

where we note that the preconditioned system matrix can be expressed as[
Λ̆

(
Λ̆TΛ̆

)−1/2
H

]
Q2
Λ̆H
T 2
Λ̆H
Q2
Λ̆H

[(
Λ̆TΛ̆

)−1/2
Λ̆T

HT

]
= PΛHT

0
A

(
Λ̆Λ̆T + PH

)
T 0

APΛH . (114)

We can replace PH by PΛH since the matrix PΛHT
0
APΛT

0
APΛH is symmetric, positive definite and

‖PΛHT
0
APΛT

0
APΛH‖2 . ‖PΛH‖2‖T 0

A‖2‖PΛ‖2‖T
0
A‖2‖PΛH‖2 . 1 (115)

is bounded, where ‖T 0
A‖2 . 1 follows from the compactness of TA. Likewise, the dynamic kernel is a compact

perturbation and by substituting back from Λ̆ to Λ and G−1
λλ, we obtain that the matrix

PΛH

(
T k

A

)† (
ΛG−1

λλΛ
T + PΛH

)
T k

APΛHx � xTPΛHx for all x ∈ RN (116)

is well-conditioned (up to its null space). �
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3.2. Scalar Potential
In this section, we are going to establish that the matrix

P T
gΣ

(
T k
Φ

)†
PmΣT

k
ΦPgΣ (117)

is well-conditioned (up to its null space).
As for the vector potential operator, we need some lemmas and auxiliary matrices. We define the matrix

V̊ B
(
ΣTΣ

)+
ΣTΣV ΣTΣ

(
ΣTΣ

)+
. (118)

This matrix is important since it is connected to the scalar potential by (see (42))

V̊ ≡
(
ΣTΣ

)+
ΣTT 0

Φ
Σ

(
ΣTΣ

)+
. (119)

Lemma 4. We have the spectral equivalence

xTV G−1
ppV x � xTV̊ G−1

ppV̊ x for all x ∈ (span 1Σ)⊥ . (120)

Proof. If x is such that 1T
Σ
x = 0, then we have

ΣTΣ
(
ΣTΣ

)+
x = x (121)

since for a symmetric, positive semi-definite matrix the null space is orthogonal to the column and row space, and thus

xTV x � xTV̊ x . (122)

Clearly, we have for such x also
xTV V x = xTV̊ V̊ x , (123)

and since yTG−1
ppy � yTy holds for all y ∈ RNC , we have

xTV G−1
ppV x = x

TV̊ G−1
ppV̊ x for all x ∈ (1Σ)⊥ . (124)

�

Corollary 1. We have the spectral equivalence

xT ˇ̃
∆x � xT

(
ΣTΣ + 1Σ1T

Σh4
)
x for all x ∈ RNC . (125)

Proof. Follows from Lemma 3. �

Lemma 5. The vector 1Σ is a right eigenvector of G−T
λ̃p

, that is, 1Σ = G−T
λ̃p

1Σ.

Proof. If
λ̃y = px = 1 for all r ∈ Γ , (126)

then y = 1Σ and
[
x
]
i
= Ai , where λ̃y =

∑NV
n=1

[
y
]
n
λ̃n and px =

∑NC
n=1

[
x
]
n

pn. Testing (126) with pi yields

Gpλ̃1Σ = Gppx = 1Σ . (127)

Since Gpλ̃ = G
T
λ̃p
, we have 1Σ = G−T

λ̃p
1Σ. �

Corollary 2. For any mean value free vector x , that is, 1T
Σ
x = 0, we have that the vector G−1

λ̃p
x is mean value free as

well.
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Proof. This follows from Lemma 5 since if we have 1T
Σ
x = 0, then

1T
ΣG
−1
λ̃p
x = 1T

Σx = 0 . (128)

�

Proposition 4. We have the spectral equivalence

xTP T
gΣ

(
T k
Φ

)†
PmΣT

k
ΦPgΣx � xTPΣx for all x ∈ RN . (129)

Proof. We start with (56), that is

xT ˆ̃
WG−1

λ̃λ̃

ˆ̃
Wx � xT ˆ̃

∆x for all x ∈ RNC (130)

and applying the substitution x = G−1/2
λ̃λ̃

y yields

yTG
−1/2
λ̃λ̃

ˆ̃
WG−1

λ̃λ̃

ˆ̃
WG

−1/2
λ̃λ̃

y = yT
(
G
−1/2
λ̃λ̃

ˆ̃
WG

−1/2
λ̃λ̃

)2
y � yTG

−1/2
λ̃λ̃

ˆ̃
∆G
−1/2
λ̃λ̃

y for all y ∈ RNC , (131)

and hence
yTG

1/2
λ̃λ̃

ˆ̃
W
−1
G

1/2
λ̃λ̃
y � yT

(
G
−1/2
λ̃λ̃

ˆ̃
∆G
−1/2
λ̃λ̃

)−1/2
y for all y ∈ RNC . (132)

From the Calderón identities and the theory outlined in [24, 39, 40], we have

xT ˆ̃
Wx � xTG−T

λ̃p
V −1G−1

λ̃p
x for all x ∈ RNC . (133)

Inserting this in (132), applying the back-substitution y = G1/2
λ̃λ̃
x , squaring the matrices on both sides and inverting

them, we obtain
xTG−T

λ̃p
V G−1

λ̃p
Gλ̃λ̃G

−T
λ̃p
V G−1

λ̃p
x � xT ˆ̃

∆
−1
x for all x ∈ RNC . (134)

The right-hand side can be simplified: it was shown in [30] that(
ΣTΣ + 1Σ1T

Σ/NC

)−1
=

(
ΣTΣ

)+
+ 1Σ1T

Σ/NC (135)

holds. In addition with NC � 1/h2 and Corollary 1, we can simplify the right-hand side of (134) yielding

xTG−T
λ̃p
V G−1

λ̃p
Gλ̃λ̃G

−T
λ̃p
V G−1

λ̃p
x � xT

((
ΣTΣ

)+
+ 1Σ1T

Σ

)
x for all x ∈ RNC . (136)

From [24, 39], we can obtain
xTG−1

ppx � xTG−1
λ̃p
Gλ̃λ̃G

−T
λ̃p
x for all x ∈ RNC . (137)

Inserting this into (136) yields

xTG−T
λ̃p
V G−1

ppV G
−1
λ̃p
x � xT

((
ΣTΣ

)+
+ 1Σ1T

Σ

)
x for all x ∈ RNC . (138)

Then we use the substitution x = ΣTy and obtain

yTΣG−T
λ̃p
V G−1

ppV G
−1
λ̃p
ΣTy � yTPΣy for all y ∈ RN , (139)

since Σ1Σ = 0. Due to this relationship, it is clear that all vectors ΣTy with y ∈ RN are mean value free, that is, we
have 1T

Σ
ΣTy = 0. Thus we can invoke Lemma 4 and obtain

yTΣG−T
λ̃p
V̊ G−1

ppV̊ G
−1
λ̃p
ΣTy � yTPΣy for all y ∈ RN . (140)

Inserting the right-hand side from (119), we obtain

yTP T
gΣT

0
Φ
PmΣT

0
Φ
PgΣy � yTPΣy for all y ∈ RN , (141)

where PgΣ has been defined in (32). As in Proposition 1, we note that the dynamic kernel only introduces a compact
perturbation, and that by using (T k

Φ
)† for the left scalar potential operator matrix in (129), we yield a symmetric,

positive semi-definite system. �
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3.3. Preconditioned Electric Field Integral Equation
Proposition 5. The new formulation is well-conditioned in the static limit, that is, the matrix in (30) satisfies

lim
k→0

xTP †o T
†PmTPox � xTx for all x ∈ RN . (142)

Proof. We recall the result from (58), where we found

lim
k→0

P †o T
†PmTPo = P

†
ΛH

(
T 0

A

)†
PmΛT

0
APΛH + P

†
gΣ

(
T 0
Φ

)†
PmΣT

0
Φ
PgΣ . (143)

Clearly, the new formulation is low-frequency stable and the well-conditionedness in h follows from the orthogonality
of the null spaces of PΛH and PgΣ, Proposition 3, and Proposition 4 so that we have

xT
(
P †
ΛH

(
T 0

A

)†
PmΛT

0
APΛH + P

†
gΣ

(
T 0
Φ

)†
PmΣT

0
Φ
PgΣ

)
x � xTx for all x ∈ RN . (144)

�

For the dynamic case, we note that the additional terms appearing in (58) have at least up to a certain frequency a
smaller norm than the principal terms in (144). Numerical evidence suggests that the frequency starts to impact the
iterative solver when the wavelength is the range of, or even larger than, the electric size of the geometry.

3.4. Analysis of the Computational Complexity
An important aspect for any preconditioner is its computational complexity (i.e., how time and memory con-

sumption scale when N is increased) and it is important to ensure that the complexity improves compared with the
original formulation. When a fast method such as the multilevel fast multipole method (MLFMM) or the adaptive
cross approximation (ACA) is used, then the cost for obtaining T and the memory consumption scale as O(N log N)
in the admissible frequency range (i.e., admissible with respect to the employed fast method). The cost for obtaining
the Gram matrices and the loop and star transformation matrices is O(N), since the number of neighboring cells or
vertices is independent of N . The matrix T † does not need to be computed explicitly. In fact, we note that

T †x = T †x = T
T
x = T Tx = Tx . (145)

If an iterative solver is used, the complexity to obtain a solution is O(NiterN log N): it is the product of the
total number of iterations and the cost of a single matrix-vector product. Since all the appearing Gram matrices
have O(N) non-zero elements, the complexity of a single matrix-vector product is O(N). As the Gram matrices are
well-conditioned in h, the cost of a single matrix-vector product involving an inverse Gram matrix is O(N) as well.
For the projectors, graph Laplacian systems must be solved. For this task, algorithms with an observed complexity of
O(N) (e.g., algebraic multigrid techniques such as [41]) or with a guaranteed complexity of O

(
N logO(1) N

)
(e.g., the

simple, combinatorial solver presented in [42]) are available.
We have shown in this contribution, that the condition number of the preconditioned system matrix is bounded

independent from h. If the conjugate gradient solver is used to solve for x in a linear system of equations Ax = b,
where A is an HPD matrix, then the number of iterations is bounded by

Niter ≤
⌈
(1/2)

√
cond (A) log (2/ε)

⌉
(146)

where ε is the solver tolerance. Thus if the CG method is used to solve (30), the number of iterations is bounded
independent of h.

If we assume that the costs for solving the graph Laplacian systems are O(N), then the complexity of a single
iteration is O(N log N) and thus together with (146) the total costs for obtaining a solution is O(N log N). We note
that if we use (146) also in the case of the unpreconditioned T , then the complexity is O(N1.5 log N) (note that this
bound is actually not applicable since the conjugate gradient method cannot be used for non-Hermitian and indefinite
matrices such as T , but other Krylov methods do not have, to the best of the authors’ knowledge, a sharper bound).

17



4. Numerical Results

For the implementation of the preconditioner, we did not use the wavenumber k directly to cure the low-frequency
breakdown. Instead, we used the following definitions

Po B PΛH/α + iPΣ/β , (147)
PmΛ B ΛG

−1
λλΛ

T/α2 + PΛH/γ , (148)

PmΣ B Σ
(
ΣTΣ

)+
G−1
pp

(
ΣTΣ

)+
ΣT/β2 , (149)

where

α =
4
√
‖PΛHT

†
AΛG

−1
λλΛ

TTAPΛH‖2 , (150)

β =
4
√
‖PΣT †ΦPmΣTΦPΣ‖2 , (151)

γ = ‖(PΛH/α)T †APΛHTA(PΛH/α)‖2 . (152)

These norms are estimated using the power iteration algorithm. Typically the condition number obtained by using
norms is lower than using

α =
√

k , (153)

β = 1/
√

k , (154)
γ = k ; (155)

thereby, the number of iterations used by a Krylov subspace method is reduced (and this saving usually outweighs the
costs for estimating the norms).

First, we considered a sphere, radius 1 m, to confirm the low-frequency stability by computing the condition number
obtained by the new formulation and compared it with a loop-tree preconditioned system. Figure 2a shows that the
new formulation is frequency stable and Figure 3 that the bistatic radar cross section can be accurately computed
down to 1 × 10−25 Hz. The saturation of the condition number in the case “no preconditioner” stems from numerical
cancellation: the null space of TΦ exists only up to numerical precision and when k becomes too small, the (numerical)
norm of the null space of TΦ is larger than the norm of TA so that TA completely vanishes in numerical noise. To
verify the dense-discretization stability, we computed the condition number for the new formulation and the loop-tree
preconditioned system for an increasing spectral index 1/h. We can see from Figure 2b that the new formulation is
dense-discretization stable, whereas the loop-tree preconditioner is not.

In order to verify that the proposed method works also for topologically non-trivial geometries, we used a simple,
multiply connected structure, where we refined the mesh structuredly. As for the sphere, we compared the proposed
preconditioner against a loop-tree preconditioner. Figure 4a and Figure 4b show that the proposed scheme remains
stable for multiply connected geometries.

Finally, we considered a more realistic structure. To compress the system matrix, we used an ACA with tolerance
1 × 10−4. Other fast methods could be used as well as long as they are admissible in the respective frequency range.
For typical frequency ranges no modification of these fast methods or any other part of the original code is necessary.
For extremely low frequencies, however, it is necessary to avoid numerical cancellation of the vector potential due
to the scalar potential. This can be either achieved by storing and compressing the vector potential separate from
the scalar potential [43], or—in order to avoid these unnecessary numerical costs in construction time and memory
consumption—by using a more refined fast scheme such as the one presented in [44]. As an iterative solver, we used
the CG method for the new formulation and the conjugate gradient squared (CGS) method for the other formulations
since the CG method is only applicable if the matrix is HPD. We note that a single iteration step of CGS requires two
matrix-vector products. We employed the AGMG library [45, 46] for the fast inversion of the graph Laplacians with
solver tolerance 1 × 10−14 to demonstrate that even for extreme small tolerances our preconditioner remains efficient.
We have chosen a model of the Fokker Dr.I depicted in Figure 5, which has 390 global loops. As excitation we
considered both a plane wave and a voltage gap excitation. The model is discretized with 294 420 unknowns resulting
in a non-uniform mesh with condGf f ≈ 3 × 103 and condGpp ≈ 7 × 104. Its electric length is 1 × 10−3λ. From
Table 1, we can see that there is not only a significant reduction of the number of iterations, but also of time.
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(b) The condition number as a function of the spectral index.
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Figure 2: Sphere: spectral analysis.
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(b) Frequency: 1 × 10−25 Hz.

Figure 3: Sphere: bistatic radar cross section.
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(a) Toroidal structure: the condition number as a function of the
spectral index. The frequency is 1 MHz.
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Figure 4: Spectral analysis of an open and a topologically non-trivial structure.

Figure 5: Fokker Dr.I: real part of j excited by an incident plane wave.
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Preconditioner Iterations Time∗ l2-relative error†

Current RCS
(h:m:s) (%) (%)

Plane wave excitation
Loop-tree 4846 31:46:57
This Work 201 05:15:25 0.62721 0.0007
Voltage gap excitation
Loop-tree 2309 15:35:07
This Work 26 00:55:08 0.0158 1.4638

∗This is the total time including the setup time for the preconditioners.
†The relative error is with respect to the solution obtained by using the loop-tree preconditioner.

Table 1: Fokker Dr.I: the number of iterations and the time used by the solver to obtain a residual error below 1 × 10−4.

5. Conclusion

We presented a preconditioner for the EFIE that yields a Hermitian, positive definite, and well-conditioned system
matrix. Due to the applicability of the CG method, there is a—at least theoretically—guaranteed convergence and the
complexity for obtaining such a solution is O(N log N) if a fast method is used to compress the EFIE system matrix
(and if it is assumed that the algebraic multigrid methods allow to solve Laplacian systems in O(N) complexity).
Preliminary results indicate that an extension to the combined field integral equation (CFIE) is possible [47].
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Appendix A. Proof of Spectral Equivalence of the Discretized Hypersingular and Laplace-Beltrami Operator

In the following, we give a proof for the spectral equivalence of Ŵ and ∆̂ in the case that we have a nested sequence
of piecewise linear function spaces.

Proposition 6. Let Γ be the surface of a Lipschitz polyhedron Ω. Let Xλ, j ⊂ Xλ, j+1, j = 0, . . . , J − 1, denote a
nested sequence of piecewise linear function spaces obtained by uniform dyadic refinements of the initial mesh (i.e.,
by structured refinements). Moreover, the functions λi (defined in (2)) are in Xλ,J , J ∈ N, and NV = dim

(
Xλ,J

)
is the

number of vertices of the mesh. Then

xT∆̂x � xTŴG−1
λλŴ x for all x ∈ RNV , (A.1)

holds uniformly in J (and thus in h), where the matrices ∆̂ and Ŵ are defined in (48) and (49), respectively.

Proof. To prove this proposition, we leverage the stability results for the wavelet bases given in [48]. The bases
presented therein are Hs-stable on globally Lipschitz continuous surfaces for |s | ≤ 1 [48, p. 335], which includes our
case where we assumed that Γ is the surface of a Lipschitz polyhedron. Let λ̂ ∈ RNV×NV be the transformation matrix
that maps the expansion coefficients of a function represented in terms of a wavelet basis λ̂i from [48] to the expansion
coefficients of the same function represented in terms of piecewise linear basis λi . Then it follows from Theorem 2.1
in [48] (we note that in Theorem 2.1, the variable ρ = 2 for a nested sequence of piecewise linear functions as denoted
in Remark 4.1 in [48]) that

xTλ̂T∆̂λ̂x � xTD̂+2λ̂TGλλλ̂D̂
+2x for all x ∈ RNV , (A.2)
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and
xTλ̂TŴ λ̂x � xTD̂+1λ̂TGλλλ̂D̂

+1x for all x ∈ RNV , (A.3)

where [
D̂

]
ii
= 2l̂Λ(i)/2 , i = 1, . . . , NV , (A.4)

and the function l̂Λ(i) returns the level on which the function λ̂i is defined. Equations (A.2) and (A.3) express the
H1(Γ)- and H1/2(Γ)-stability, respectively, of the wavelet basis. It should be noted that the Sobolev spaces H s(Γ)
in Theorem 2.1 in [48] can be identified with “standard” Hs(Γ) on globally Lipschitz continuous surfaces that are
obtained via a partition of unity (see [48, p. 335]).

If we assume that λ̂i are scaled1 such that ‖λ̂i ‖L2(Γ) � 1, then the L2(Γ)-stability can be expressed as

xTx � xTλ̂TGλλλ̂x
(67)� xTλ̂Tλ̂x h2 for all x ∈ RNV . (A.5)

Since all matrices in (A.5) are invertible, we (trivially) obtain

xTx � xTλ̂−1λ̂−Tx/h2 for all x ∈ RNV . (A.6)

Furthermore, we note that using (A.5) allows to simplify (A.2) and (A.3) to

xTλ̂T∆̂λ̂x � xTD̂4x for all x ∈ RNV , (A.7)

and
xTλ̂TŴ λ̂x � xTD̂2x for all x ∈ RNV . (A.8)

By using the substitution y = λ̂x in (A.7) and (A.8), we obtain

xT∆̂x � xTλ̂−TD̂+4λ̂−1x for all x ∈ RNV , (A.9)

and
xTŴ x � xTλ̂−TD̂+2λ̂−1x for all x ∈ RNV . (A.10)

Summarizing, we obtain the spectral equivalence

xTŴG−1
λλŴ x

(67)� xTŴ 2x/h2 (A.10)� xT
(
λ̂−TD̂+2λ̂−1

)2
x/h2

� xTλ̂−TD̂+2λ̂−1λ̂−TD̂+2λ̂−1x/h2 (A.6)� xTλ̂−TD̂+4λ̂−1x
(A.9)� xT∆̂x for all x ∈ RNV . (A.11)

�
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