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1. INTRODUCTION AND GENERAL DESCRIPTION

Data are produced when abstracting the world into measures or categories ("num-
bers, characters, images") and are the basis to generate information, knowledge 
and ultimately wisdom ("Kitchin 2014, Fig. 8.1"). Data are symbols that represent 
facts, e.g. temperature records. There is no meaning of data beyond its own ex-
istence and can be clean, noisy, structured, unstructured, relevant, or irrelevant. 
Information can be considered as data that have been processed and that then 
become useful. In other words, information adds meaning to data. Knowledge 
can be considered as the application of information and data or the “"know-how"” 
that transforms information into instructions. Wisdom is the pinnacle of the 
knowledge pyramid and refers to being able to apply knowledge ("Fig. 8.1").

During the last decades, the capability of humans to generate data has increased 
exponentially, leading to the so-called Big Data. Even though there is no formal 
definition of Big Data, it usually is characterised by the 4Vs": Volume, Velocity, 
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Variety, and Veracity ["Fig. 8.1"] ("Kitchin 2014"). Quantifying the volume of 
global data at the moment is not straightforward. According to the Interna-
tional Data Group’s study – “"The Digital Universe in 2020"” ("https"://bit.
ly/3b4xgyy"), the amount of data in the year 2020 would be ca. 40 trillion gi-
gabytes ("or 40 zettabytes"). Interestingly, most data has been generated dur-
ing the last two years and, by 2020, every person was predicted to generate 1.7 
Mb per second ("https"://bit.ly/3$EQsH"), or 146,880 GB a day, leading to a pro-
duction of 165 zettabytes per year by 2025 ("https"://bit.ly/3b4xgyy"). In par-
ticular, ocean sciences have also experienced an explosion of data during the 
last decade ("Brett et al. 2020"; Guidi et al. 2020"). Examples are the DNA se-
quencing of the ocean microbiome, which has produced a few hundred tera-
bytes of raw data since 2010, or the first world’s ocean digital map of seafloor 

FIGURE  8.1—The DIKW or Knowledge pyramid, and the characteristics of Big Data applied to ocean 
science.
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lithologies based on descriptions of nearly 14,500 samples. Small data di%ers 
from Big Data in terms of the velocity at which it is generated. Big Data tends 
to be generated continuously, in many cases, in virtually real-time. For exam-
ple, satellites continuously stream ocean observation data and weather sen-
sors monitor and transmit weather conditions so their data can be ingested 
in weather forecasting. Such a continuous stream of data needs continuous 
management and analysis ("Fu et al. 2019"). In addition, Big Data can display 
variety. That is, it can be a combination of structured, semi-structured or un-
structured data, including numbers, text, images, videos and audio, which can 
be combined. It is widely acknowledged that ca. 80% of Big Data is unstruc-
tured. New advances in high-performance computing, database design using 
Not only Structured Query Language ("NoSQL") formats and data mining have 
allowed to store, manage, process and extract knowledge from unstructured 
data. Finally, data veracity defines, not only how accurate a Big Data set may 
be, but also how trustworthy the data source, type, and processing is. Re-
moving biases, inconsistencies, duplication, and volatility are just a few ac-
curacy factors of data, which in the context of Big Data becomes a real chal-
lenge. Veracity issues in marine sciences arise, for instance, due to the 
stochastic properties of data-process generation, manual entries, GPS un-
certainty, or by model uncertainties in ocean forecasting processes ("e.g., 
hurricanes"). Strikingly, most Big Data sets seem to remain unanalysed, with 
estimates ranging from 97% to 99%. Nevertheless, we need to consider that 
only a fraction of Big Data may be useful": in 2012, only about 23% of Big Data 
was considered useful ("https"://bit.ly/3b4xgyy"). Recently, the Science Brief 
of the European Marine Board has included the value of the data as a new 
dimension of Big Data in marine sciences. Understanding the costs and ben-
efits of collecting and analyzing data is therefore needed to ensure that its 
value can be reaped ("Guidi et al. 2020").

The ocean covers ca. 70% of the surface of the planet and contains ca. 97% of 
all water on Earth. It plays a central role in regulating the Earth’s climate sys-
tem, and its physical, geological and biological processes play a key role in 
global biogeochemical cycles ("see chapter 2"). Due to its importance, a wide 
array of monitoring e%orts have been implemented, including in-situ ("e.g. glid-
ers, Argo floats, buoys, OBSs ("Ocean Bottom Seismometers"), Seafloor Obser-
vatory Systems") and ex-situ ("e.g. satellites, drones") sensors covering di%er-
ent spatial and temporal scales ("see Chapter 1"). Technological advances in 
sensor technology, autonomous devices and communications allow us to col-
lect Big Data from the ocean in a continuously increasing way. Thus, in 
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agreement with the 4 Vs of Big Data, the generated ocean data occupies huge 
volumes, it is collected continuously in virtually real-time and features vari-
ety ("i.e. it is unstructured and may consist of images, numbers or DNA se-
quences"). Our capability to generate Big Data from the ocean contrasts with 
our capacity to analyse them, which has not advanced at the same rate, be-
coming a bottleneck for the generation of information and knowledge ("Mal-
de et al. 2019"). Recent developments in Artificial Intelligence ("AI"), in particu-
lar Deep Learning ("DL") are now allowing processing Big Data and generating 
new insight ("Guidi et al. 2020").

AI is broadly defined as “"the study of agents that receive percepts from the 
environment and perform actions"” ("see White Chapter on Artificial Intelli-
gence"). Machine Learning ("ML") is a branch of AI ("Fig. 8.2") that aims at “"iter-
atively evolve an understanding of a dataset"; to automatically learn to recog-
nise complex patterns and construct models that explain and predict such 
patterns and optimise outcomes"”. ML approaches can be supervised ("using 
training data") or unsupervised ("using self-organization"). Supervised learn-
ing involves a model that is trained to match inputs to known outputs, while 
in unsupervised learning, the model teaches itself to find patterns in the data 
without the use of training data ("Kitchin, 2014"). In both cases, a model is gen-
erated via a learning process that is modulated by rules and weights. The con-
struction of the model starts simple, and then it evolves into a robust one af-
ter changing repeatedly.

FIGURE  8.2—Artificial Intelligence, Machine Learning and Deep Learning applied to the pattern 
identification of swirling motion of eddies in the ocean
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Deep Learning ("DL") is a subset of ML ("Fig. 8.2") that uses multilayer artificial 
Neural Networks. Traditional ML requires substantial human e%ort in defin-
ing features that represent data, while there is no need to define features in 
DL, as DL learns the best representation of the data itself in order to produce 
the most accurate results. DL algorithms require Big Data, and their e&cien-
cy improves as more data is added. This contrasts with classic ML approach-
es that reach a plateau at some point, no matter how much data is added. An-
other advantage of DL algorithms is that they can represent complex 
non-linear separating functions, and this is ideal for tasks that require learn-
ing complex concepts. Furthermore, feature identification is not required, 
minimising the chance of human biases. In addition, DL can take advantage 
of massive parallel processing, as in GPUs, to learn better models.

2. IMPACT IN BASIC SCIENCE PANORAMA 
AND POTENTIAL APPLICATIONS

Big Data coupled to AI will revolutionise ocean sciences ("Malde et al. 2019"). 
Right now, marine sciences are rapidly evolving towards massive data genera-
tion from automatic sensors thanks to the increase in computational power 
and the development of new technologies ("Brett et al. 2020"). High-through-
put sequencing, animal and human ("e.g. vessel monitoring system") tracking, 
ocean observing from local stations to satellites, seismic, acoustic, geophysics 
and sediment data are major examples of how marine sciences are entering 
into a new Big Data era. How to manage, store, analyse and transform the 
oceans of Big Data into knowledge is now a fundamental challenge for ocean 
sciences. This challenge can only be addressed by changing the paradigm in 
marine sciences, from traditional model-driven representations ("e.g. data as-
similation in physical and biological models") towards accurate and computa-
tionally-e&cient data-driven models. AI integration in marine sciences is, with-
out any doubt, the only candidate to bridge this gap. DL is particularly 
well-positioned to infer data-driven dynamical priors and associated assimi-
lation schemes. However, the integration of AI will need cross-disciplinary ex-
pertise at the interface of marine sciences, applied mathematics, and compu-
tational sciences to upgrade the current trend of simulation, mapping, 
forecasting, and assimilation models and technologies towards a novel scien-
tific paradigm bridging the physical, geological and biological paradigms un-
derlying marine sciences and the statistical paradigm on which AI and ML are 
based. The integration of DL neural networks in marine sciences is in its infan-
cy. However, it will benefit a wide range of, or almost all, oceanographic fields 
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("actively used so far only in the processing of partial satellite data, animal track-
ing, classification or measure, and assembly and annotation of high-through-
put DNA sequencing data"). This novel paradigm will fully benefit from AI-re-
lated technological advances to build the next generation of ocean, atmosphere, 
and climate simulations, mapping, forecasting and reconstruction ("assimila-
tion") models. Within biological applications, similar expertise is needed for an 
e%ective shift of how field estimates of abundance or species composition are 
made, as well as for automatization and unsupervised acquisition of long-term 
time-series of ecological data and processing based on real-time and lagged-
time video analysis from underwater sampling devices. Further, for marine 
conservation ("e.g. automatic fish length estimates at the commercial landings, 
automatic boat detection inside marine reserves"), AI-based applications are 
being developed ("Brett et al. 2020"). Big Data coupled to AI will also revolution-
ise the field of bioprospecting & blue biotechnology via automated detection 
of compounds/genes with economic potential ("Guidi et al. 2020"). In addition, 
early warning systems based on AI and ocean Big Data will likely allow mitigat-
ing the e%ects of ocean events, such as red tides or the outbreak of pathogenic 
bacteria or viruses. Overall, all fields of life are experiencing a technological 
revolution due to AI. Oceans, their understanding, function and conservation, 
have the challenge to incorporate AI in the next decades.

In the smart oceans of the future, it is expected that data that are currently 
treated independently, such as satellite, genetic, animal tracking, or acous-
tics, will be jointly analysed using AI by autonomous supercomputers. AI anal-
ysis of these massive amounts of data will allow us to discover patterns as well 
as to provide a detailed and real-time global perspective of the ocean across 
multiple spatiotemporal scales. Also, AI will help to automatize seafloor map-
ping and increase the capabilities of the interpreters. Likewise, Big Data anal-
yses together with models and simulations will significantly increase our abil-
ity to predict events at multiple scales, from the evolution and spread of a virus 
and its e%ects on trophic networks, to the positioning, development and health 
status of hundreds of millions of fish over time, as well as their relationship 
with biogeochemical processes or the ocean microbiota. Furthermore, these 
analyses will generate a renewed holistic insight and understanding of the 
ocean, being also the base for new conservation policies and applications lead-
ing to new products and promoting the Blue Economy in line with EU poli-
cies ("https"://ec.europa.eu/maritimea%airs/policy/blue_growth_en") and Unit-
ed Nations Sustainable Development Goals ("https"://www.undp.org/content/
undp/en/home/sustainable-development-goals.html").

© CSIC © del autor o autores / Todos los derechos reservados



VOLUME 13 | OCEAN SCIENCE CHALLENGES FOR 2030

Ramiro Logares and Josep Alós (Challenge Coordinators)!169

3. KEY CHALLENGING POINTS

Even though AI-based and data-driven frameworks will certainly lead to ma-
jor breakthroughs in marine science, the state-of-the-art for numerous appli-
cations and domains strongly relies on model-driven approaches ("e.g., simu-
lation and assimilation frameworks in operational oceanography") using the 
physical knowledge and associated mathematical representations of geophys-
ical and biological dynamics gained over the past centuries. A major challenge 
is to bridge the model-driven and AI paradigms to make the most from the cur-
rent knowledge in physics, biology and geology coupled to the increasing com-
putational e&ciency and discovery capability of AI methods as well as the ex-
plosion of Big Data. In particular, the advent of Big Data urges researchers for 
Data Management Plans ("DMPs"), that will determine, among other things, 
how data is shared in the scientific community, how it is stored over long peri-
ods ("e.g. decades") and how it is accessible to the general public, stakeholders 
and policymakers. With the objective of making research data Findable, Ac-
cessible, Interoperable and Re-usable ("FAIR"), DMPs are key obligatory ele-
ments for Horizon 2020 EU projects, describing the data management life cy-
cle for the data to be collected, processed and/or generated by marine research 
projects. Possibly, during the next few years, other funding agencies will re-
quire DMPs, such as the Spanish AEI ("Agencia Estatal de Investigación").

At this point, we identify three general challenging points that are associated 
with the generation, management and analysis of ocean’s Big Data":

Big Data Generation. Currently, there are a multitude of applications and 
sensors that are generating Big Data from the ocean in di%erent research ar-
eas ("Brett et al. 2020"). For example, satellites, research vessels, buoys, glid-
ers, animal tracking devices ("see Chapter 1"), AI-processed images, DNA se-
quencers. Some of these sensors may generate continuous data streams that 
need to be processed in virtually real-time in order to generate useful out-
comes ("e.g. ocean forecasting"). Other sensors or devices will produce massive 
amounts of data in a more discrete manner, such as DNA sequencers. As men-
tioned before, our capabilities to produce Big Data are increasing exponen-
tially, as well as the number of interconnected devices that collect data ("the 
so-called internet of things, IoT"). Thus, at the moment and considering the 
future perspectives, data production per se does not seem to be a big challenge. 
Yet, the challenge is probably related to producing new types of Big Data or 
datasets that can lead to useful insights. Thus, instead of increasing the data 
production capacity of current sensors, the development of new sensors or 
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new data-collection strategies may lead to new types of Big Data. For exam-
ple, microsensors attached to millions of fish or high-frequency in-situ -om-
ics samplers could generate datasets that could provide new knowledge of an-
imal movement or gene function.

Big Data Management. The main challenges are related to data storage, trans-
fer, integration and computing. As for Big Data storage, it must have Petabytes 
size scale, be highly scalable and flexible due to the need to increase its capac-
ity under demand, and have low latency for real-time access. This storage must 
be accessible across multiple platforms and systems and be able to handle data 
from various source systems at the same time. Another aspect that needs to 
be considered is the Big Data long-term storage and its associated costs": it is 
becoming evident that storing huge amounts of data over long periods may 
have substantial costs. Furthermore, Big Data that today has low value could 
become priceless in the future, therefore, coordinated actions need to be tak-
en in order to reach an agreement on how Big Data will be stored and made 
available for the next decades. Another specific challenge is related to the re-
al-time transfer and access of Big Data": today, large amounts of data need sub-
stantial time to be transferred from one site to another or accessed by di%er-
ent applications, generating a delay in the analyses that could prevent their 
use in decision-making. Moreover, our capability to e&ciently analyse an ex-
ponentially increasing amount of Big Data also represents a challenge for the 
next decades, as the increase in computing power is lagging behind our capa-
bilities to generate Big Data. Thereby, the importance of current research in 
new computing architectures tailored to the needs of Big Data. Cloud com-
puting technologies can provide suitable scalable solutions ("Vance et al. 2019"), 
not only to configure ad-hoc hardware resources for analysis, but also as data 
storage. These two characteristics combined may put data and computing in 
the same place, thus reducing data transfer delays.

Another particular challenge is related to the integration of Big Data from dif-
ferent sources (-omics data, satellites, acoustics, etc.). Currently, datasets from 
di%erent sources are normally analysed separately ("e.g. omics data and satellite 
observations"), thus precluding holistic insights that would emerge from the com-
bined analysis of these datasets. This requires the use of new computational mod-
els for the analysis of massive data, such as MapReduce, and new data storage 
models such as new file systems, NoSQL databases and in-memory Databases.

Big Data Analysis. The massive amounts of unstructured data that are being 
generated need new methods to analyse them. AI methods, especially neural 
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networks ("DL") are currently the most promising tool for analysing ocean Big 
Data. At the moment, researchers from di%erent fields are migrating into AI-
based analyses and this trend will likely increase dramatically during the next 
decade. AI-based analyses of Big Data represent a breakthrough in diverse 
fields, such as marine observatories, early detection systems and image anal-
yses. AI will also be pivotal for new autonomous devices, such as gliders or 
even ships, where decisions will be taken without human supervision. A fun-
damental aspect here will be the validation of the decisions taken by the AI, 
and the potential costs that bad decisions may have.

These three “"grand challenges"”, that is, Big-Data Generation, Management 
and Analysis ("GMA") are encountered ("normally together") in di%erent fields 
of science. Below, we indicate how Big-Data GMA materialise into three main 
challenges in marine sciences":

3.1. Observing and understanding the ocean through  
Big-Data and AI
Remote or in-situ ocean observation instruments producing Big Data that is 
subsequently analysed using AI will likely open a new era in ocean data col-
lection and analysis, contributing substantially to increase our understand-
ing of the ocean at small or large spatiotemporal scales. Some research fields 
are already transiting through this paradigm change, as is the case of satellite 
remote sensing. When exploiting remote sensing data, the most usual require-
ment by end users is to get satellite data interpolated on a high-resolution, 
gap-free, regular grid. However, the reconstruction of sea surface geophysi-
cal fields from partial satellite-derived observations is a challenging, complex 
task that can be addressed with di%erent strategies. Classical data assimila-
tion is based on simple statistical quantities ("e.g. covariance matrix in the case 
of optimal interpolation") or in the use of an underlying numerical model of 
the ocean forced with satellite data. Although, the quality, coverage and res-
olution of ESA’s Soil Moisture Ocean Salinity ("SMOS")-derived Sea Surface Sa-
linity ("SSS") maps and scatterometer-derived stress-equivalent wind products 
have improved ("e.g. Turiel et al., 2008, Fablet et al. 2018"), new, powerful data 
assimilations techniques, following the Big Data scheme, have recently 
emerged, such as the Analog Data assimilation ("AnDA") framework, which ex-
ploits patch-based analog forecasting operators within a classic Kalman-based 
data assimilation scheme. AnDa is of particular interest with regards to the 
upcoming wide-swath surface water and ocean topography ("SWOT") mission. 
Future work will focus on combining these strategies with the AnDA 
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framework in order to develop useful tools to process real observations from 
the future SWOT altimetry mission. In this respect, the joint assimilation of 
SWOT observation gradients and nadir along-track Sea Level Anomalies data 
should be explored as a possible alternative to deal with the correlated noise 
sources present in SWOT data. AnDa can be applied to any other oceanograph-
ic variable, as Sea Surface Temperature or SSS. Multivariate AnDa is very con-
venient when multiple variables are assimilated at the same time, although 
some space-reduction techniques should be applied in order to avoid data 
scarcity. A di%erent avenue for the applications of Big Data to remote sensing 
is the use of Random Decision Trees to infer so-far unknown dynamic rela-
tions between di%erent variables. This kind of approach has been used for in-
stance, to find relationships between SSS anomalies in particular regions and 
extreme rainfall over land. Random Decision Trees and similar techniques 
can be used to group and to validate new physical, chemical and biological pro-
cesses. In this context, DL models and strategies also arise as promising tools 
to bridge data-driven and learning-based frameworks to model-driven phys-
ical paradigms. This may open new research avenues to embed physical knowl-
edge within data-driven schemes as well as to make the most of state-of-the-
art model-driven schemes with the additional flexibility and computational 
e&ciency of learning-based frameworks. The latter may be particularly rele-
vant to address model-data and multimodal synergies.

In the Geosciences the use of ML can be classified into four interconnected 
categories ": automation ( "e.g. labelling data when the task is difficult or 
time-consuming for humans"), inverse/optimization problems, discovery ("ex-
tract new patterns, structure, and relationships from data") and forecasting. 
Despite the availability of large datasets from Earth and Ocean observing sys-
tems, often extending over long observation times, many of them remain large-
ly unexplored. Wider adoption by the community of open-science principles 
such as open source code, open data, and open access would allow taking ad-
vantage of the rapid developments that are taking place in ML and AI. Creat-
ing an inventory of high-quality datasets, preferably covering large spatial 
and/or temporal spans that have not been studied using ML and that could 
immediately benefit from using these approaches ("low hanging fruit"), repre-
sents a sensible course of action. In addition, this field needs to foster collab-
oration of CSIC groups that have a long history of acquiring large Geoscience 
datasets with the leading groups in AI/ML research to recognize new poten-
tial applications. However, we need to overcome several challenges before 
working with geoscience datasets. The spatiotemporal structure, the 
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multi-dimensionality and heterogeneity of the Big Data in geosciences, data 
noise, incompleteness and error of the data, as well as emerging datasets such 
as light detection and ranging ("LiDAR") point clouds, are among the most rel-
evant challenges.

Biogeosciences lag behind physical oceanography and marine geosciences re-
garding massive autonomous observation and data collection. The advent of 
remote sensing of bio-optical variables ( "chiefly, chlorophyll a ") in the 
late 1970s, and its consolidation as an operational technique during the 1990s, 
represented a major breakthrough in the understanding of upper ocean bio-
geochemistry and inaugurated the era of Big Data in marine biogeosciences. 
A similar revolution has occurred since the last decade in the observation of 
the ocean interior thanks to biogeochemical ("bgc-) Argo floats and other au-
tonomous platforms. Fitted with non-invasive chemical and bio-optical sen-
sors and even video cameras, autonomous drifting robots can take measure-
ments of a wide array of variables ("chlorophyll and dissolved organic matter 
fluorescence, particle backscatter, nitrate, oxygen, pH") all year-round between 
the surface and at least 1,000 m depth at a frequency between 1 and 10 days 
during several years. The growing swarm of bgc-Argo floats will soon provide 
a 4D view of variables characterizing the ocean interior biogeochemistry and 
microbial biomass in near real-time, and e%orts are underway to merge this 
stream of data with remote sensing observations of the upper ocean ("e.g. op-
tical satellites, lidar and radar") as well as other in situ and in silico data streams.

AI techniques are poised to play a key role in the merging of multiscale obser-
vations of ocean biogeochemistry, providing end-users with high-quality prod-
ucts including uncertainty estimates, and circumventing the high computa-
tional needs of ocean biogeochemistry. Reconstruction of 4D biogeochemical 
fields from relatively sparse observations using AI will surely yield a leap for-
ward in our predictive capacity, overcoming the limitations of classical clima-
tological approaches based on objective interpolation, which neglected key 
scales of variability in the temporal ("e.g., sub-daily, intraseasonal, interannu-
al") and spatial ("e.g., mesoscale") domains, and statistical properties arising 
from highly nonlinear dynamics. Moreover, AI can be used to infer the under-
lying processes and to discover unexpected causal links, potentially leading 
to major advances in process-level understanding and prediction of future 
system states ("Reichstein et al., 2019").

Examples of future applications that will benefit from AI and Big Data include": 
the accurate estimation of carbonate system and nutrients from hydrological 
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parameters"; improved estimation of the sea-surface distribution and flux of 
climate-active gases"; the fusion of remote and in situ bio-optical data to extend 
high-resolution surface images of microbial plankton and organic carbon 
stocks to the ocean interior"; and the widespread deployment of imaging devic-
es on autonomous platforms ("e.g., gliders and Argo floats") to measure the abun-
dance and taxonomy of microplankton as well as severely undersampled meta-
zoans (large zooplankton and micronekton). Some of the main challenges 
ahead are ("1") sustaining and expanding the array of autonomous ocean obser-
vation platforms, ("2") designing optimized protocols for quality control and 
data interoperability, ("3") ensuring long-term storage and seamless accessibil-
ity, ("4") merging heterogeneous data sources in formats that make them read-
ily usable across diverse research fields, and ("5") moving from purely statisti-
cal prediction to process-based models that embody causal relationships.

3.1. Knowing and protecting marine life via Big-Data and AI
In the ocean, the number of microbial genomes and genes have astronomical 
proportions. It is estimated that 10"29 prokaryotes, 10"26 protists and 10"30 vi-
ruses populate the oceans, which may contain 10"10 prokaryotic lineages alone. 
Recent estimates indicate that microbes represent two-thirds of the total bi-
omass of marine organisms ("Bar-On & Milo, 2019"). Addressing this massive 
gene and taxonomic diversity is now becoming possible thanks to 
high-throughput DNA sequencers ("HTS") ("Logares et al. 2012"), which gener-
ate massive amounts of genomics data ("TeraBytes per run per machine"). Even 
though we still know only a small fraction of the total diversity of genes and 
lineages populating the ocean, HTS increased the amount of available genom-
ic data several orders of magnitude during the last 15 years, and given that the 
sequencing capacity continues increasing, the amount of available data keeps 
growing. These data need large computing infrastructures to be stored and 
analysed, and these requirements will increase substantially in the near fu-
ture. So far, AI has not been widely used for bioinformatics applied to big 
genomic data, but it is expected that, in the near future, it will become exten-
sively used for applications such as assembly of short or long reads, finding 
gene homologies, predicting protein function and finding causative links or 
correlations between changes in a large suite of biotic and abiotic conditions 
and organismal abundances.

Thus far, DNA ("and its actively transcribed gene-coding counterpart, RNA") 
data have been predominantly used for capturing the genomic information 
that is present in the ocean in order to understand microbial diversity, 
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species abundance and metabolic activity, ecological interactions, and also 
how di%erent lineages have evolved. Yet, during the next 10-20 years, HTS 
techniques, together with all the acquired knowledge on the ocean metage-
nome will be used for large scale bioprospecting ("blue biotechnology"), re-
al-time DNA monitoring ("to e.g. detect pathogens that spend part of their 
life cycle in a free-living form, analyse changes in microbial gene expression 
or track metazoans via eDNA"), as well as laboratory-based or ecosystem-lev-
el experiments ("e.g. mesocosms or in situ ocean work"). In addition, an im-
portant future challenge will be to integrate DNA data from the ocean with 
other data types from marine observatories to generate a more comprehen-
sive understanding of the ocean ecosystem. For example, chlorophyll obser-
vations from satellite data could be coupled to changes in gene transcrip-
tion detected by gliders or buoys, that also inform on changes in nutrients 
and currents. In addition, future genomic observatories aiming at captur-
ing DNA from viruses to metazoans may inform of changes in the architec-
ture of ecological networks and link those to e.g. the appearance of a patho-
gen or other ecosystem-level disruptions. These genomic observatories will 
become highly relevant in the context of global change ("including ocean 
warming and acidification"; see chapter 4"), where the distributions of ma-
rine species and genes are expected to respond.

To understand microbial life in the ocean, databases represent a key resource. 
Genomic information is commonly automatically annotated using databases 
that are": 1") biased towards certain model organisms, 2") incomplete and, 3") 
too many times wrong. The result is that these automatically annotated ge-
nomes that are poorly annotated ("because they di%er too much from model 
organisms"), present lots of missing data ("because the databases are incom-
plete") or contain errors ("because databases contain errors"), end up becom-
ing part of these same databases. So far, the best way to generate reliable ref-
erence databases is through manual “ "human "” curation. These curated 
databases can be used to train AI algorithms to perform, at a larger scale, a 
similar curation task than that initially performed by humans. Such AI-curat-
ed databases represent a future challenge that will contribute to understand 
ocean genomes.

Big Data and AI will not only a%ect the way we understand microscopic or-
ganisms, but also large counterparts. The collection and analysis of ma-
chine-sensed ("through the use of electronic tracking devices") data regarding 
animal social behaviour to model behavioural patterns is deeply changing the 
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way to study marine animal populations ("Krause et al. 2013"). Animal-track-
ing technology allows nowadays gathering exceptionally detailed ma-
chine-sensed data on the social dynamics of almost entire populations of in-
dividuals living in the oceans. High-resolution aquatic tracking is profoundly 
revolutionizing our views and understanding of ocean functioning, and now 
we have a powerful tool for studying the in situ behavioural variation in hun-
dreds of free-living individuals, in an unprecedented spatiotemporal scale 
("Sequeira et al. 2018"). This will enable the creation of experimental platforms 
to revisit basic and applied unresolved questions of ecology, coastal manage-
ment, and conservation biology. For instance, the first reality-mining exper-
iment in marine systems where nearly three hundred fish individuals were si-
multaneously tracked at a high-resolution scale was developed by a CSIC 
institute ("Laboratory of fish ecology, IMEDEA"). This experiment has gener-
ated in three weeks approximately millions of 2-dimensional positions and 
behavioural records at a high temporal resolution ("5 seconds in average") and 
high spatial accuracy ("1 m") that have changed our views of ocean functioning 
and animal social networks with conservation implications. The challenge of 
the reality-mining approach to aquatic social systems is to close the gap be-
tween biological and physical patterns and their underlying processes, pro-
viding insight into how animal social systems arise and change dynamically 
over di%erent timescales.

Big Data and the application of AI have also arrived to the field of ocean con-
servation ("Lamba et al. 2019"). For instance, the recent footprint of fisheries, 
when 22 billion automatic identification system messages and the >70,000 
tracked industrial fishing vessels were combined with DL algorithms, have cre-
ated a global footprint of fishing e%ort. This global fisheries map has revealed 
that fishing activity occurs in more than 55% of the ocean with serious impli-
cations for the conservation of wild fish stocks. At a more local scale, the dy-
namics of fish length distribution is a key input for understanding the fish pop-
ulation dynamics and taking informed management decisions on exploited 
stocks. Recent applications of AI to fisheries science are opening a promising 
opportunity for the massive sampling of fish catches. For instance, a deep con-
volutional network ("Mask R-CNN") for unsupervised ("i.e. fully automatic") Eu-
ropean hake length estimation from images of fish boxes was successfully de-
veloped to automatically collect data from landing ("Álvarez-Ellacuría et al. 
2020"). The potential applications of DL in ocean conservation are immense 
and go beyond the classification of visual, spatial, and acoustic data, with their 
ability to self-learn patterns in large volumes of data ("Christin et al. 2019"). 
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This makes deep artificial neural networks very useful for modelling complex 
ecological systems, real-time monitoring and surveillance sources ("Lamba et 
al. 2019").

Understanding the biology of the ocean requires large sampling e%orts that 
may generate hundreds of thousands of samples per year. Oftentimes, these 
samples become the basis of new Big Data. Organising these Big-Sample sets 
so that they are properly catalogued and stored, being also available for the 
community is a challenge. Such organization of samples require combined ef-
forts at the national and international level. For example, the Ocean Bank net-
work initiative ("Fig. 8.3") consists of upgrading the concept of sample sharing 
under a cession-donor scheme. The long-term objective of the Ocean Bank 
initiative is to create a network of Big Sample banks. Biobank samples may in-
clude marine resources and seafood, gene proteins of plankton, chemicals 
from seabed sediments, marine biomolecules, or seawater. Biobanks will de-
velop to become a safe warehouse for marine ecosystem samples that will be 
used for improving research on animal and human diseases, marine ecosys-
tem health, food productivity and safety and development of environmental 
technologies. Traceable Big Sample sets of biobanks will open immense op-
portunities for Big Data and AI. For example, AI-assisted analyses of Big Data 
may determine the potential value of specific unanalysed samples for 

FIGURE 8.3—The Ocean Bank can biobankarise any ocean sample ("i.e, zooplankton, DNA, sediments or 
tissue"). The biobanking process can be integrated with AI-assisted analyses of Big Data.
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di%erent research questions, pointing to samples sets, including samples dis-
tributed around the world, that may be the most suitable for addressing a spe-
cific question. Implementing biobanks among researchers investigating 
ocean’s life and connecting these large samples sets to the produced Big Data 
in a context of AI analysis represents a challenge for the next decade.

3.3. Comprehending historical interactions between  
humans and the ocean
The ocean contains important information that bears witness to continuous 
human interactions ("anthropic action") with the sea. These interactions have 
been the focus of study for quaternary scientists and social scientists who have 
collected large bodies of data and developed databases and GIS models. A cur-
rent challenge is the need to develop complex data models and associated in-
tegration, visualization, and analysis tools that manage to integrate the study 
of the relationships between humankind and the ocean from a holistic and 
multidisciplinary perspective and not separately as has been the case. In par-
ticular, an interdisciplinary problem refers to the lack of a data model orient-
ed to integrate, manage, store and analyse all kinds of structured and unstruc-
tured Big Data and associated metadata referring to coastal archaeological 
remains and underwater cultural heritage ("including submerged landscapes 
and settlements, shipwrecks and downed aircraft"), and associated historical 
and intangible cultural information. Furthermore, there is a need to create 
new tools for the integration and sharing of historical and archaeological in-
formation with data from life sciences.

The creation of new models for integrating data from the human and social 
sciences to identify maritime cultural heritage should meet the standards 
of Spatial Data Infrastructures ("SDI"). The management of maritime histor-
ical and archaeological Big Data should also contribute to documentation, 
surveillance, and data monitoring leading to better governance of this her-
itage. The use of AI on this data may allow discovering patterns that may 
lead to new archaeological or historical insights. Particularly, the use of AI 
in maritime cultural heritage may enhance computer-driven information 
management. Visualization software and GIS tools, will help formulating 
formal ontologies that express the nature of reality and the relations among 
entities, and may help to develop an evolutionary GIS model capable of up-
dating multiple data types, which includes multidisciplinary analysis of life 
and social sciences.
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