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ABSTRACT
Satellite radar altimeters are a key source of observation of
ocean surface dynamics. However, current sensor technology
and mapping techniques do not yet allow to systematically
resolve scales smaller than 100km. With their new sensors,
upcoming wide-swath altimeter missions such as SWOT
should help resolve finer scales. Current mapping techniques
rely on the quality of the input data, which is why the raw
data go through multiple preprocessing stages before being
used. Those calibration stages are improved and refined over
many years and represent a challenge when a new type of
sensor start acquiring data. Here we show how a data-driven
variational data assimilation framework could be used to
jointly learn a calibration operator and an interpolator from
non-calibrated data . The proposed framework significantly
outperforms the operational state-of-the-art mapping pipeline
and truly benefits from wide-swath data to resolve finer scales
on the global map as well as in the SWOT sensor geometry.

Index Terms— Variational model, deep learning, data as-
similation, calibration, satellite altimetry

1. INTRODUCTION

Sea surface dynamics play an important role in a wide set of
problematics ranging from climate modeling, maritime traffic
routing, oil spill monitoring to marine ecology. On a global
scale, sea surface currents are to a large extent retrieved from
the mapping of sea surface height (SSH) fields using satellite
nadir altimetry data [1]. As current nadir altimeter sensors in-
volve a scarce and irregular space-time sampling of the ocean
surface, the state-of-the-art mapping schemes fail to recon-
struct scales lower than 100km. In this context, the future
wide-swath altimeter SWOT mission [2] opens the perspec-
tive of being able to reconstruct finer scales.

Broadly speaking, the mapping of SSH fields from satel-
lite altimetry data relies on two main steps: a calibration step
to remove acquisition and geophysical noises and an inter-
polation step to produce gap-free maps from the irregularly-
sampled calibrated observations. Among the different noise
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processes to be accounted for, we may cite both sensor noises,
geometric noise patterns associated with random pertur-
bations of the attitude of the satellite platform as well as
geophysical processes which may superimpose to the SSH
information [3]. The calibration step is paramount for cur-
rent interpolation methods because they do not account for
observation biases. We may categorize interpolation methods
according to the prior they assume to represent sea surface
dynamics. While the operational SOTA product [4] exploits
an optimal interpolation (OI) based on a covariance-based
prior, assimilation-based products [5] relies on the assimila-
tion of ocean circulation models [6]. Recently data-driven
approaches, especially neural networks [7], have shown
some success for the interpolation of sea surface fields from
satellite-derived observation data. As stated above, all these
approaches may be strongly affected by observation biases
and are likely poorly adapted to the processing of uncalibrated
datasets.

In this paper, we aim to extend the benefits of the data-
driven philosophy to the whole satellite-derived SSH mapping
task from calibration to interpolation. We expect such an end-
to-end framework to allow for lighter processing chains and
alleviate the cost of the manual calibration steps. We con-
sider an inverse problem formulation such that the resulting
interpolation explicitly accounts for noise patterns in the ob-
servation of the SSH from space.

Overall, our key contributions are as follows: (i) we in-
troduce a novel physics-informed learning framework backed
on a variational formulation for the joint calibration and map-
ping of satellite altimetry data; (ii) We demonstrate the ro-
bustness of the trained model w.r.t. SWOT acquisition noises;
(iii) We show how the proposed framework is able to recover
finer scales on both the global scale and on the along-track
direction of the SWOT swath.

2. PROBLEM STATEMENT AND RELATED WORK

We formulate the SSH mapping and SWOT calibration prob-
lems as inverse problems. SSH mapping refers to the estima-
tion of gap-free SSH fields on a regular grid from irregularly-



sampled data, while SWOT calibration is the retrieval from
raw measurements of the SSH on the wide-swath domain ob-
served by SWOT sensor.

2.1. SSH Mapping

We classically formulate the estimation of a state X from ob-
servation data Y , referred to in geoscience as data assimila-
tion problem [8] , as the minimization of a variational cost:

X̂ = argmin
X

J(X,Y ) +R(X) (1)

where J is the observation term, which evaluates the agree-
ment between the state and the observed values, andR a prior
on the state. When considering calibrated data, J is a linear
quadratic term associated with a Gaussian prior on the ob-
servation error. The SOTA operational method DUACS [4]
relies on an optimal interpolation, which defines R using a
covariance-based prior, i.e. R(X) = X−1W−1X with W
the covariance matrix that captures the spatio-temporal struc-
ture of the SSH fields. With such linear-quadratic terms, min-
imization (1) can be solved analytically [9].

In variational data assimilation (4DVar) schemes [10], the
prior knowledge involves a dynamical model M which de-
scribes the time evolution of the state of interest as dX/dt =
M(X(t)). Term R is then stated as

R(X) = ||X − Φ(X)|| (2)

with Φ the flow operator, which solves a time integration
problem:

Φ(X)(t) = x(t− δt) +

∫ t

t−δt
M(X(u))du (3)

where δt is the time step. A key issue in 4DVar frameworks is
the parameterization of dynamical modelM. General ocean
circulation models [6] lead to the inversion of the full ocean
state dynamics, which may be highly-complex and unstable
when considering only sea surface observation. One may also
consider dynamical representation of sea surface dynamics.
In this context, quasi-geostrophic priors [11][12] are appeal-
ing but may be limited to specific dynamical regimes.

Recently, deep learning schemes have also been investi-
gated to solve inverse problems and design trainable varia-
tional priors [13][14][15]. Especially, for application to sea
surface dynamics, our recent works [16, 7, 17] support the
relevance of such trainable formulations.

2.2. SWOT Calibration

For space-borne earth observation, the calibration of raw
satellite-derived data into geophysically-sound measurements
is a critical issue [18]. Referred as L1 and L2 products, cali-
bration steps consist in separating the error from the targeted

geophysical signal in the observed values. In the context
of SWOT mission, proposed approaches exploit some prior
knowledge onto geometry and spectral distribution of the
different error sources[19][20], e.g. attitude and orbiting
uncertainties, impact of other geophysical processes, ther-
mal noise... Here, we consider as baseline such an approach
which also exploits the agreement between the gap-free SSH
fields issued from nadir altimeter data and raw SWOT data.

3. PROPOSED METHOD

In this section We present the proposed physics-informed
trainable variational framework for the joint calibration and
mapping of satellite altimetry data, referred to as 4DVarNet-
CalMap. We first walk through the variational formulation.
Then we will describe the learning scheme and finally we
will go through some implementation details.

3.1. VARIATIONAL FORMULATION

We consider a multi-scale decomposition of the SSH to bet-
ter account for the different data sources. Formally, let us
denote by XLR the low-resolution component of the gap-free
SSH fields over the entire domain of interestD, byXHR−map
the gap-free high-resolution SSH anomaly over D, and by
XHR−cal high-resolution SSH anomaly over SWOT swaths.

Overall, we define as state X the concatenation of these
three components XLR, XHR−map, XHR−cal considered
over a time window ∆T . As such, the gap-free SSH fields
over domain D is given by Xmap = XLR + XHR−map
and the SSH fields restricted to SWOT swaths to Xcal =
XLR +XHR−cal. As observation data, we assume to be pro-
vided with optimally-interpolated low-resolution fields YLR
and the aggregation of nadir and SWOT altimeter data YSAT.
This leads to the following observation term J(X,Y ):

J(X,Y ) =λ1 ‖(XLR − YLR)‖2

+λ2 ‖(XLR +XHR−map − YSAT)‖2ΩSWOT-NADIR

+λ3 ‖(XLR + YHR−cal − YSAT)‖2ΩSWOT

(4)

with ||.||2Ω the l2 norm computed on domain Ω and λ1,2,3

weighing coefficients.
Regarding the prior term (2), we follow [21] and consider

a U-Net-like architecture for operator Φ to account for the
multi-scale features of sea surface dynamics.

3.2. End to end Learning

Based on the variational formulation introduced in the pre-
vious section, we follow the general framework presented in
[21] to design an end-to-end architecture, which implements
a trainable gradient-based solver for minimization (4). This



solver implements a given number N of the following itera-
tive update at iteration k:

X(k+1) = X(k) − ψ(∇X [J(X(k), Y ) +R(X(k))]) (5)

with ∇x the gradient operator w.r.t. the state X derived us-
ing automatic differentiation tools. ψ is parameterized as a
recurrent LSTM network [22]. The resulting end-to-end ar-
chitecture uses as inputs an initial guess X0 and a series of
observation data YSAT. As initialization X0, we consider the
raw observation data where available.

The learning cost L is decomposed as follows:

L = L4dV arNet + Lcal

Lcal = αε||Xcal − X̃cal||2ΩSWOT,tc
+ α∇ε||ε∇cal||2ΩSWOT,tc

ε∇cal = ||∇Xcal|| − ||∇X̃cal||

(6)

L4dV arNet is the supervised loss term described in [17] com-
prised of a supervised reconstruction loss on the SSH fields
and its gradient as well as regularization costs on Φ with an
additional reconstruction cost on the low resolution estimate.
X̃cal is the true SWOT SSH value interpolated on the target
grid. ∇εcal is the mse of the amplitude of the spatial gradients
The loss is only computed on the central time frame tc of the
time window ∆T .

3.3. Training and implementation detail

The models are trained using the Adam optimizer [23] for
approximately 200 epochs. During the training, the solver it-
erations increase progressively up to 15 and the learning rate
decrease. We consider the state of 5 consecutive days to es-
timate the map of the central frame. In order to compute the
gradient of the variational cost, we leverage the automatic dif-
ferentiation capabilities of the Pytorch library. The interested
reader can refer to our implementation1.

4. EXPERIMENTAL RESULTS

4.1. Data

We run an Observing System Simulation Experiment (OSSE)
to evaluate the proposed framework. We rely on NATL60
dataset, which refers to a realistic numerical simulation us-
ing NEMO model over the North Atlantic basin [24][25]. In
our the experiments, the case-study domain is a 10°x10° sub-
part of the GULFSTREAM area (33,43°N; -65,-55°W) and
the target data is available as daily snapshots on a 1/10° spa-
tial resolution grid.

We generate pseudo nadir altimeter observations sampled
from realistic orbits using 2003 four-altimeter setting. We
use SWOT simulator [26] to simulate realistic SWOT data

1https://github.com/CIA-Oceanix/4dvarnet-core/
releases/tag/icassp2022

which account for difference error sources, namely the roll,
base dilatation, timing, phase errors and the karin noise. We
refer the reader to [27][26] for a more detailed presentation of
this experimental setting. Besides altimeter data, we are also
provided with the operational optimally-interpolated product
from nadir altimeter data, referred to as DUACS. All these
data are bilinearly interpolated on the target grid.

From the considered one-year simulation dataset, we take
out 40 days in order to evaluate on the 20 middle days. This
allows a 10-day buffer for the ocean to evolve between testing
and training. The remaining 325 days are used for training
and validation.

4.2. Experimental setting

We run three configurations of our framework, referred to
as 4DVarNet-Calmap, 4DVarNet-Calmap∇ and 4DVarNet-
Map, with different weighing factors αε and α∇ε defined
in 6. 4dVarNet-Map with both αε and α∇ε null can be re-
garded the proposed framework applied to the mapping of
the SSH without making explicit the calibration of SWOT
observation data. Whereas 4dVarNet-Calmap with αε = 200
ten times higher than α∇ε = 20 use the same ratio as map-
ping loss L4dV arNet, 4dVarNet-Calmap∇ with αε = 20 and
α∇ε = 200 focuses on the reconstruction of the gradients on
the swath.

For benchmarking purposes, we first consider optimally-
interpolated DUACS products: DUACS-4NADIRS issued
from nadir altimeter data only and CAL+DUACS issued
from nadir and noise-free SWOT data. The latter is regarded
as an upper bound of the performance of this operational
mapping when SWOT data will be available. Besides these
operational SOTA products, we assess the performance of
two deep learning schemes. We first apply a direct inverse
model parameterized by operator φ to directly output the tar-
geted state from observation data. This baseline is labeled as
Direct φ. We also consider a SOTA deep learning architecture
for computer vision and inpainting tasks, namely the vision
transformer [28][29]. We may point out that the consid-
ered experimental setting involves much higher missing data
rates, typically above 90%, compared with typical inpainting
case-studies [29].

4.3. Results

In Table 1 we evaluate the benchmarked methods in terms of
SSH mapping performance. We report the mean square error
(MSE) of the reconstructed SSH maps w.r.t the ground truth
along with the MSE for the amplitude of the spatial gradients
of the SSH maps. We also assess the effective scale resolved
in the reconstructed maps for each experiment as in [12]. It
comes to retrieving the smallest spatial wavelength for which
the power spectral density of the true SSH is at least twice
larger than that of reconstruction error.



Fig. 1. Magnitude of the spatial gradient of SSH

metric mse mse∇ λer
(1e−3m2) (1e−10) (km)

4DVarNet-Calmap∇ 1.50 1.07 95.56
4DVarNet-Calmap 1.29 1.03 88.21
4DVarNet-Map 1.49 1.10 94.08
DUACS 4NADIRS 2.53 1.95 129.26
CAL + DUACS 2.20 1.74 125.32
Direct φ 2.10 1.66 116.58
CAL + Direct ViT 2.48 2.04 126.02

Table 1. Mapping scores

In table 1 4DVarNet-Calmap models clearly outperform
the operational SOTA products. Indeed we reduce the mse
up to 41.6% (resp. 40.0%) w.r.t. DUACS regarding the SSH
(resp. is gradient amplitude). .4DVarNet-Calmap schemes
resolves finer scales from 30 to 36 km. If we compare the
different parameterizations, we can first note that even with-
out learning jointly the calibration, the 4DVarnet-Map frame-
work shows remarkable robustness to the acquisition noise.
We may also point out that learning jointly the calibration
improves the mapping performance if more focus during the
training stage is given to the reconstruction of the SSH on the
swath. The interest of the variational framework is empha-
sized by the gain we get switching from a direct architecture
to the variational formulation (Direct φ vs. 4dVarNet-Map).
Training a more complex model is non trivial because of the
high rate of missing data in the maps to interpolate > 90%,
as illustrated by the relatively poor performance of the Direct
Vit.

In Table 2, we report the metrics of the different methods
in the SWOT geometry: we interpolate again the estimated
SSH on the swath. In order to handle ill-defined values that
arise from this interpolation we do not consider the three outer
most across-track coordinates on each side of the nadir. We
compute the same MSE score as on the grid. The effective
resolution is computed for each pass of the satellite over the

Fig. 2. (m) A: SWOT SSH signal, B: Acquisition noise, C:
Noisy Observations, D: Calibrated SSH output of 4DVarNet-
Calmap

mse mse∇ λer
(1e−4m²) (1e−11) (km)

SWOT SSH + NOISE 51.23 39.16 51.37 (± 56.21)
4DVarnet-Map 6.71 6.52 36.72 (± 13.13)
4DVarnet-Calmap 6.27 6.83 34.96 (± 12.18)
4DVarnet-Calmap∇ 6.79 5.87 23.56 (± 8.47)
Direct φ 24.08 20.48 101.57 (± 35.23)
DUACS 4 NADIRS 27.34 22.50 97.21 (± 85.90)

Table 2. Calibration scores

domain using the average wavenumber spectra in the along
track direction. We report the mean and standard deviation
of the scales resolved at each pass. The calibration metrics
do benefit from the joint mapping and calibration. In order to
recover finer scales of SSH signals, the focus has to be put on
the reconstruction of the gradients during the training.

5. CONCLUSION

We have investigated how data-driven methods can solve
the joint calibration and mapping of noisy satellite altimetry
data. The proposed physics-informed learning scheme can
truly benefit from the different data sources as well as prior
physical knowledge. Using a simulation-based experiments,
we have demonstrated its potential to outperform operational
SOTA mapping methods with no requirement for a prior cal-
ibration. Future work will investigate how to transfer these
results to real observation datasets.
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