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A Deep Q-Learning Bisection Approach for Power
Allocation in Downlink NOMA Systems
Marie-Josepha Youssef, Charbel Abdel Nour, Xavier Lagrange and Catherine Douillard

Abstract—In this work, we study the weighted sum-rate
maximization problem for a downlink non-orthogonal multiple
access (NOMA) system. With power and data-rate constraints,
this problem is generally non-convex. Therefore, a novel solution
based on the deep reinforcement learning (DRL) framework
is proposed for the power allocation problem. While previous
work based on DRL restrict the solution to a limited set of
possible power levels, the proposed DRL framework is specifically
designed to find a solution with a much larger granularity, emu-
lating a continuous power allocation. Simulation results show that
the proposed power allocation method outperforms two baseline
algorithms. Moreover, it achieves almost 85% of the weighted
sum-rate obtained by a far more complex genetic algorithm that
approaches exhaustive search in terms of performance.

Index Terms—Non-orthogonal multiple access, deep reinforce-
ment learning, weighted sum-rate maximization, successive in-
terference cancellation stability.

I. INTRODUCTION

Future communication networks are expected to support a
myriad of new applications with a diverse set of requirements
[1]. In addition to providing higher data rates, future cellular
systems must account for a massive number of connected
devices with different priority levels in terms of rate, la-
tency and reliability needs. Among the identified promising
technologies to support the new mobile traffic needs, non-
orthogonal multiple access (NOMA) holds a key position [2],
[3]. Indeed, NOMA is able to schedule multiple users on the
same time/frequency channel, increasing both the number of
active devices and system spectral efficiency.

To schedule multiple users on the same time/frequency
channel, NOMA exploits power domain user multiplexing.
Hence, the application of efficient power allocation procedures
becomes of utmost importance. Therefore in recent literature,
significant attention has been devoted to power allocation in
NOMA systems to achieve different objectives such as to
maximize fairness, rate, or energy efficiency [3].

To account for different user priority levels in terms of data
rate, reliability and latency requirements, the system objective
can be formulated as a weighted sum-rate (WSR) function.
However, the WSR maximization problem in a NOMA system
is non-convex [4]. In [3], the power allocation maximizing
the WSR was found for a two-user system. The authors of
[4] considered a K-user system and derived the conditions on
the weight values, under which the WSR problem is convex.
In [5], monotonic optimization was used to derive both the
subband and power allocation maximizing the WSR. However,
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the solution of [5] suffers from a complexity that grows
exponentially with both the number of subbands and users.

Recently, the use of reinforcement learning (RL) in wire-
less communication systems has received significant attention
since it allows to reach near-optimal solutions for non-convex
problems. The RL framework is a sequential decision making
method where an agent interacts with an environment with
the aim of maximizing its long-term discounted reward [6].
With the large expansion in network scale, deep RL (DRL)
is used to increase the efficiency of traditional RL. In [7], a
resource allocation solution based on DRL was proposed to
maximize the rate in an uplink NOMA system. Aiming to
maximize the WSR, another power allocation method based
on DRL was proposed in [8]. In [9], the authors studied a
massive access system and proposed a resource allocation
method based on DRL to satisfy the different quality-of-
service (QoS) requirements of the users. In [10], a solution
based on DRL was proposed for a downlink NOMA system,
where the base station (BS) is confronted with the three
choices of maintaining, increasing or decreasing by a constant
value the power level at each timeslot. It should be noted that
the power allocation problem involves continuous variables
while DRL inherently deals with discrete-type action and state
spaces. Hence, almost all previous work that studied power
allocation in the context of DRL proceeded to use a finite
number of discrete power levels [7]–[9].

In this work, we study the WSR optimization problem in
a downlink NOMA system and introduce a new DRL-based
power allocation technique. Contrary to previous work, the
proposed technique starts from L discrete power levels and
progressively refines the solution. It does so by varying the
bounds of the search space based on the chosen power levels
and achieved performance. To the best of our knowledge,
this is the first work that aims at finding a quasi-continuous
solution, i.e., having a much larger granularity, for the power
allocation problem, based on DRL.

The rest of this paper is organized as follows. The system
model is presented in section II. In section III, an overview of
the DRL framework along with the proposed power allocation
method are detailed. Simulation results are provided in section
IV and conclusions in section V.

II. SYSTEM MODEL

Consider the downlink of a communication system consist-
ing of one single-antenna BS and K single-antenna users uni-
formly deployed over the cell. Let Pmax denote the BS power
budget. Accounting for both small scale Rayleigh fading and
large scale fading (i.e., path-loss and log-normal shadowing),
the channel gain between user k and the BS at timeslot t is
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denoted by h
(t)
k . Without loss of generality, we assume that

the users are indexed in the increasing order of their channel
gains; i.e., the index of user k precedes that of user k′ if
h
(t)
k < h

(t)
k′ . The BS leverages NOMA to serve all K users

simultaneously on a frequency channel of bandwidth B. The
use of NOMA leads to co-channel interference between the
collocated users. Therefore, signal separation at the receiver
side is done using successive interference cancellation (SIC)
decoding [11] in the increasing order of channel gains. Having
applied SIC, the rate of user k can be expressed as:

R
(t)
k = B log2

1 +
p
(t)
k

(
h
(t)
k

)2
K∑

k′=k+1

p
(t)
k′

(
h
(t)
k

)2
+N0B

 , (1)

where p(t)k is the power allocated to user k at timeslot t and
N0 is the noise power spectral density. The first term in the
denominator reflects the interference experienced by user k
from users having a higher channel gain than k at timeslot t,
i.e., those whose interference cannot be canceled using SIC.

The objective of this work is to optimize the power allo-
cation with the aim of maximizing the WSR under minimum
rate requirements. The optimization problem is formulated as:

max
p

K∑
k=1

wkR
(t)
k (2)

such that
∑
k∈K

p
(t)
k ≤ Pmax, (2a)

R
(t)
k ≥ Rk,min, ∀k ∈ K, (2b)

p
(t)
k >

K∑
k′=k+1

p
(t)

k′ ∀k ∈ K, (2c)

p
(t)
k ≥ 0 ∀k ∈ K, (2d)

where wk is the weight relative to user k. Constraint (2a) is the
BS power budget constraint while (2b) is the minimum rate
constraint per user. To guarantee SIC stability [2], [3], i.e.,
successful decoding at the user side, the user with a lower
channel gain must be allocated a power that exceeds the sum
power allocated to users having a higher channel gain, as
expressed in constraint (2c). Indeed, as shown in [12], the
power of the weaker user must be strictly larger than the sum
power of the stronger users since in the opposite case, the
outage probabilities of all users will be always one.

Unless the user weights satisfy the set of conditions derived
in [4], optimization problem (2) remains non-convex. Hence,
it cannot be solved with standard optimization techniques.

III. DRL-BASED POWER ALLOCATION

In the following, a power allocation method based on the
DRL framework is introduced to solve problem (2), even when
the latter is non-convex. Since the power optimization problem
involves continuous variables, most previous work [7]–[9]
leveraging DRL use discrete power levels taken between 0
and Pmax. That said, system performance is largely dependent
on the discretization level. To avoid a prohibitive system
complexity, a tradeoff is generally made where this level is

significantly limited. In this work, we introduce a technique
that aims at finding a quasi-continuous solution for the power
allocation while keeping system complexity manageable. Next,
the power allocation problem is formulated as a Markov
decision process (MDP) before briefly describing the basics
of DRL. Finally, a DRL-based power allocation algorithm is
proposed to maximize the WSR in a NOMA system.

A. Formulating the Power Allocation Problem as a MDP
An MDP is defined by the tuple (S,A,P, r), where S

is the state space, A is the action set, P is the transition
probability, i.e., Pass′ = Pr(s(t+1) = s′|s(t) = s, a(t) = a)
is the probability of moving from a current state s ∈ S to
state s′ ∈ S after taking action a ∈ A, and r denotes the
immediate achieved reward. Based on problem (2), the action
space, state space, and reward function are formulated as:
• Action space: The action space consists of the available

power levels at the BS level for the different users. We
denote by lk and uk the lower and upper bounds of the
power value search space of user k. The action space
related to the power allocation process for user k is
uniformly partitioned between lkPmax and ukPmax, i.e.,
Ak = {lkPmax, (lk + uk−lk

L−1 )Pmax, . . . , ukPmax}, where
L is the number of available power levels. The action
space of the BS regarding the allocated power values to
all K users is given by: A =

∏
k∈K
Ak, hence |A| = LK .

The transmit power allocated to each user k is given by:

pk =
vk∑

k′∈K
vk′

Pmax, (3)

where vk is the chosen power level for user k.
• State space: At each timeslot t, the network state is

defined as:

s(t) =
{
a(t−1), {hk, wk, ξk, δk, lk, uk} ,∀k ∈ K, r(t)

}
,

(4)
where a(t−1) and r(t) are the chosen action and the
achieved reward at the previous timeslot, respectively.
For each user k, ξk = 1 if its rate requirement and SIC
stability constraints are satisfied. In the opposite case,
ξk = 0. Variable δk is the number of users for whom the
satisfaction of constraints (2b) and (2c) is penalized by
the transmission of user k.

• Reward function: The reward function, designed to
optimize the network objective, is chosen to be equal to:

r(t+1) =
∑
k∈K

r
(t+1)
k =

∑
k∈K

(
ξkwkR

(t)
k − φδk

)
, (5)

where r
(t+1)
k is the reward of user k and φ is a large

positive constant equal to the the sanction inflicted upon
user k for penalizing some other user from reaching its
requirement. The value of φ is set such that r(t+1)

k < 0
if δk > 0.

B. Overview of DRL
A RL agent learns its best strategy from observing the

rewards of trial-and-error interactions with the environment. At
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each timeslot t, the agent observes the state of the environment
s(t) and takes action a(t) according to a possible policy π,
where π(s, a) is the probability of choosing action a under
state s. Having taken action a(t), the environment transitions
to a new state s(t+1) and the agent receives a reward r(t+1).
This interaction with the environment forms an experience
expressed as: e(t+1) = {s(t), a(t), r(t+1), s(t+1)}.

The Q-learning algorithm aims to compute the optimal
strategy π maximizing the expected reward function given by:

Re(t) =

∞∑
τ=0

γτr(t+τ+1), (6)

where γ ∈ (0, 1] is the discount factor for future rewards.
The Q-function associated with strategy π is defined as the
expected reward achieved when taking action a under state s:

Qπ(s, a) = E
[
Re(t)|s(t) = a, a(t) = a, π

]
. (7)

The Q-learning algorithm now aims to find the optimal strategy
π∗ that maximizes the Q-function. Moreover, the optimal Q-
function values obey the Bellman optimality condition [6]:

Q∗(s, a) = Es′
[
r′ + γmax

a′
Q∗(s′, a′)|s(t) = s, a(t) = a

]
,

(8)
where s′ and r′ are respectively the new network state and the
reward achieved when taking action a in state s.

The classical Q-learning algorithm uses a lookup-table to
store and update the Q-function values. With the increase of
the network scale, the classical Q-learning algorithm becomes
inefficient due to the required large storage capacity of the
Q-table and to a long convergence time. In such cases, a deep
Q-network (DQN) with experience replay [13] is used where
a neural network is employed to approximate the Q-function
values. The DQN network can be expressed as Q(s, a, θ),
where θ represents network parameters. The task of finding
the best Q-values is equivalent to searching for the best values
for θ. As in classical Q-learning, the agent collects experiences
from its interactions with the environment and forms a data set
D. As implied by the quasi-static target network method [13],
two DQNs are formed: the local DQN with parameters θ(t)local
at timeslot t, and the target DQN with parameters θ

(t)
target.

Every T timeslots, θ(t)target is updated to be equal to θ
(t)
local.

Periodically, the agent selects a mini-batch of experiences from
its memory, D(t), and uses it to optimize the model parameters
θ
(t)
local with the aim of minimizing the loss function defined by:

Loss(θ
(t)
local) =

∑
D(t)

(
y
(t)
DQN (r′, s′)−Q(s, a, θ

(t)
local)

)2
, (9)

where ytDQN (r′, s′) = r′ + γmax
a′

Q(s′, a′, θ
(t)
target).

C. Proposed DRL-Based Power Allocation Algorithm

Similar to [14], the DQN is trained in an offline manner for
Nep total episodes as shown in Algorithm 1.

First, several training parameters are initialized: the discount
factor γ, the initial ε-greedy probability ε(0), its minimum
value εmin as well as its decay rate λ, the batch size Lb, the
memory size LM , constants φ and θ, the copy frequency of the

target DQN weights T , and the weights of both the local and
the target DQNs, θlocal and θ(0)target such that θ(0)target = θ

(0)
local.

In the training phase of the algorithm, at each timelot t,
the agent, i.e., the BS, inputs the network state into the local
DQN to obtain the Q-values of all available actions. The
selected action at timeslot t is then determined by the adaptive
ε-greedy algorithm. In other words, with probability ε(t), a
random action is selected while the action with the maximum
Q-value is chosen with probability (1− ε(t)). The exploration
probability is updated according to:

ε(t) = min(εmin, ε
(0)(1− λ)t). (10)

Note that the action selection is equivalent to the chosen power
level for each user, i.e., a(t) = {v(t)k ,∀k ∈ K}. Having selected
its action, the agent then receives a reward r

(t+1)
k , ∀k ∈ K

from the environment. If r(t+1)
k ≥ 0, i.e., if δk = 0, the lower

bound of the search space for user k is increased according
to:

lk = (lk +
uk − lk
L− 1

). (11)

If r(t+1)
k < 0, i.e., if δk > 0, either the power allocated to user

k must be reduced, or the power allocated to users penalized
by user k must be increased. Hence, the upper bound of each
user k ∈ K is reduced with probability p according to:

uk =

(
lk +

(L− 2)(uk − lk)
L− 1

)
. (12)

The purpose of this update is to allow the BS to refine the
allocated power values for each user in order to improve
performance while keeping a constant system complexity. In
fact, by allowing for changing search spaces, starting from
discrete available power values, a quasi-continuous solution
for these values is achievable. In the case where r(t+1)

k < 0,
the search space for user k is reset, i.e., lk(t) = 0, uk(t) = 1,
with a probability (1− p). In this case, the negative obtained
reward indicates that the BS made a bad decision at some
timeslot. Hence, resetting the search spaces allows the BS to
try different actions in the hope of finding the optimal solution
maximizing the achieved reward.

The environment transitions to a new state s(t+1). The agent
then stores the new transition in its memory as stated in step
14 of Algorithm 1.

To train the local DQN, the experience replay method [13]
is employed, where mini-batch training with a batch size of
Lb is adopted. With the selected mini-batch, the local DQN
is trained using the RMSprop algorithm [15] to minimize the
loss given in Eq. (9). Every T training steps, the weights of
the target DQN are updated to be equal to the local DQN
weights.

Finally, if the difference between the lower and upper
bounds of all users becomes lower than some small value υ,
the system converges, terminating the current training episode.

IV. SIMULATION RESULTS

The number of layers and the number of neurons in each
layer control the ability of the DQN to approximate complex
functions. When the number of layers and neurons increase,
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Algorithm 1 DRL-Based Power Allocation Algorithm
Initialization:

1: Initialize the training parameters γ, η, ε(0), εmin, λ, T, Lb, α, θ.
2: Initialize the replay memory of size LM , the weights of the local DQN
θ
(0)
local and the weights of the target DQN such that θ(0)target = θ

(0)
local.

Training phase:
3: for nep = 0, . . . , Nep do
4: for t = 0, 1, 2, . . . do
5: Input state s(t) into the local DQN and obtain the Q-values relative to

all actions.
6: Select action a(t) according to the ε-greedy algorithm and receive reward

r
(t+1)
k , ∀k ∈ K.

7: if r(t+1)
k ≥ 0 then

8: Increase the lower bound of the search space of user k.
9: else

10: With probability p, decrease the upper bound of the search
space of user k.

11: With probability (1− p), reset the search spaces of user k.
12: end if
13: The environment transitions into a new state s(t+1).
14: Store transition

(
s(t), a(t), r(t+1), s(t+1)

)
in the replay memory.

15: Sample a random mini-batch of size Lb of transitions from the replay
memory.

16: Train the local DQN with the RMSprop algorithm.
17: if t%T = 0 then
18: Update the weights of the target DQN such that

θ
(t)
target = θ

(t)
local.

19: end if
20: if

(
u
(t)
k − l

(t)
k

)
≤ υ, ∀k ∈ K then

21: break
22: end if
23: end for
24: end for

the functions the DQN can approximate become more com-
plex, at the expense of an additional computational complexity.
Hence, the number of layers and neurons should be chosen
to strike a tradeoff between performance and computational
complexity. The adopted DQN in this work consists of four
hidden layers: three fully-connected (FC) layers and a dueling
layer [7]. The first FC layer consists of 200 neurons while
each remaining layer consists of 100 neurons. The size of the
replay memory is LM = 10000. The learning rate, discount
factor, batch size are η = 10−4, γ = 0.9, Nb = 64, while ε
decreases from 0.9 to 0.01 with a decay rate λ = 1 − 10−4.
The target network copies the local network weights every
T = 10 training steps. Unless otherwise stated, the number of
available power levels for each user is L = 4. More than 106

steps of training are performed while the testing of the DQN
performance is averaged over 5×103 independent experiment
runs.

We consider a single cell having a radius Rd = 500m with
one BS located at the cell center and K uniformly deployed
users. Signals undergo frequency-selective Rayleigh fading
with a root mean square delay spread of 500 ns, a distance-
dependent path loss with a decay factor of 3.76, and a zero-
mean log-normal shadowing with an 8 dB variance. The main
simulation parameters are summarized in Table I.

The proposed power allocation method, denoted by ‘DRL-
VB’, is compared with several other methods:

• A simplified version of the DRL-based method that
does not adapt the search space of the power val-
ues, denoted by ‘DRL-FB’. In other words, the action
space of DRL-FB is fixed and given by: ADRL−FB =

TABLE I: Simulation parameters
Transmission Bandwidth 1.25 MHz

Number of users 2, 3, 4, 5
N0 4× 10−18 mW/Hz

Rk,min, ∀k ∈ K 1.5 Mbps
Cell Power Budget 5 W (37 dBm)

Number of power levels L 4
φ, θ 30, 10−2

FTPA parameter α 0.5

FPA parameter β

{0.7, 0.3} for K = 2,
{0.6, 0.25, 0.15} for K = 3,
{0.6, 0.25, 0.1, 0.05} for K = 4,
{0.51, 0.3, 0.1, 0.06, 0.03} for K = 5

Population size of GA 1000
Maximum number of 3000iterations of GA

{0, Pmax

L−1 , . . . , Pmax}.
• A method based on the fractional transmit power alloca-

tion (FTPA) method [2], denoted by ‘FTPA’, where the
power allocated to user k is given by:

pk = Pmax

((
h
(t)
k

)2
/(N0B)

)−α
∑
k′∈K

((
h
(t)
k′

)2
/(N0B)

)−α , (13)

with 0 < α < 1 defined as the FTPA factor.
• A fixed power allocation (FPA) method where the power

allocated to user k is equal to pk = βkPmax, with βk
being the FPA factor relative to user k. Note that the
values of β, listed in Table I, are chosen empirically in
such a way to satisfy SIC stability and optimize system
performance.

• A power allocation method based on a genetic algorithm
(GA) [16] that outputs a near optimal solution [17]. This
method is denoted by ‘GA’.

2 3 4 5
Number of Users

8

10

12

14

16

Av
er

ag
e 

W
ei

gh
te

d 
Su

m
 R

at
e 

(in
 M

bp
s)

DRL-VB
DRL-FB
FTPA
FPA
GA

Fig. 1: Average achieved weighted sum rate in terms of K.

In Fig. 1, the average achieved WSR is plotted in terms of
the number of users. Fig. 1 shows that, as expected, ‘GA’
outperforms all other methods at the cost of an additional
computational complexity, as shown in Table II. All remaining
methods perform similarly in terms of the achieved WSR.

In Fig. 2, the average percentage of satisfaction for both
the user rate requirements and the SIC stability conditions
with respect to the number of users K is plotted. In terms of
rate satisfaction, only the proposed DRL-method with variable
bounds and the GA are able to achieve 100% satisfaction
for all K values. In terms of satisfaction of the SIC stabil-
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Fig. 2: (a) Average percentage of rate requirements satisfac-
tion in terms of K , (b) Average percentage of SIC stability
conditions satisfaction in terms of K.

ity conditions, ‘DRL-VB’, ‘GA’ and ‘FPA’ achieve a 100%
satisfaction while the performance of ‘DRL-FB’ and ‘FTPA’
rapidly degrades when K increases. It should be noted that
for ‘DRL-FB’, when K = 5, the number of available power
levels L is set to 5 as otherwise, the SIC stability satisfaction
percentage would be 0. The number of available power levels
L is set to 4 for all other cases. In fact, system complexity
increases with the number of available power actions at the BS
level, given by LK . Hence, a smaller value of L is preferred
as it results in a lower complexity.

Finally in Table II, the mean time needed (in seconds),
using an Intel I7 − 4790 processor clocked at 3.6 GHz, to
find the power allocation solution is shown for the different
methods. FTPA and FPA require the least amount of time
thanks to the use of simple algebraic solutions to solve the
power allocation problem. However, the solutions yielded by
both FTPA and FPA do not satisfy the rate requirements and
SIC stability constraints for all K values as previously shown
in Fig. 2. Table II shows that the GA is, by far and with several
orders of magnitude difference, the slowest to find a solution
that satisfies the different requirements. On the other hand,
the DRL-VB proposed method results in a very manageable
time complexity, requiring only an average of 0.2% the time
needed by the GA to find efficient power allocation solutions
that satisfy all system constraints.

TABLE II: Average time needed by the different methods (s)

K = 2 K = 3 K = 4 K = 5

DRL-VB 1.17× 10−2 1.19× 10−2 3.02× 10−2 6.01× 10−2

DRL- FB 10−2 1.01× 10−2 2.65× 10−2 5.7× 10−2

FTPA 6.67× 10−5 8.25× 10−5 10−4 2.8× 10−4

FPA 4.64× 10−5 6.23× 10−5 8× 10−5 2× 10−4

GA 5.8 9.81 14.2 19.4

To conclude, the proposed DRL-based power allocation
method is able to find solutions that satisfy rate and SIC
stability constraints with a manageable time complexity. It
can do so while achieving about 85% of the performance
of the genetic method in terms of WSR, albeit with a much
lower computational complexity. Moreover, the results prove
the effectiveness of varying the search space bounds in the
DRL-based method.

V. CONCLUSION

In this paper, a novel power allocation method based on
deep reinforcement learning was introduced. With the aim
of maximizing the weighted sum rate, the proposed method
starts from a discrete set of possible power levels and pro-
gressively adapts the power values search space. Through
this progressive refining of the search space, the proposed
method is able to optimize the power allocation in a quasi-
continuous manner, while keeping constant system complexity.
The numerical results reveal that the proposed DRL-power
allocation method outperforms two baseline power allocation
algorithms in terms of satisfying target user rates and SIC
stability conditions. Moreover, while providing similar satis-
faction rates, it achieves more than 85% of the weighted sum
rate obtained by a largely more complex genetic algorithm,
making it the method of choice to solve such a problem.
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