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Abstract: We present analytical and experimental results of the microstructuring of movie
theater metallic screens. Our objective is to maintain the polarization state of reflected light and
to control the distribution of light intensity avoiding hotspots. We derive analytical solutions
of surface functions with an axial symmetry (kernel) that produces isotropic and Lambertian
scattering. Then we model the diffraction that can occur with such kernels, ranging from a
few microns to several hundred microns, and we give illustrations when illuminated by laser
beams corresponding to future use of laser projectors. Finally, we discuss some of the challenges
associated with the tiling of such kernels and their manufacturing.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The principle of polarization multiplexing for 3D display applications has been known since at
least 1923 [1]. It is mainly used in 3D movie theaters, and for other immersive applications such
as Caves [2] or multiviewer displays [3,4]. Most commonly, two image channels are encoded
with two orthogonal circular polarizers. The light is reflected on a screen and then the images are
decoded with the left and right circular polarizers of the viewer’s glasses. Compared to linear
polarizers, it gives more freedom of movement to the viewer [5].

One of the main causes that affects visual comfort in 3D projection is related to the crosstalk
ratio [6]. The crosstalk is defined in general as the leakage of the left or right image channel
due to their incomplete isolation [7]. The crosstalk ratio is the ratio between the luminance
through the blocking filter and the luminance through the passing filter. The crosstalk can create
a visual effect called "ghosting", which can be described as the appearance of ghost images
or double contours and which reduces the quality of the perceived image and can cause visual
fatigue [8]. The main causes of crosstalk systems are the screen depolarization, the encoding
and decoding technology and the movie theater geometry [9]. Conventional ’silver’ screens are
usually made of a matt white substrate of poly vinyl chloride (PVC) spray-painted with a mixture
of resin binder and aluminium particles with random shape and size [10]. For systems with such
conventional screens, the screen depolarization is the most critical factor responsible for the
majority of crosstalk [11,12]. Coleman [10] distinguishes between true depolarization related to
features smaller than the incoming wavelength (edge of the particles, surface roughness) and
pseudo depolarization, related to multiple reflections on the surface.

In this paper we propose to reduce the depolarization thus we consider smooth surfaces that
produce a single refection on the screen. While avoiding depolarization, we want to achieve more
uniformity in the bidirectional reflectance distribution function (BRDF) so that, on the one hand
each spectator can perceive the same brightness regardless of their position in the theater and on
the other hand each viewer observes a more uniform image across the entire screen.
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Numerous works have proposed surface models for computer graphics applications in order to
determine the reflectance of objects [13,14]. Usually the bidirectional reflectance distribution
function is computed by considering three different contributions: the ambient, specular and
diffuse components. The ambient and diffuse components are commonly considered to reflect
light equally in all directions, while the specular component depends on the location of the
observer and the light source. Both diffuse and ambient light result from internal scattering or
multiple reflections on the surface. Since to maintain the polarization state, multiple reflections
are not acceptable, we must consider a surface that does not diffuse light. In addition, since
applications of polarization-maintaining screens are usually located in dark rooms, ambient light
can be neglected. Thus, we start this study with a purely geometrical approach to determine
what surface profile could be used for such screen [15]. The surface is assumed to consist
of micro-facets, each one of them being specularly reflective [16]. Since the surface kernels
should be much smaller than the pixel size of the projected image (few millimeters at most),
the diffraction effect cannot be neglected. Therefore we complete the geometrical approach
analysis to take into account this effect and to match the experimental observations. This second
approach considers the screen as an optical system that diffracts light because of the different
optical paths introduced by the surface shape [17], in particular when the light source is a laser.
The emergence of laser projectors makes this choice particularly relevant to analyze the light
distribution reflected by the screen (including speckle). Finally, extension to non-coherent light
source is done and illustrated showing the properties remain true.

2. Crosstalk induced by oblique incidence on a metal surface

Metallic screens have been used for passive 3D projection because it is simple to implement and
relatively inexpensive [18]. Before we look for the surface profile that would satisfy a certain
intensity distribution, we must evaluate the influence of the slope of the metal on the crosstalk
ratio. Considering circular polarization, we can relate the Crosstalk Ratio (CR) to the Fresnel
coefficients by simple modeling with Jones matrices.

CR =
Ib

Ip
=

|︁|︁|︁|︁1 − ρ

1 + ρ

|︁|︁|︁|︁2 , ρ = r∥/r⊥ (1)

where Ib is the intensity through the blocking polarizer, Ip is the intensity through the passing
polarizer, r∥ and r⊥ are the Fresnel coefficients on the reflective surface and ρ is the complex
reflectance ratio. The complex reflectance ratio can be written as ρ = tanΦ exp(i∆), with tanΦ
the amplitude ratio upon reflection and ∆ the phase shift difference. Trying to eliminate the
crosstalk would therefore mean having ρ = 1, i.e. a zero phase difference and an amplitude ratio
equal to one. This is only possible at normal incidence, so the crosstalk ratio should be evaluated
over the incident angle. For a metal/air interface, the crosstalk ratio is given by:

CR =
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where θ0 is the angle of incidence on the metallic surface, n0 the refractive index of the air, ns the
complex refractive index of the metal and θs = arcsin( n0

ns
sin θ0). Equation (2) allows us to predict

the crosstalk ratio and to compare different metals. In Fig. 1, the reflectance of the parallel and
perpendicular components of the incoming electromagnetic wave to the plane of incidence, the
phase shift and the crosstalk ratio have been drawn for silver (Ag), aluminium (Al) and gold (Au).

For all metals, the crosstalk is zero at normal incidence and then it rises with the angle of
incidence. We can deduce from the graphs that the main contribution to the crosstalk is not
the amplitude ratio upon reflection but the phase shift. Indeed, a phase shift introduced on an
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Fig. 1. Comparison of different metals for (a) perpendicular and (b) parallel Fresnel
coefficients, (c) phase shift and (d) crosstalk ratio as a function on the angle of incidence, for
λ = 550 nm.

incoming circular polarization will transform the circular polarization into an elliptical one. A
metal with a higher imaginary part of its refractive index will produce less crosstalk. Here,
Aluminium would be the best choice since the crosstalk is less than 1% for an angle of incidence
of 40◦.

It should be noted here that the crosstalk could be even further reduced by coating the metal
with a thin film of dielectric material. In the case of a metal coated with a layer of refractive
index n and thickness e, by computing the corresponding Fresnel coefficients, one can find the
following crosstalk ratio:

CR =
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2

(3)

Fig. 2. Influence of the oblique incidence on the crosstalk ratio for a noncoated aluminium
surface (blue line) and an aluminium surface coated with a layer of index n = 1.4 and
thickness e = 112 nm for λ = 550 nm (red line)
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where φ = 2π
λ ne. From Eq. (3), we can numerically find that a dielectric layer of low refractive

index (such as SiO2 with n ≈ 1.4) with a thickness of about a quarter-wave in optical thickness
will produce better results as illustrated in Fig. 2.

The dielectric layer can serve at the same time as a protective layer against scratch and oxidation
[11], but of course it will be more expensive. In all cases, such computations show that it is
acceptable to have surfaces with slopes up to 40◦ (that is with maximum scattering angle up to
80◦) while maintaining satisfactory level of crosstalk.

3. Analytical solutions based on a geometric approach

Here we consider the screen as a smooth structured metal surface, and look for a surface profile
that would produce a given intensity distribution function. We consider an axially symmetrical
surface profile s(r) (kernel). On each point r of the screen, an incoming ray will be reflected
specularly in relation to the slope θi(r) of the surface s(r) on this point. Specifically, for an
incoming ray at normal incidence, it will be reflected in the direction θ such that θ = 2θi where θi
correspond to the slope of the surface. The geometry and notations we use are shown in Fig. 3.

Fig. 3. Notations used for an axially symmetrical solution

Choosing the intensity distribution means finding which surface function s(r) gives the
corresponding function of intensity by steradian (radiant intensity). Looking for an axially
symmetrical solution, the intensity by solid angle can be expressed as follow:

Radiant intensity =
Irradiance × irradiated surface

solid angle
=

E02πrdr
2π sin θdθ

= gD(θ) (4)

with E0 the Irradiance, D(θ) the desired intensity distribution and g a constant (with respect to θ).
’g’ can be computed by integrating Eq. (4). From Eq. (4), we can derive θ as a function of r.
Then, the surface profile can be deduced by integrating the following equation:

ds/dr = tan(θ/2) (5)

where s(r) is the desired surface function. We call ’kernel’ the surface produced by the rotation
of the s function around the z axis. It is the fundamental building block of our screen.

3.1. Isotropic kernel

By definition, an isotropic diffuser has a constant intensity distribution function D(θ) = 1. From
Eq. (4), the following function θ(r) can be obtained:

θ(r) = 2 arcsin(r/Ri) (6)

with Ri =
rm

sin(θmax/2) , rm the maximum radius of the kernel and θmax the maximum scattering
angle desired. Using Eq. (5), the isotropic solution can be found:

si(r) = Ri
√︁

1 − (r/Ri)2 (7)
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It corresponds simply to a spherical cap, Ri is the scale factor of the kernel (and the radius of
the corresponding sphere). The maximum scattering angle is simply obtained by choosing where
the spherical cap ends.

3.2. Lambertian kernel

The intensity distribution that is sought more commonly for a screen is called Lambertian, and
defines a screen where the apparent brightness is constant regardless of the observer’s angle of
view. The radiance of a Lambertian screen is constant while the radiant intensity obeys Lambert’s
cosine law [19]. With our notations, it corresponds to D(θ) = cos(θ). We want to have a constant
radiance over a certain solid angle. In this case, a slightly different equation than in the isotropic
case is found between θ and r:

θ(r) = arcsin(r/Rl) (8)

where Rl =
rm

sin(θmax)
. Integrating Eq. (5) using Eq. (8), we obtain the equation of the derivative of

s(r):
dsl(r)

dr
=

1 −
√︁

1 − (r/Rl)2

r/Rl
(9)

which has as a solution:

sl(r) = Rl{ln(1 +
√︁

1 − (r/Rl)2) −
√︁

1 − (r/Rl)2} (10)

Computing the constant g in Eq. (4) as a function of the maximum scattering angle θmax for a
given kernel radius rm, we find:

g(θmax) =
2E0r2

m
1 − cos(2θmax)

(11)

g is related to the gain G of the screen which is by definition the ratio between the intensity of a
screen and the intensity of a Lambertian screen (with θmax = π/2) when illuminated at normal
incidence. The relation between the gain and the maximum angle follows:

G(θmax) =
g(θmax)

g(π/2)
=

1
sin2(θmax)

(12)

When we choose a maximum scattering angle smaller than π/2, the luminous intensity is
distributed over a smaller solid angle, so the gain of the screen increases. It is advisable to clearly
define the angular range necessary in order to choose the smallest maximum angle (θmax) and
thus increase the screen gain.

Figure 4 illustrates the difference between the isotropic and Lambertian kernels for a given
maximum scattering angle. The maximum angle defines the slope at the end of the kernel. It can
be seen that for an axially symmetrical kernel, the sign of the functions obtained is not important
given the symmetry of the problem, the surface function and its opposite will both produce the
same radiant intensity.

3.3. Managing the bidirectional reflectance distribution function

Managing the bidirectional reflectance distribution function BRDF is essential to make good use
of the luminous intensity. Ideally each pixel, given the incident angle of the projector, should
scatter the light only in the region where the spectators are seated, as illustrated in Fig. 5.

One way to control the BRDF, starting from a kernel able to distribute light uniformly, is to
"cut out" that kernel, in a way which is related to the geometry of the theater. For instance, if we
want light to be distributed only in the rectangular region of a movie theater where the spectators
are seated, we keep only a rectangular part of the kernel.
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Fig. 4. Comparison between isotropic and Lambertian kernels for θmax = 70◦

Fig. 5. Theater geometry and angles. The arrow represents the local normal direction to the
screen surface

To illustrate this point we designed two gratings of Lambertian kernels, one with rectangular
cut out kernels and the other with hexagonal kernels. The surface was shaped by parallell
direct-write photolithography [20], with 30 µm kernels designed to scatter light with a maximum
scattering angle of 60◦. The surface is made reflective with a thin layer of gold (≈ 100 nm). One
way to visualize the BRDF is to illuminate the sample screen and observe its reflection on a
second white screen. We illuminated both samples with a collimated Helium Neon laser beam
(3 cm in diameter) at an angle of incidence of 15◦, and the reflection is observed on a white
screen placed at 15 cm from our samples. Both BRDF and their corresponding kernels geometry
observed on an optical microscope are illustrated in Fig. 6.

The BRDF in Fig. 6 are not perfectly axially symmetrical because we are in oblique incidence.
Both examples show that it is possible to control the shape of the BRDF. Here the samples have
been designed to have a maximum scattering angle of 60◦ and it fits with experiment. The BRDF
shape is controlled by cut off geometry of the kernels.
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Fig. 6. Rectangular and hexagonal gratings and their corresponding BRDF geometry

4. Realization

In practice, to avoid alignment problems and Moire effects, the kernels should be smaller than a
pixel displayed on the screen, so that a pixel covers several kernels. Such pixels are usually a
few millimeters large. Ideally the basic kernel should not exceed 1 mm so that there is enough
kernels in one pixel and that a small transverse offset of the pixel does not change significantly
the radiant intensity. Moreover, they should be small enough that they are not resolvable by
any viewer, that is smaller than a few hundreds microns. This raises two main challenges: one

Fig. 7. Diffraction produced by hexagonal lattice, illuminated with a collimated He-Ne
laser beam of 1 mm diameter and observed on a white screen at 30 cm



Research Article Vol. 29, No. 3 / 1 February 2021 / Optics Express 4315

concerning how to pave the kernels on a 2D plane and the second concerning the impact of their
size and the diffraction they induce.

From a purely geometric approach, the most natural way to tile an axially symmetrical
kernel into a 2D space would be to form a hexagonal lattice. However, if the kernels are too
small (typically between a few microns and several hundreds of microns) such lattice creates a
diffracting grating. Figure 7 illustrates the diffraction produced with the grating of Fig. 6(c) when
illuminated with a collimated laser beam (1 mm large) and observed at 50 cm. The luminance
reflected on a screen is not constant. Instead, the light reflected from each of the kernels gives a
multitude of coherent secondary sources that interfere strongly to create a 2D comb of intensity.
However, the outer envelope of the light intensity distribution has the shape of the kernel, and the
maximum angle can be controlled by its maximum slope. Thus, a pure geometrical modelling is
not enough to the describe the phenomenon and diffraction should be considered.

4.1. Kernel-induced diffraction

To model the diffraction produced by one single kernel, which by construction distributes the
light over wide angles, we use the nonparaxial scalar diffraction theory developed by Harvey and
Krywonos [21]. Harvey has shown [22] that the diffracted radiance is a "fundamental quantity
predicted by the Fourier transform of the optical disturbance emerging from a diffraction aperture,
and [that] a paraxial limitation [is] not necessary in this linear systems formulation of wide-angle
diffraction phenomena" [23]. The diffracted radiance can be written as follow:

L(α, β − βi) = K cos θiλ2/As |F{U0(x̂, ŷ, 0) exp(i2πβiŷ)}|2 (13)

where L is the radiant power per unit solid angle per unit projected area, U0 is the complex
amplitude distribution emerging from the diffracting aperture, λ the wavelength, As the area of
the aperture, K a renormalization constant, x̂, ŷ the coordinates in the diffracting plane normalized
by the wavelength (x̂ = x

λ , ŷ = y
λ ), and α and β the direction cosines of the propagation vectors of

the angular spectrum of plane waves discussed by Ratcliff [24], Goodman [25] and Gaskill [26].
The complex amplitude U0 is calculated in relation to the optical phase difference∆ϕ introduced

at each point of the surface s(r) as follow [27]:

∆Φ(r) = (cos θi + cos θ)s(r) (14)

with r =
√︁

x2 + y2 r ∈ [0, rm] and θi the angle between the plane of the surface (xy) and the
incoming beam.

This model allows us to predict the impact of the surface profile of a single kernel, of its size
and of the maximum scattering angle. Its adequacy with experiments is shown in the following
section 4.2.

4.1.1. Size of the kernel

First we modeled the impact of the size of the kernel, for a given maximum angle. In Fig. 8, it is
clear that one single kernel produces a diffraction pattern, characterized by a number of fringes
and their contrast. Smaller kernels produce fewer fringes with a larger contrast. Choosing the
maximum slope allows us to control the maximum scattered angle, regardless of the size of the
pattern. To obtain the best possible uniformity it is thus preferable to choose the largest possible
radius.

4.1.2. Maximum scattering angle

With the simulations, we can also model the impact of the choice of the maximum scattering
angle. As illustrated in Fig. 9, the number of fringes and their contrast are not affected by the
maximum scattered angle. The average radiance decreases as the maximum angle increases,
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Fig. 8. Impact of the size of the kernel on the diffracted radiance, θmax = 30◦

according to Eq. (12). This is due to the fact that the same irradiance is distributed over a larger
solid angle.

Fig. 9. Impact of the maximum scattering angle, rm = 50 µm

4.1.3. Kernel pattern

Finally, the impact of different types of kernel can also be modeled. Different kernels will
produce different surface slope distributions, affecting the optical phase difference in Eq. (14)
and generating a different radiance. Figure 10 compares the isotropic and Lambertian kernels for
a kernel with a radius of 100 µm.

While it is found that both kernels produce a radiance quite similar in terms of the fringes
number, contrast and maximum angle, however, in the illuminated region, the radiance envelope
is dictated by the kernel. The Lambertian kernel produces a more uniform radiance than the
isotropic one. Moreover there is a gain increase with the Lambertian kernel related to the
maximum scaterring angle, here the increase is about 20% for θmax = 50◦. The relevance of the
combined diffractive and geometrical approaches is thus confirmed, both of them being necessary
to explain the diffracted radiance.
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Fig. 10. impact of the kernel, rm = 100 µm, θmax = 50◦

4.2. Tiling-induced diffraction

Since the diffracted radiance is associated to the Fourier transform of the complex amplitude
induced by the kernel (see Eq. (13)), it is a linear system formulation that makes it easy to
compute the overall diffraction produced by a set of patterns. For instance, it explains the results
obtained with the hexagonal tiling in Fig. 7 since it is the convolution of the kernel with a 2D
Dirac comb.

This linear formulation provides clues about how to tile the kernel. If we consider identical
kernels with rm = 20 µm placed randomly on the surface, the radiance will be the product of the
diffraction induced by the kernel and the diffraction induced by the random tiling. The overall
diffraction will look like the kernel induced diffraction with some added noise as illustrated
in Fig. 11. We observe some residual diffraction peaks that are due to the pixelization of our
photo-plotter spatial light modulator creating parasitic gratings (as seen also in Figs. 12, 13 and
16). This parasitic grating is all the more visible as flat areas are left and the engraving depth
is important. Since we left large flat surfaces (about 30%) on this sample, there is an intense
specular reflection. This specular reflection can be eliminated by not leaving flat areas.

Fig. 11. Random positions of a kernel
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Fig. 12. Comparison between the experimental diffraction patterns (left) and simulated
diffraction patterns (right) for rm = 5 µm (a), rm = 10 µm (b), rm = 15 µm (c) and rm = 20
µm

Fig. 13. Random kernel size on a regular lattice
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To verify our theoretical model, we realized four samples made of randomly dispersed identical
kernels of 10 µm, 20 µm, 30 µm and 40 µm. They are as previously illuminated by a collimated
laser beam of 1 mm and the reflection of the sample is observed on a white screen placed at 30
cm. As illustrated in Fig. 12, the simulations predict the number and position of the fringes quite
accurately.

The main difference between the experiments and the simulations is the central spot of the
diffraction pattern. Naturally, the way we tiled the patterns left more or less flat reflective areas on
the sample, creating a more or less intense peak in the specular area. Moreover, the real diffracted
figures have a speckle like noise related to the way the kernels have been randomly tiled.

Since we aim at reducing the visibility of the fringes, one approach could be to tile a kernel
with different radii regularly placed, in order to "mix" the different fringe patterns and reduce
their contrast. Figure 13 shows that this approach reduces the visibility of the fringes.

While this approach also leaves large flat areas, a better way to tile the plane that both reduces
the visibility of the fringes and fills the space as much as possible is to use randomization for
both the position and diameter of the kernels, as illustrated in Fig. 14.

Fig. 14. Tiling with kernels of random sizes and positions

4.3. Noncoherent source

We have illuminated so far our samples with collimated coherent sources on 1 mm large surface
in order to understand the diffraction phenomenon that appears and to be able to compare
experiments and simulations. These conditions result in the appearance of strong interference
effects. However in practice, the surface illuminated (one pixel) is a few millimeters large, and
the spectral power distribution of a primary color has a width of more than 100 nm for non laser
projectors. As illustrated in Fig. 15, a spatial (15b) or spectral (15c) broadening has quite the
same effect of homogenizing the intensity distribution, and thus decreasing the visibility of the
fringes.

This figure illustrates that the way we tested the diffraction patterns so far with a laser on a tiny
surface (1 mm) corresponds to an extreme case (highly coherent) (Fig. 15) , but in real conditions,
depending on the pixel size and the spectral width of the incoming light, the uniformity is
improved (Fig. 15(b) and 15(c)).
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4.4. Measured luminance

We measured the luminance as a function of the viewing angle with a luminance meters (Konica
Minolta LS-100) for three samples illuminated by a 3 cm white spot from a BenQ projector at
normal incidence. The luminance meter (1◦ acceptance angle), was placed at 60 cm and with
viewing angles from 10◦ to 70◦, to characterize the BRDF for a sample with random Lambertian
kernels and a maximum scattering angle of 30◦ against a quasi Lambertian reference (white sheet
of paper) and a conventional projection silver screen (ST Silver Screen from Screen-Tech).

From the measure of the irradiance on the screen (using an ILM 1335 luxmeter form ISO-TECH,
E0 = 647lm/m2), we can normalized the luminance so that 1 corresponds to the luminance of
a Lambertian diffuser. In Fig. 16, naturally, the luminance of the quasi Lambertian reference
is almost constant, while the conventional screen has a typical fast decreasing gain curve. In
constrat, our screen sample has a quasi constant luminance over its scattering region and then
drops drastically above 30◦ as expected.

4.5. Crosstalk

With the same measurement set-up as in section 4.4, we added blocking and passing circular
polarizers in order to compute the crosstalk ratio for the same three samples for three different
viewing angles. The results are depicted in Table 1.

The quasi Lambertian reference shows obviously a huge crosstalk ratio since it depolarizes the
incoming light. Compared to the conventional screen, our sample with Lambertian kernels has

Fig. 15. Screen sample with random size and position of Lambertian kernels illluminated
with a collimated laser beam on a 1 mm wide surface (a), a collimated laser beam on a 3
mm wide surface (b) and a weakly converging beam from a typical red source from a BenQ
projector (∆λ ≈ 120 nm) (c)

Fig. 16. Measured luminance as a function of the viewing angle
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Table 1. Measured crosstalk ratio

Lambertian Conventional Random kernel

reference metallic screen sample

crosstalk ratio at 10◦ 0.80 0.046 0.0041

crosstalk ratio at 15◦ 0.92 0.053 0.0040

crosstalk ratio at 20◦ 1.00 0.064 0.0042

been able to reduce the crosstalk ratio by a factor of more than 10. Moreover, in contrast to the
conventional screen, the crosstalk ratio does not depend on the viewing angle, which indicates
that the main contribution to crosstalk is no longer the screen, but the extinction of the circular
polarizers, which is 0.4%.

4.6. Visual comparison

To conclude, we propose a visual comparison between our screen with Lambertian kernels,
the Lambertian reference (sheet of paper) and the conventional screen, in terms of luminance
distribution and crosstalk. We put the three samples on the conventional screen, each has a size of
6 cm x 6 cm, the conventional screen is on the left, our sample in the middle and the Lambertian
reference on the right, as shown in Fig. 17.

Fig. 17. Position of the three compared samples

Then we project an image (sea surface) on the three samples, and observe them from three
different viewing angles, as shown in Fig. 18. Consistently with the results obtained in section 4.4,
our sample is brighter at 5◦ and 25◦, and appears almost perfectly dark at 45◦ (its maximum
scattering angle is 30◦).

Fig. 18. Photographs of the three samples observed from 3 different viewing angles

Similarly, we illustrate the good preservation of the polarization state. We show in Fig. 19 the
three samples through the passing polarizing filters (left) and through the blocking polarizing
filters (right).
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Fig. 19. Observation of the three samples through (a) the passing filter and (b) the blocking
filter.

5. Discussion

The diffractive model we used was able to predict accurately the diffraction patterns of our
geometrical kernels when illuminated by coherent sources, which is in practice the worst case,
since it creates interferences that affect the uniformity of the reflected radiance. This modeling
is thus particularly appropriate to design screens for laser projectors. Conventional projectors
have a wider power spectral density, which spreads the fringes and flattens the intensity curve.
Broader-spectrum sources would also have a benefiting impact on the speckle like noise, due
here to the randomization. Other speckle sources have not been considered because the metal
surface is very smooth.

The main issue, we pointed out here, is the surface tiling to get rid of the residual specular
reflection by minimizing (cancelling) the joining flat surfaces. As a solution, we have chosen to
tile the 2D plane with kernels of different sizes, getting smaller and smaller in order to fill as
much space as possible, while randomizing the position of the kernels. Our samples have a flat
area representing less than 1% of the sample surface. This is the solution chosen but of course
not optimal. Paving the space with aperiodic patterns is not an obvious task, deserving more
attention. Suggestions could be found, for instance, in Voronoi diagrams [28], the challenge
being to have a diversity of kernels while maintaining the overall radiance distribution. Another
way is to accept the overlapping of neighboring kernels [11]. The impact of such overlapping
should be studied carefully to maintain the overall radiance distribution.

Further investigations should be made to reduce the "hot spot", this small bright spot in the
specular direction, that we observed even with almost no flat surfaces. This hot spot might be
reduced by combining well chosen kernel sizes. Moreover, depending on the geometry of the
theater, the hot spot can be sent outside the spectators regions. Indeed, by cutting the kernels
accordingly, most of the intensity can be sent in another direction than the specular.
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