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Abstract  16 

 17 

Objective 18 

In this study, we assessed the impact of EEG-fMRI Neurofeedback (NF) training on connectivity strength 19 

and direction in bilateral motor cortices in chronic stroke patients. Most of the studies using NF or brain 20 

computer interfaces for stroke rehabilitation have assessed treatment effects focusing on successful 21 

activation of targeted cortical regions. However, given the crucial role of brain network reorganization 22 

for stroke recovery, our broader aim was to assess connectivity changes after a NF training protocol 23 

targeting localised motor areas. 24 

 25 

Approach 26 

We considered changes in fMRI connectivity after a multisession EEG-fMRI NF training targeting 27 

ipsilesional motor areas in nine stroke patients. We applied the Dynamic Causal Modeling and 28 

Parametric Empirical Bayes frameworks for the estimation of effective connectivity changes. We 29 

considered a motor network including both ipsilesional and contralesional premotor, supplementary 30 

and primary motor areas. 31 

 32 

Main results 33 

Our results indicate that NF upregulation of targeted areas (ipsilesional supplementary and primary 34 

motor areas) not only modulated activation patterns, but also had a more widespread impact on fMRI 35 

bilateral motor networks. In particular, inter-hemispheric connectivity between premotor and primary 36 

motor regions decreased, and ipsilesional self-inhibitory connections were reduced in strength, 37 

indicating an increase in activation during the NF motor task. 38 
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 39 

Significance 40 

To the best of our knowledge, this is the first work that investigates fMRI connectivity changes elicited 41 

by training of localized motor targets in stroke. Our results open new perspectives in the understanding 42 

of large-scale effects of NF training and the design of more effective NF strategies, based on the 43 

pathophysiology underlying stroke-induced deficits. 44 

 45 

Introduction 46 

A growing body of evidence suggests that post-stroke motor deficits are related to altered interactions 47 

between brain areas also remote from the stroke lesion [1]. Indeed, localized structural lesions resulting 48 

from stroke are likely to affect brain connectivity through the brain. As a  consequence, recovery from 49 

stroke depends on structural and functional networks reorganization [2]–[5].  These findings are in line 50 

with the increasingly influential thesis that most of complex biological diseases, such as motor disorders 51 

[1], psychiatric disorders [6] or Alzheimer disease [7] are related to the dysfunction of complex brain 52 

networks [8].  53 

In stroke in particular, several studies have used brain functional neuroimaging techniques such as 54 

positron emission tomography (PET), functional Magnetic Resonance imaging (fMRI) and 55 

electroencephalography (EEG) to investigate changes in brain activity [9], [10]. More recently, 56 

connectivity-based analyses have shed new light into the pathophysiology underlying stroke-induced 57 

deficits [4], [11], [12]. A general trend observed in these studies is that stroke induces changes in both 58 

hemispheres and causes a disruption of ipsilesional connectivity [13]. Some of these connectivity-based 59 

approaches have gone further and investigated the effect of interventions (such as physical or robotic 60 

assisted therapy) on cortical network reorganization, and its link to motor function recovery [14]. 61 

However, the impact of specific therapies on motor connectivity in stroke remains to be investigated. 62 

Assessment of changes in connectivity networks induced by treatment is now considered to be a 63 

promising way to individualize  therapies and enhance rehabilitation outcome after stroke [1]. 64 

There are different ways of estimating brain connectivity from neuroimaging data. Structural 65 

connectivity refers to anatomical connections between brain regions and is most commonly estimated 66 

using Diffusion Tensor Imaging (DTI).  Functional connectivity (FC) is defined as the statistical 67 

dependence among measurements of neural activity [15] and it is usually inferred through correlations 68 

among neurophysiological signals. Effective connectivity (EC) estimates the influence that one neuronal 69 

system exerts on another. EC is intrinsically directed, but does not necessarily imply a direct coupling 70 

mediated by anatomical connections. Connectivity studies in stroke have relied both on FC [16], [17] 71 

and EC [3], [18], [19]. Among EC estimators, those based on Dynamic Causal Modeling (DCM) are 72 

particularly robust for fMRI data analysis, while lag-based approach (i.e. Granger causality) may perform 73 

poorly if the hemodynamic effects are not properly taken in account [20].  74 

Among the set of therapies proposed for stroke rehabilitation, Neurofeedback (NF) is gaining increasing 75 

attention since it potentially promotes plasticity of perilesional areas by means of brain self-regulation. 76 

Recent works have investigated the potential of NF (or Brain Computer Interfaces, BCI) for motor 77 

rehabilitation after stroke as an alternative or in addition to traditional physical therapies [21]–[25]. In 78 

these studies, patients perform motor imagery (MI) of the affected limb, which is a promising mental 79 

therapy to restore motor activation. Even if there is no clinical evidence of the benefit of NF over MI for 80 
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stroke rehabilitation, NF was shown to enhance the efficacy of MI training, by eliciting more specific 81 

brain patterns [26], [27]. In some applications, the NF paradigm allows to integrate the feedback in an 82 

orthosis to support the movement of the affected limb, thus closing the sensorimotor loop [28], [29].  83 

The majority of these NF approaches have relied on one imaging technique, mainly 84 

electroencephalographic (EEG) recordings. EEG-NF applications are generally based on the training of 85 

sensorimotor rhythms in motor regions ipsilateral to the stroke lesion [30]–[32]. Similarly, more recent 86 

fMRI-NF studies have promoted upregulation of ipsilesional motor areas or motor system connectivity 87 

[23], [33]–[35]. Building on the pioneering work of Zotev and collaborators [36], [37],  we integrated 88 

EEG and fMRI for bimodal NF for motor training, with the rationale of providing a more specific 89 

feedback, combining high temporal (EEG) and spatial (fMRI) resolution [38]. We have also shown the 90 

feasibility of EEG-fMRI NF and its potential to promote upregulation of ipsilesional motor regions in a 91 

pilot study involving chronic stroke patients [24]. In this previous work, we have investigated NF training 92 

effects focusing on the activation of localized target cortical areas. In the present study, we characterize 93 

global changes elicited by NF training on EC networks in chronic stroke patients undergoing a longer NF 94 

training protocol. We assessed fMRI connectivity changes using a DCM approach and considered a 95 

motor network including bilateral premotor, supplementary and primary motor areas (PMC, SMA, M1). 96 

We believe that our results bring new insight into large-scale effects of NF training in stroke and on the 97 

potential of NF in driving maladaptive networks reorganization. 98 

Methods 99 

Participants 100 

Nine chronic stroke patients (mean age 59 years, age range: 37-77 years, 3 females) were included in 101 

the study. Patients had mild to severe hemiparesis of the upper limb (Upper extremity Fugl-Meyer score 102 

in the range 26-55) with variable lesion characteristics (Table 1) but were clinically stable, at more than 103 

one year from the stroke episode (33.2 ± 16.5 months). Integrity of the corticospinal tract (CST) was an 104 

inclusion criterion. Patients for whom the CST fractional anisotropy asymmetry index exceeded the 0.15 105 

threshold [39] were not enrolled. More details about diffusion imaging processing and CST 106 

segmentation are given in Supplementary Material. This study is part of a larger randomized controlled 107 

study to assess the efficacy of NF (NCT03766113). In this exploratory work, we considered a subsample 108 

of participants with the aim of validating data quality and investigating the effect of NF training on motor 109 

connectivity. All participants gave their written informed consent and the study was approved by the 110 

institutional review board and registered.   111 

Experimental Protocol 112 

Participants underwent a NF protocol alternating bimodal EEG-fMRI NF (N=5) and unimodal EEG-NF 113 

sessions (N=9) over a period of five weeks. NF sessions included a calibration and three NF training 114 

blocks alternating epochs of rest (20 s) and NF-MI training (20 s) (Figure S1).  Patients were informed at 115 

inclusion, verbally and by an explanatory note, about the goals and the timeline of the study. 116 

Instructions were repeated before each training session and oriented the patients towards a kinesthetic 117 

MI of the affected upper limb, without mentioning a specific strategy.  118 

Imaging was performed using a Siemens 3T Prisma scanner running VE11C and a 64-channel MR-119 

compatible EEG system from Brain Products (Brain Products GmbH, Gilching, Germany). Functional MRI 120 

data were acquired with echo-planar imaging (EPI) with the following parameters: repetition time 121 
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(TR)/echo time (TE) = 1,000/23 ms, FOV = 230 × 230 mm2, 16 4-mm slices, voxel size = 2.2 × 2.2 × 4 mm3, 122 

matrix size = 105 × 105, flip angle = 90◦. For each session, a high-resolution 3D T1 MPRAGE sequence 123 

was acquired with the following parameters: TR/TI/TE = 1,900/900/2.26 ms, parallel imaging with 124 

GRAPPA 2, FOV = 256 × 256 mm2 and 176 slabs, voxel size = 1 × 1 × 1 mm3, flip angle = 9◦. In order to 125 

assess the asymmetry between the ipsilesional and controlesional CST, diffusion imaging 126 

(TR/TE=11000/99ms, FOV 256x256mm2, 60 slices, matrix 128x128, voxel size, 2x2x2 mm3, 30 directions, 127 

b=1000s/mm2) was performed before inclusion. During rest, a cross was displayed on the screen and 128 

participants were asked to concentrate on the cross and rest. During the task, a visual feedback in the 129 

form of a ball moving in a one-dimensional gauge proportionally to the average of the EEG and the fMRI 130 

features was presented. More specifically, the bimodal NF was calculated as the normalized average of 131 

the EEG- NF score (Event Related Desynchronization in the 8-30 Hz band of 18 motor electrodes, 132 

updated every 250 ms) and fMRI NF score (weighted sum of the difference between percentage signal 133 

change in the two ROIs (SMA and M1) and a large deep background region,updated every TR=1 s), as 134 

explained in more detail in the supplementary material. Unimodal EEG-NF sessions were performed 135 

using the Mensia Modulo (MENSIA TECHNOLOGIES) hardware solution, equipped with an 8-channel 136 

EEG cap. Patients were exposed to the same feedback metaphor on a computer screen. More details 137 

about the NF platform performing real-time EEG-fMRI processing, the unimodal NF sessions and the 138 

experimental protocol are given in [24], [38], [40] and in the attached Supplementary Material.  139 

Calibration and online NF calculation 140 

At the beginning of each training session, a MI task without NF was performed to calibrate the fMRI 141 

signal. Functional MRI data were pre-processed for motion correction and slice-time correction and 142 

realigned with the structural scan. After spatial smoothing with a 6 mm FWHM Gaussian kernel, a 143 

general linear model (GLM) analysis was performed. The calibration activation map was used to define 144 

two regions of interest (ROIs) to calculate NF scores for the subsequent NF task. Boxes of 9x9x3 voxels 145 

(20×20×12 mm3) centered on the peak of activation in the ipsilesional SMA and M1 were considered. 146 

As detailed in a previous work [24], we proposed an adaptive rewarding strategy that more importantly 147 

weighted SMA at the beginning of the training and then guided the patients towards activation of the 148 

ipsilesional M1. The rationale behind this adaptive NF training is that ipsilesional M1 is considered the 149 

ideal target for motor recovery. However, while SMA seems to be more robustly and easily recruited 150 

during MI, M1 activation during MI is more difficult to achieve[41], [42]. The proposed NF reinforcement 151 

scheme aims at gradually guiding the patients towards the activation of the ipsilesional primary motor 152 

cortex, while first engaging more importantly the supplementary motor areas. The fMRI NF score was 153 

therefore calculated as a weighted combination of the activity in the SMA and M1 ROIs, with weights 154 

changing at each training session. In particular the fMRI-NF score was calculated as the difference 155 

between percent signal change in the two ROIs (SMA and M1) and a background slice whose activity is 156 

not correlated with the NF task, in order to reduce the impact of global signal changes [43].  157 

For the sake of brevity of this manuscript focusing on fMRI effective connectivity analysis, we have 158 

provided more details about calibration and NF calculation procedure in Supplementary Material. A 159 

CRED-nf checklist with details about experimental design [44] is also available as Supplementary File 1 160 

together with a table summarizing real-time signal processing steps, according to the COBIDAS-inspired 161 

template [45] (Table S1, Supplementary Material). 162 

fMRI preprocessing  163 
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In order to assess the effect of the multi-session NF training protocol on EC patterns, we considered 164 

fMRI time-series of the first (b-s1) and last (b-s5) bimodal NF training sessions. BOLD series were pre-165 

processed and processed with Matlab and SPM12 (Wellcome Department of Imaging Neuroscience, 166 

UCL, London, UK). A slice timing correction was applied to correct for timing differences within volumes. 167 

Functional volumes were then registered to the mean volume to compensate for subject motion within 168 

the series and ensure voxel-to-voxel correspondence across time. The mean fMRI image was co-169 

registered with the subject structural image. The anatomical volume was in turn segmented and non-170 

linearly transformed to the reference Montreal Neurological Institute (MNI) space. The estimated 171 

normalization deformations fields were later applied to functional data that were finally smoothed using 172 

a 3D Gaussian kernel of 6 mm FWHM.  173 

An offline data quality control was performed to assess for the impact of head movement artifacts on 174 

data quality and NF performances. Motion parameters were estimated and used to perform a post-hoc 175 

correlation analysis with the NF task. To this end and for each bimodal session a Framewise 176 

Displacement (FD) was computed from the six realignment parameters as proposed by Power et al. [46]. 177 

FD outliers were identified using the spmup tool within the QAP Package [47]. Pearson correlation 178 

analysis between the FD time-series and the NF task was assessed.  179 

At the subject level, each session was modeled using a three-run generalized linear model (GLM), where 180 

each NF block and each rest block were modeled by convoluting a 20s boxcar function with the standard 181 

hemodynamic response function (HRF) to build a NF task and a rest regressors. The estimated motion 182 

parameters and a run mean were also entered in the design matrix as covariates of no interest. NF 183 

blocks and rest blocks were contrasted run-wise in order to analyze the NF effect session-wise but also 184 

averaged over the three runs to evaluate the NF effect over the whole bimodal session.  The normalised 185 

individual contrast maps of the three patients with right lesions were flipped along the y axis to create 186 

an artificial group of 9 patients with left-only hemispheric lesions. These maps were entered into a 187 

training session specific second level analysis GLM to evaluate group activation maps at each NF training 188 

session, allowing to monitor the effect of NF on brain activation.  189 

The evolution of the NF effect over bimodal sessions was evaluated within a two-step procedure at both 190 

the individual and group level. At the individual level, individual NF-rest contrast maps were entered in 191 

the design matrix. At the group level, NF-rest group contrast maps obtained from the previous GLM 192 

analysis were entered in the design matrix. In both cases, 14 session-wise NF-rest contrast maps were 193 

entered in the first column of the linear increase design matrix. A time regressor ranging from 1 to 14 194 

coding for the NF session index was added as a second column. By contrasting the effect of time, 195 

resulting statistical maps provided voxels or clusters demonstrating a linear increase (or decrease) of 196 

(group or individual) brain activity over the NF sessions. 197 

ROI definition and time series extraction  198 

In order to discard task independent noise, representative time series for the selected ROIs were 199 

extracted by considering the voxels which, in the first level GLM analysis, exceeded the statistical 200 

threshold for NF contrast (p<0.01), and were located within an apriori mask for bilateral SMA, PMC and 201 

M1. These masks were defined using the Human Motor Area Template (HMAT) atlas [48]. The SMA 202 

mask included both preSMA and SMA HMAT ROIs, and the PMC included ventral and dorsal PMC. To 203 

adapt the selected ROIs to individual responses, we extracted the first principal component of the time 204 

series from all voxels within 8-mm spheres around local activation maxima [49]. As for whole brain 205 
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analysis, ROIs time series were flipped in the case of patients with a right hemisphere lesion (N=3) for 206 

the sake of the group analysis (in the group results of the affected hemisphere is thus presented on the 207 

left). 208 

 209 

Dynamical causal modeling (DCM) 210 

DCM is a hypothesis-based technique that describes how observed fMRI responses are generated using 211 

a set of differential equations and represents one of the most common frameworks for the analysis of 212 

fMRI effective connectivity [50]. These differential equations describe how experimental stimulation 213 

(input) produces changes in neural activity and induces changes in the output (i.e. the observed fMRI 214 

data) through a hemodynamic model [51]. DCM models include parameters, such as the strength of 215 

coupling between the ROIs, i.e. effective connectivity, which are estimated from the data using a 216 

variational Laplace approach [52]. 217 

In the current DCM study, we assessed the differences in DCM parameters between the first (b-s1) and 218 

last (b-s5) NF session and considered a model consisting of six motor regions with bidirectional 219 

connections among them all (PMCL, PMCR, SMAL, SMAR, M1L, and M1R). These regions were selected on 220 

the basis of the evidence of their role in MI and previous connectivity stroke studies [4], [14], [53]. In 221 

this study we focused on endogenous connectivity analysis (DCM matrix A) [49] and assessed how its 222 

strength is modulated by the NF training.  223 

In the first step of the analysis, a Bayesian model selection procedure for each subject was performed 224 

to estimate the model that best matched the measured fMRI data. The basic 6 ROIs model was 225 

elaborated into 10 more different models depending upon which premotor region (SMA and PMC) was 226 

modulated by the external experimental input (NF task) and a ‘null’ model with no modulation. The 227 

different models (represented in Figure S6 in Supplementary Material) were compared and an optimal 228 

DCM model for each subject and session was identified using the Bayesian model selection.  229 

After all DCM models were estimated and every subject connectivity strengths was inferred, we 230 

performed a group level analysis to assess differences and commonalities between patients using the 231 

recently introduced Parametrical Empirical Bayes (PEB) approach [54]. To test hypotheses about 232 

between-subjects effects, individual differences in coupling parameters are decomposed into 233 

hypothesized group level effects, called regressors or covariates, and unexplained variance or random 234 

effects. Since the aim of this study was to assess the effect of the NF training on the EC strength, we 235 

introduce this covariate of interest in the PEB analysis. In order to exclude other factors independent 236 

from the training, the Fugl-Meyer score, FA asymmetry index, type of stroke and time from stroke were 237 

also included as regressors in the between-subjects analysis.  We applied PEB to each model and 238 

extracted the free energy, which is an approximation of the log-evidence of the model that considers 239 

both accuracy and complexity [52], compared them and selected a winning model. The winning model 240 

was then considered for the posterior analysis and the group level results. Note that while in first level 241 

analysis individual  connectivity models are estimated for each patient, the group level PEB analysis 242 

assumes a unique model for all the subjects. The estimation of a unique ”winning” model enables us to 243 

test hypotheses about the common experimental effects on the connectivity strength of the population. 244 

Finally, after having identified the winning model, an automatic search over reduced models was 245 

performed by means of Bayesian Model Reduction (BMR) [54]. To summarize the results over all the 246 

models, a Bayesian Model Average (BMA) was computed [55] by averaging the parameters from 247 
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different reduced models, weighted by the model posterior probabilities. When showing summary BMA 248 

results, we only considered parameters with a strong evidence (i.e. posterior probability of being non-249 

zero greater than 0.99). All the computations were performed using the DCM analysis code adapted 250 

from SPM12, described step-by-step in [49], [56] and available at https://github.com/pzeidman/dcm-251 

peb-example. Other scripts used for fMRI and DCM analysis in this paper can be provided by the authors 252 

upon request. More details about code availability are also given in Supplementary Material. 253 

Results 254 

Despite the demanding and intensive training protocol, no drops-out were registered: participants 255 

found the training satisfying and completed it. 256 

fMRI activation analysis 257 

Even if a thorough analysis of changes in changes in BOLD activation patterns is outside the main scope 258 

of this work, which focuses on effective connectivity changes after NF training, we summarize in this 259 

paragraph main results. More details about fMRI analysis and additional results are provided in the 260 

Supplementary Material. 261 

The motion artifacts analysis revealed that in 5 out of 45 training sessions the percentage of head 262 

motion outliers was higher than 10%. Also, in 11% of sessions (6 out of 45) the Pearson correlation 263 

between the head motion and the NF task regressor was higher than 0.25 (in absolute value). These 264 

findings are similar to those reported in a previous study on 30 healthy volunteers [57]. Additional 265 

details and results of the offline data quality check are given in Supplementary Material (Table S1 and 266 

Figures S1 and S2). 267 

Figure 1 presents group activation maps (N=9) in the first (b-s1) and last (b-s5) NF training session, that 268 

were then considered for DCM analysis. Reported statistical maps show activations exceeding a voxel-269 

level uncorrected threshold of p<0.001. Average BOLD activation maps show significant activations of 270 

the premotor cortex and supplementary motor areas. The bilateral posterior parietal cortex (PPC), that 271 

plays an important role in visuo-motor coordination [58], was also recruited during the MI NF task. In 272 

general, patients robustly activated mainly the bilateral SMA during the first session (b-s1), while they 273 

showed also activation of the bilateral PMC and ipsilesional M1 in the last NF session (b-s5).  274 

Together with differences between the first and last NF session, we also investigated if there was a 275 

significant linear increase of BOLD activation across the 14 NF runs of the five bimodal sessions. Group 276 

results in Figure 2 suggest that bilateral SMA and PMC BOLD activation linearly increased from one 277 

session to another (clusters of k>25 voxels, p<0.001, uncorrected). A localized increase could be 278 

observed also in the ipsilesional M1, but did not correspond to an increase in the contralesional M1. 279 

Individual maps indicate that activation patterns across patients are variable, even if a linear increase in 280 

activation of SMA and PMC can be observed in the majority of the individuals (Figure S4a). Similarly, the 281 

analysis of offline NF scores for SMA and M1 indicated that a significant increase in the average SMA NF 282 

score was observed in the majority of patients, while results concerning M1 NF scores are more variable 283 

across individuals (Figure S4a and S4b).  284 

https://github.com/pzeidman/dcm-peb-example
https://github.com/pzeidman/dcm-peb-example
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 285 

Figure 1. Group activation maps in the first (b-s1) and last (b-s5) training session in MNI coordinates (p<0.05, 286 
uncorrected). The outline of the motor areas of interest based on the HMAT atlas is indicated: preSMA (green) SMA 287 
(orange), PMC (purple), M1 (blue) and Sensory motor cortex (red). The lesional hemisphere is on the left (results 288 
for the patients whose lesion was in the right hemisphere were flipped for the sake of comparison). 289 

 290 

 291 
Figure 2. BOLD activation linear increase along NF sessions. Cluster of voxels (k>25) exhibiting a significant linear 292 
increase (decrease) over the 14 bimodal NF runs are showed in yellow (light blue) (p<0.001, uncorrected). The 293 
outline of the motor areas of interest based on the HMAT atlas is indicated: preSMA (green) SMA (orange), PMC 294 
(purple), M1 (blue) and Sensory motor cortex (red). The lesional hemisphere is on the left (results for the patients 295 
whose lesion was in the right hemisphere were flipped for the sake of comparison). 296 

DCM analysis: changes in endogenous connectivity  297 

The subject average percentage variance explained by the model is 10.5% (SD 7.3%): it compares to 298 

other results in literature [49] but is smaller. This is to be expected in the case of simultaneous EEG-299 

fMRI imaging considered the decrease in fMRI signal to noise ratio due to the presence of EEG 300 

electrodes [59]. In most of the subjects, coupling parameters were non-trivial, with 90% credible 301 

intervals that excluded zero, indicating that there was useful information in the data pertaining to the 302 

NF experimental effects. The PEB free energy, considered to be a proxy for the log model evidence, was 303 

of −1.012 × 105 (a graph reporting the free energy corresponding to the 10 DCM models is reported 304 

in Supplementary Material, Figure S7). 305 

Endogenous connectivity patterns elicited during MI NF obtained from the BMA analysis are 306 

schematically represented in Figure 3 and the corresponding values are listed in Table 2. Coupling 307 
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parameters in average connectivity patterns (i.e. common to all subjects and sessions) quantify the EC 308 

from one area over another in Hz. Negative coupling rates indicate that the source region has an 309 

inhibitory effect on the activity of the target region (in red in Figure 3), while positive EC values indicate 310 

an excitatory effect (in green in Figure 3). Inhibitory self-connections scale up or down the default value 311 

of 0.5 Hz [49] therefore positive self-connection values indicate increased self-inhibition while negative 312 

values indicate activation of the specific region. As shown in Figure 3A, experimental driving inputs (NF 313 

MI task) had a positive influence on bilateral premotor areas: this is consistent with the recruitment of 314 

PMC during a MI task [60]. The average EC results indicate a fully connected motor network, with mainly 315 

excitatory coupling, involving both hemispheres. Connectivity between contralesional and ipsilesional 316 

motor areas was also elicited during the MI task of the affected limb. Self-connection values were 317 

negative for all ROIs, indicating a significant disinhibition, or equivalently an activation, of all the 318 

considered motor regions during the NF MI task. 319 

In Figures 3B and 4 modulatory effects of the NF training on EC strength are represented, with positive 320 

connections (green) indicating an average increase in connectivity between ROIs and negative 321 

connections (red) representing a decrease in EC between the first and last NF training session. A general 322 

trend of decrease in inter-hemispheric connectivity strength can be observed, in particular between 323 

contralesional (right) and ipsilesional (left) PMC and M1. Only connections originating from SMA 324 

towards the M1 and PMC increased in strength following the NF training, while feedback connectivity 325 

from ipsilesional M1 to all other motor areas was reduced (except for the connection to ipsilesional PMC 326 

that increased). A decrease in self-inhibition strength in bilateral SMA and ipsilesional M1 was observed: 327 

this indicates a higher activation of these regions as a result of training, in line with the results of the 328 

whole brain analysis presented in Figures 1 and 2. In order to assess the variability in connectivity 329 

strength changes across subjects, we calculated the difference between individual endogenous 330 

connectivity (matrices A) in b-s1 and b-s5.  Representative results for six connections (ipsilesional, 331 

contralesional and intrahemispheric EC) are shown in Figure 4 and indicate consistent findings: 332 

individual connectivity strength have the same signs and similar amplitudes across patients. Additional 333 

results can be found in Figures S5 and S6.  334 
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 335 

Figure 3. Bayesian Model Average (BMA) results. A. Connectivity network commonalities across subjects and 336 
training sessions. Arrows thickness and color code respectively for the strength and the sign of EC: green arrows 337 
represent a positive (excitatory) coupling, while red arrows indicate negative coupling. B. Significant changes 338 
(p<0.01) in EC strength after the NF training. Arrows thickness and color code respectively for the strength and the 339 
sign of EC change: green arrows represent an increase in connectivity, while red arrows indicate a decrease. The 340 
direction of links is represented by the arrow’s ending. Since EC is not symmetrical, an opposite change in 341 
connectivity can be observed between two regions. It is the case of regions connected by a “bicolor” arrow (i.e. in 342 
panel B the arrow between M1L and PMCL indicate an increase of the connectivity from M1L to PMCL and a decrease 343 
of connectivity from PMCL to M1L). 344 

 345 

Figure 4.  Changes in EC connectivity across patients for six representative connections. Boxplots indicate the 346 
median (central mark) and the 25th and 75th percentiles (bottom and top edges of the box) of the EC changes 347 
across 9 patients. Outliers are shown with a black cross. Green boxplots correspond to an increase in connectivity 348 
strength from b-s1 to b-s5; inversely red boxplots correspond to a decrease in EC after NF training. 349 
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Table 1. Patients demographic and stroke characteristics. 350 

Patient 

ID 
Gender 

Time from 

stroke  

(months) 

Stroke type 
Stroke 

lesion 

Fugl-

Meyer 
FA_asymmetry 

P01 F 25 
Ischemic, middle left 

cerebral artery 
Left 53 

0.0257 

 

P02 M 34 
Ischemic, middle left 

cerebral artery 
Left 50 0.0180 

P03 M 68 
Subcortical 

haemorrhagic stroke 
Right 26 0.12 

P04 

 
M 49 

Ischemic, middle left 

cerebral artery 
Left 29 0.0590 

P05 M 28 
Ischemic, middle left 

cerebral artery 
Left 39 0.002 

P06 M 199 Left haemorrhagic Left 26 0.124 

P07 M 36 
Ischemic, middle left 

cerebral artery 
Left 42 -0.008 

P08 F 26 
Ischemic, middle 

right cerebral artery 
Right 55 0.001 

P09 F 14 
Ischemic, middle 

right cerebral artery 
Right 52 0.098 

  351 
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Table 2. Bayesian Model Average of PEB parameters: Average endogenous connectivity and significant changes in 352 
connectivity strength as a result of the NF training. 353 

Source Target Commonalities Effect of Treatment 

SMAL SMAL -0.3616 -0.1339 

SMAL PMCL -0.0000 0.0893 

SMAL M1L -0.0000 0.0000 

SMAL SMAR 0.2396 0.1784 

SMAL PMCR 0.0000 0.0856 

SMAL M1R -0.0902 0.1140 

PMCL SMAL 0.1077 -0.1608 

PMCL PMCL -0.4562 0.0000 

PMCL M1L 0.3510 -0.2343 

PMCL SMAR 0.0904 -0.0808 

PMCL PMCR 0.1367 -0.1872 

PMCL M1R 0.2282 -0.1034 

M1L SMAL 0.0000 0.0000 

M1L PMCL 0.0860 0.0890 

M1L M1L -0.3818 -0.1635 

M1L SMAR 0.0000 -0.1213 

M1L PMCR 0.0000 -0.0995 

M1L M1R 0.0000 -0.0974 

SMAR SMAL 0.1752 0.0460 

SMAR PMCL 0.2006 0.1830 

SMAR M1L 0.0830 0.1711 

SMAR SMAR -0.3444 -0.1195 

SMAR PMCR 0.2365 0.2620 

SMAR M1R 0.0000 0.1753 

PMCR SMAL 0.1227 0.0000 

PMCR PMCL 0.0818 -0.1786 

PMCR M1L 0.0000 -0.0000 

PMCR SMAR 0.2782 0.0876 

PMCR PMCR -0.2467 0.1195 

PMCR M1R 0.2232 -0.1084 

M1R SMAL -0.0972 -0.0000 

M1R PMCL -0.1026 -0.1469 

M1R M1L -0.0783 0.0000 

M1R SMAR -0.2783 -0.1223 

M1R PMCR -0.1689 -0.1324 

M1R M1R -0.2707 0.0000 

 354 

Discussion 355 

We applied a DCM analysis to task-based fMRI data to describe the effect of NF training on bilateral 356 

motor networks in nine chronic stroke patients. The training protocol included five bimodal EEG-fMRI 357 

NF and nine EEG-NF sessions over five weeks aiming at reinforcing the activity of specific motor areas 358 

(ipsilesional SMA and M1). Results indicate that NF training induced a modulation of fMRI activation 359 

during the NF MI task towards ipsilesional motor cortex activation. We also found a reorganization of 360 
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effective connectivity after training, with a general trend to reduced inter-hemispheric connectivity 361 

between premotor and primary motor cortices. These exploratory results suggest that the training of 362 

specific motor areas with NF can have an impact overall motor connectivity network. 363 

Methods 364 

Different estimators of EC from fMRI data are available [61]. In this study, we used DCM for EC 365 

estimation because it was specifically developed for fMRI analysis. DCM has the advantage over 366 

approaches such as structural equation modeling or Granger causality that it uses a hemodynamic 367 

model to decompose the measured data into underlying neuronal signal and hemodynamic effects [50]. 368 

Moreover, DCM is particularly robust in dealing with deviations from the standard hemodynamic 369 

response (e.g. due to pathology affecting blood flow parameters such as stroke), as the parameters in 370 

the hemodynamic model are estimated together with the parameters quantifying neuronal connectivity 371 

and individually for each ROI [50], [51]. In the definition of the apriori model of underlying connectivity 372 

patterns, we considered six regions of interest including both ipsilesional and contralesional premotor 373 

and motor areas. Other areas importantly involved in motor network (i.e. cerebellum, prefrontal areas) 374 

were excluded from the analysis as in DCM models including more than 8 ROIs, additional prior 375 

constraints are needed to reduce the number of parameters to estimate [62]. Moreover, DCM analysis 376 

does not result in erroneous estimations when regions that may have an influence on the model are 377 

disregarded, because information by brain regions not explicitly modelled is captured implicitly in the 378 

coupling parameters between two regions [63]. 379 

fMRI activation and effective connectivity during a NF-MI task 380 

Group level fMRI results yield activations of the areas typically involved during a NF MI task: SMA, PMC 381 

and posterior parietal cortex (PPC) [64]. These results are also in line with findings indicating that PPC is 382 

generally active when feedback is presented visually [65]. Activation patterns evolved from the first 383 

session to the last of the training. The first session involved SMA and the last session showed a larger 384 

recruitment of bilateral PMC and also a localized activation of ipsilesional M1. The activation of bilateral 385 

SMA and ipsilesional M1 during the NF task linearly increased across the 14 training runs, indicating 386 

that, in average, patients successfully upregulated the targeted cortical areas. When looking at the 387 

individual results (see Figure S3), this linear increase is observed in 6 out of 9 patients. However, this 388 

type of analysis only reveal significant changes in a linear fashion, and is not able to quantify less gradual, 389 

abrupt changes in activation with time. Moreover, caution must be employed in interpreting these 390 

results as a direct indicator of the efficacy of the NF training, considered the lack of blinded assessment 391 

and the absence of a comparison with a control group. 392 

SMA is robustly activated during MI [66] and has been associated to complex MI tasks, involving a 393 

sequence of movements [64]. Whether M1 is consistently activated during a MI task is debated. 394 

Functional MRI NF studies found non-conclusive results at group level [41], [42] and one recent work 395 

reported deactivation of M1 during MI training of the SMA and M1 [66]. A recent meta-analysis only 396 

reported consistent activation within the primary motor cortex during MI in a minority of studies (18%) 397 

[64]. The authors of this study suggest that only skilled MI performer may be able to activate M1 during 398 

a MI task, as found for instance by Sharma et al. [67], which could explain why M1 activation can be 399 

more consistently reported in single-subject analyses [68]. Our results indicated an activation of 400 

ipsilesional M1 in the last NF session suggesting on the one hand that patients “responded” to the NF 401 
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reinforcement scheme targeting ipsilesional M1, and on the other that they became better at 402 

performing the MI task, which is to be expected after 14 motor NF training sessions.  403 

Average connectivity results are in line with previous studies investigating EC patterns in stroke during 404 

MI or execution. They indicate a dense, bilateral connectivity pattern, with an inhibitory connection 405 

between contralateral M1 and ipsilesional M1. Connectivity in the contralesional hemisphere is 406 

commonly elicited in stroke patients during MI of the affected limb and there is evidence that the 407 

inhibitory influence from contralesional M1 to ipsilesional M1 increases in stroke patients with respect 408 

to healthy controls [13]. The role of contralesional M1 in stroke is debated as it has been shown to have 409 

both promoting and inhibitory influences on motor outcomes, depending on the severity and time from 410 

stroke[69]–[71]. For instance, a suppression of the contralesional M1 excitability has been shown to 411 

degrade upper limb control in severely impaired patients but to improve it for mildly impaired stroke 412 

patients [72].  413 

Effect of NF training on effective connectivity  414 

Few recent studies have revealed the potential of modulating functional connectivity between the 415 

ipsilesional motor cortex  and other cortical [34] or subcortical regions [33] for stroke rehabilitation. In 416 

a study involving 10 chronic stroke patients, an enhancement of the functional connectivity FC of 417 

preserved ipsilesional motor areas with NF led to a significant increase in motor function. This was not 418 

the case in a control condition where patients enhanced FC of a brain area not directly implicated in 419 

motor function [34]. However, to the best of our knowledge, this is the first work that assesses fMRI 420 

connectivity changes resulting from the NF training of target motor areas in stroke. More generally, this 421 

work tackles the need to investigate how NF training of localized activity affects the related brain 422 

networks to guide more effective NF strategies based on physiologically relevant network targets and 423 

to gain a deeper insight into the underlying pathological processes [73]. 424 

DCM analysis revealed significant changes in EC after NF training relative to baseline. Firstly, a general 425 

decrease in inter-hemispheric connections was observed, including a decrease in the inhibitory 426 

influence of the contralesional M1 on the ipsilesional PMC. This inhibitory influence through 427 

transcallosal connections reduces the motor output of the damaged hemisphere in patients with severe 428 

motor deficit [4], [74], [75], and is part of a well-known “maladaptive” plasticity mechanism in stroke 429 

[76]. In a DCM study from Grefkes and colleagues on the effect of transcranial magnetic stimulation 430 

applied on contralesional M1, the negative coupling from contralesional M1 was absent as a result of 431 

the treatment, and, more interestingly, this effect correlated with improvement in motor performance 432 

of the paretic hand [4]. Caution is however recommended when interpreting changes in contralesional 433 

M1 connectivity because, even if its alterations in stroke are well-documented,  their influence on motor 434 

recovery is debated and insufficiently understood [1]. 435 

We observed an increase in feedforward connectivity strength between ipsilesional SMA and PMC after 436 

the NF training. Using a similar BMA approach, Bajaj and colleagues compared the connectivity before 437 

and after mental practice and physical therapy intervention [14]. In line with our findings, they reported 438 

an increase in EC between SMA and PMC in the affected hemisphere during MI task and this increase 439 

was significantly correlated with the motor score improvement after treatment. Similarly, Sharma and 440 

colleagues reported that coupling between PMC and SMA is diminished in stroke patients with respect 441 

to healthy controls and that as motor function improved, the coupling between these areas increased 442 

[77]. 443 
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The general reduction of connectivity from ipsilesional to contralesional motor areas (see also Figure S8 444 

in Supplementary Material) suggests a pattern closer to a unilateral motor imagery network in healthy 445 

subjects, as the inhibitory influence from M1 to the contralateral motor areas is a well described 446 

mechanism of unilateral hand movements [70]. Moreover, an increase in the inhibitory coupling from 447 

M1 to SMA and, inversely, a positive coupling from SMA to M1 corresponds to the feed-forward 448 

connectivity model estimated with DCM in healthy controls in [78]. More generally, the observed trend 449 

of reduction in connectivity can be also interpreted as an effect of learning. Average EC patterns show 450 

a fully connected bilateral network during MI (Figure 4A): a decrease in the strength of EC suggests that 451 

the same MI task could be performed with a less dense network at the end of the NF training. A similar 452 

trend was observed in connectivity patterns during language prosody NF training where connectivity 453 

was reduced and more localized at the end of the training [79].   454 

Finally, the decrease in self-inhibitory connections in ipsilesional M1 and bilateral SMA indicates that 455 

these regions were more activated at the end of the NF training. As results in Table 2 indicate, the largest 456 

change was observed in the ipsilesional M1 (-0.1635), followed by ipsilesional SMA (-0.1339) and 457 

contralesional SMA (-0.1195). This is in line with the results of the fMRI activation analysis and, more 458 

interestingly, with the NF reinforcement scheme that rewarded upregulation of ipsilesional SMA and 459 

M1 that rewarded upregulation of ipsilesional SMA and M1, with a shift towards M1 activation at the 460 

end of the training. 461 

Future work 462 

The population of this study is relatively small and includes stroke patients with a relatively broad range 463 

of stroke latency and lesions localization. Individual motor and structural impairment differences 464 

following stroke might induce variability to the estimation of EC with DCM. Unfortunately, this is the 465 

case of the majority of fMRI-NF studies, whose sample size is strongly limited by the cost and burden of 466 

MRI imaging and also true in this case, considered the technical challenge of bimodal EEG-fMRI NF and 467 

the fact that patients underwent a long training program of 14 NF sessions over 5 weeks. We designed 468 

this experimental protocol with the rationale that NF training induced changes in brain organization 469 

would require a significant amount of training. In future, a larger sample of patients will be considered 470 

to refine our findings of NF training effect on connectivity networks and extend our observations. For 471 

instance in this first study we only examined changes in connectivity at the end of the training protocol. 472 

In future work and on a larger cohort we aim to assess if changes in connectivity occur also after a few 473 

NF training sessions with finer granularity. 474 

In this exploratory study, we assessed changes in EC estimated from fMRI as it allows for a finer analysis 475 

of different motor areas (SMA, PMC and M1) as compared to EEG. In addition, we did not disentangle 476 

the role of unimodal EEG and bimodal EEG-fMRI NF in the observed EC changes, as we first assessed if 477 

global effect of the NF training on EC could be observed. Future analyses will address these open 478 

questions, notably looking at EEG connectivity. Building on these first results, in future work we will also 479 

assess if the connectivity changes elicited by NF training resulted in improved motor performance of 480 

the affected limb, taking clinical outcomes into account. In order to assess the specific effect of NF 481 

training these results needs to be extended with a randomized controlled study, where network 482 

reorganization patterns could be compared between the interventional and control group. 483 

Overall, we believe that this work represents a valuable and novel analysis of the large-scale effects of 484 

localized NF training on fMRI connectivity, and, to the best of our knowledge, the first in stroke. It 485 



16 
 

underlines the importance of investigating also connectivity patterns rather than focusing on regional 486 

activation when assessing NF training outcomes. 487 

Conclusions 488 

Using a DCM approach, in this work we investigate the effect of multi-session EEG-fMRI NF training on 489 

connectivity patterns in chronic stroke patients. The DCM model consisted in a bilateral motor network 490 

including premotor, supplementary and primary motor areas and a Bayesian Model Average approach 491 

was used to assess significant changes in connectivity following the NF training. Results show that 492 

upregulation of ipsilesional M1 and SMA modulates fMRI activity and effective connectivity in both 493 

hemispheres and generally reduces inter-hemispheric connectivity strength. Our results suggest that 494 

the upregulation of target motor areas by means of NF can have a larger scale impact on connectivity 495 

and a potential to mitigate maladaptive networks patterns.  496 
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