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Joint Interpolation andRepresentation
Learning for Irregularly Sampled
Satellite-Derived Geophysical Fields
Ronan Fablet1*, Maxime Beauchamp1, Lucas Drumetz1 and François Rousseau2

1IMT Atlantique, UMR CNRS Lab-STICC, Brest, France, 2IMT Atlantique, UMR INSERM LaTIM, Brest, France

Earth observation satellite missions provide invaluable global observations of geophysical
processes in play in the atmosphere and the oceans. Due to sensor technologies (e.g.,
infrared satellite sensors), atmospheric conditions (e.g., clouds and heavy rains), and
satellite orbits (e.g., polar-orbiting satellites), satellite-derived observations often involve
irregular space–time sampling patterns and large missing data rates. Given the current
development of learning-based schemes for earth observation, the question naturally
arises whether one might learn some representation of the underlying processes as well as
solve interpolation issues directly from these observation datasets. In this article, we
address these issues and introduce an end-to-end neural network learning scheme, which
relies on an energy-based formulation of the interpolation problem. This scheme
investigates different learning-based priors for the underlying geophysical field of
interest. The end-to-end learning procedure jointly solves the reconstruction of gap-
free fields and the training of the considered priors. Through different case studies,
including observing system simulation experiments for sea surface geophysical fields,
we demonstrate the relevance of the proposed framework compared with optimal
interpolation and other state-of-the-art data-driven schemes. These experiments also
support the relevance of energy-based representations learned to characterize the
underlying processes.

Keywords: earth observation, end-to-end learning, interpolation, representation learning, energy-based
representation, deep learning

1 INTRODUCTION

When dealing with spaceborne earth observation, available observation datasets do not involve gap-
free and regularly gridded signals or images. The irregular sampling may result both from the
characteristics of the sensors and sampling strategy, for example, considered orbits and swaths, as
well as environmental conditions which may affect the sensor, for example, atmospheric conditions
and clouds for earth observation. This is a critical feature to be dealt with to fully exploit the potential
of available satellite-derived earth observation dataset.

A rich literature exists on interpolation for irregularly sampled signals and images (also referred to
as inpainting in image processing (Bertalmio et al., 2000)). A classic framework states the
interpolation issue as the minimization of an energy, which may be interpreted in a Bayesian
framework. A variety of energy forms have been considered, including Markovian priors (Freeman
and Liu, 2011), patch-based priors (Peyr et al., 2011), gradient norms in variational and/or PDE-
based formulations (Bertalmio et al., 2000), and Gaussian priors (Galerne et al., 2011), as well as
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dynamical priors in fluid dynamics (Bertalmio et al., 2001). It also
relates to optimal interpolation and kriging (Cressie and Wikle,
2015), which are among the state-of-the-art operational schemes
in geoscience (Evensen, 2009). Optimal interpolation schemes
classically involve the inference of the considered covariance-
based priors from irregularly sampled data. This may however be
at the expense of Gaussianity and linearity assumptions, which do
not often apply for real signals and images. For the other types of
energy forms, their parameterizations are generally set a priori
and not learned from the data. Regarding more particularly data-
driven and learning-based approaches, most previous works
(Peyr et al., 2011; Alvera-Azcarate et al., 2016; Fablet et al.,
2017) have addressed the learning of interpolation schemes
under the assumption that a representative gap-free dataset is
available. This gap-free dataset may be the image itself (Criminisi
et al., 2004; Lorenzi et al., 2011; Peyr et al., 2011). For numerous
application domains, as mentioned above, this assumption
cannot be fulfilled. Regarding recent advances in learning-
based schemes, a variety of deep learning models (e.g., Chen
et al., 2015; Liu et al., 2018; Xie et al., 2012) have been proposed.
Most of these works focus on learning an interpolator. One may
however expect to learn not only an interpolator but also some
representation of the considered data, which may be of interest
for other applications. In this respect, RBM models (restricted
Boltzmann machines) (Salakhutdinov and Hinton, 2009; Chen
et al., 2015) are particularly appealing at the expense, however, of
computationally expensive MCMC (Markov chain Monte Carlo)
schemes.

In this article, we aimed to jointly learn representations of
2 days or 2 days + t processes from irregularly sampled
observation datasets and solve the associated interpolation
issue. Our contribution is three-fold:

• An end-to-end learning of energy-based representations
from irregularly sampled training data. Based on a neural
network architecture backed by a variational formulation, it
jointly embeds the considered energy form and an associated
interpolation scheme.

• Besides classic auto-encoder representations, we introduce
neural network–based Gibbs energy representations, which
relate to Gibbs priors embedded in convolutional neural
networks (CNNs).

• The demonstration of the relevance of the proposed end-to-
end learning framework, especially for very high missing data
rates in spatiotemporal satellite-derived sea surface fields.

The remainder is organized as follows. Section 2 formally
states the considered issue. We introduce the proposed end-to-
end learning scheme in Section 3. We report numerical
experiments in Section 4 and discuss our contribution with
respect to related work in Section 5.

2 PROBLEM STATEMENT

In this section, we formally introduce the considered issue,
namely, the end-to-end learning of representations and

interpolators from irregularly sampled data. Within a classic
Bayesian or an energy-based framework, interpolation issues
may be stated as a minimization issue.

X̂ � arg min
X

Uθ(X) subject toXΩ � YΩ, (1)

where X is the considered signal, image, or image series
(referred to hereafter as the hidden state); Y the
observation data, only available on a subdomain Ω of the
entire domain D; and Uθ() the considered energy prior
parameterized by θ. As further discussed in Section 5, a
variety of energy priors have been proposed in the literature.
We let the reader refer to Section 5 for a discussion of the
relationships between the proposed scheme detailed below
and this literature.

We assume we are provided with a series of irregularly
sampled observations, that is, to say a set {Y(i),Ω(i)}i ∈ {1,...,N},
such that Ω(i) ⊂ D and Y(i) is only defined on the subdomain
Ω(i). Assuming that all X(i) share some underlying energy
representation Uθ(), we may define the following interpolation
operator I as:

I(Uθ,Y(i),Ω(i)) � arg min
X

Uθ(X) s.t.XΩ(i) � Y(i)
Ω(i) . (2)

We expect interpolation I(Y(i),Ω(i)) to be close to true state
X(i). We may consider different strategies to design
interpolation operator I . For instance, with a
linear–quadratic prior as used in optimal interpolation (OI)
schemes, we may derive a least-square estimate. Optimal
interpolation (OI) (Cressie and Wikle, 2015) amounts to
minimizing an energy formulation of the form

X̂ � arg min
X

XtΣ−1
X X + λ‖X − Y‖2Ω. (3)

Assuming state X is a zero-mean multivariate random
variable, ΣX is the covariance prior on state X and λ relates to
the variance of the observation model. ‖ · ‖2Ω refers to the squared
norm computed on some observed domain Ω. We may point out
that minimization (Eq. 1) may be restated as a similar
unconstrained variational minimization using Lagrangian
multipliers.

Here, we do not restrict to linear quadratic priors, and we aim
to learn the parameters θ of energy Uθ() from the available
observation dataset {Y(i),Ω(i)}i. Assuming operator I is known,
this learning issue can be stated as the minimization of the
reconstruction error for the observed data:

θ̂ � arg min
θ
∑
i

∣∣∣∣
∣∣∣∣Y(i) − I(Uθ,Y(i),Ω(i))

∣∣∣∣
∣∣∣∣2Ω(i) , (4)

where ‖ · ‖2Ω refers to the L2 norm evaluated on the subdomainΩ.
Given this general formulation, the end-to-end learning issue

comes to solve minimization (Eq. 4) according to some given
parameterization of energy Uθ(). In Eq. 4, interpolation operator
I is clearly critical. In Section 3, we investigate a neural network
implementation of this general framework, which embeds neural
network formulations both for energy Uθ() and interpolation
operator I .
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3 PROPOSED END-TO-END LEARNING
FRAMEWORK

In this section, we detail the proposed neural network–based
implementation of the end-to-end formulation introduced in the
previous section. We first present the considered
paramaterizations for energy Uθ() in Eq. 4 (Section 3.1). We
derive the associated NN-based interpolation operator I (Section
3.2) and describe the resulting NN architecture for the end-to-
end learning of representations and interpolators from irregularly
sampled datasets (Section 3.3).

3.1 NN-Based Energy Formulation
We first investigate NN-based energy representations based on
auto-encoders (LeCun et al., 2015). Let us denote the encoding
and decoding operators of an auto-encoder (AE) by ϕE and ϕD,
respectively, which may comprise both dense auto-encoders and
convolutional AEs, as well as recurrent AEs, when dealing with
time-related processes. The key feature of AEs is that the
encoding operator ϕE maps state X into a lower-dimensional
space. Auto-encoders are naturally associated with the following
energy:

Uθ(X) �
����X − ϕD(ϕE(X))

����2. (5)

Minimizing (Eq. 1) according to this energy amounts to
retrieving state X whose low-dimensional representation in the
encoding space matches the observed data in the original decoded
space. Here, parameters θ comprise the parameters of the encoder
ϕE and of the decoder ϕD, respectively, θE and θD.

Themapping to a lower-dimensional spacemay be regarded as
a likely loss in the representation potential. Gibbs models provide
an appealing framework for an alternative energy-based
representation, with no such dimensionality reduction
constraint. Gibbs models introduced in statistical physics have
also been widely explored in computer vision and pattern
recognition (Geman, 1990) from the 80s. Gibbs models relate
to the decomposition of Uθ as a sum of potential
Uθ(X) � ∑c ∈ CVc(Xc), where C is a set of cliques, that is, a set
of interacting sites (typically, local neighbors), and Vc the
potential on clique c. In statistical physics, this formulation
states the global energy of the system as the sum of local
energies (the potential over locally interacting sites). Here, we
focus on the following parameterization of the potential function:

Uθ(X) � ∑
s ∈ D

����Xs − ψ(XN s)
����2, (6)

whereN s is the set of neighbors of site s for the entire domain
D and ψ is a potential function. Low-energy states for this energy
refer to state X for which operator ψ provides a good prediction at
any site s given the neighborhood N s of s. This type of Gibbs
energy relates to Gaussian Markov random fields, where the
conditional likelihood at one site given its neighborhood follows a
Gaussian distribution. They also relate to fields of experts
considered in Roth and Black (2009).

We implement this type of Gibbs energy using the following
NN-based parameterization of operator ψ:

ψ(X) � ψ2(ψ1(X)). (7)

It involves the composition of a space and/or time
convolutional operator ψ1 and a coordinate-wise operator ψ2.
The convolutional kernel for operator ψ1 is such that the
coefficients for the center of the convolutional window are set
to zero. This property fulfills the constraint that Xs, that is, X at
site s, is not involved in the computation of ψ(XN s

), with XN s

being the restriction of the field X to the neighborhoodN s of site
s. As an example, for a univariate 2 day field, ψ1 can be set as a
convolutional layer with NF filters with kernels of size (2K + 1) ×
(2K + 1) × 1 such that for each kernel Kf , we impose
Kf (K ,K, 0) � 0. In such a case, operator ψ2 would be a
convolution layer with one filter with a kernel of size 1x1xNF .
Both ψ1 and ψ2 can also involve nonlinear activations. Without
loss of generality, given this parameterization for operator ψ, we
may rewrite energy Uθ as Uθ(X) �

∣∣∣∣
∣∣∣∣X − ψ(X)∣∣∣∣∣∣∣∣2, where ψ(X) at

site s is given by ψ(XN s
).

Overall, we may use the following common formulation for
the two types of energy-based representations:

Uθ(X) �
∣∣∣∣
∣∣∣∣X − ψ(X)∣∣∣∣∣∣∣∣2. (8)

They differ in the parameterization chosen for operator ψ and
in the associated assumption on some underlying lower-
dimensional space or manifold which describes the considered
state X.

3.2 NN-Based Interpolator
Besides the NN-based energy formulation, the general
formulation stated in Eq. 4 involves the definition of
interpolation operator I , which refers to minimization (Eq. 1).
We here derive NN-based interpolation architectures from the
considered NN-based energy parameterization.

Given parameterization (Eq. 8), a simple fixed-point
algorithm may be considered to solve for (Eq. 4). This
algorithm is at the basis of DINEOF algorithm and matrix
completion under subspace constraints (Alvera-Azcarate et al.,
2016; Jain et al., 2013). Given some dictionary-based
representation, including, for instance, principal component
analysis (PCA), also referred to as empirical orthogonal
function (EOF) in geoscience, and low-rank decomposition,
these approaches iteratively apply projections onto the
considered dictionary-based representation. Here, the
projection of a given state X is given by ψ(X(k)). For
instance, for a PCA decomposition, it comes to ψ(X(k)) � At ·
A · X with A the projection matrix formed by the eigenvectors of
the PCA as used in DINEOF algorithms (Alvera-Azcarate et al.,
2016). Overall, the resulting projection-based iterative update
comes to

X(k+1)
p � ψ(X(k)),

X(k+1)(Ω) � Y(Ω),
X(k+1)(Ω) � X(k+1)

p (Ω).
(9)

Interestingly, this algorithm is parameter free and can be
readily implemented in an NN architecture, given the number
of iterations to be considered. We may point out that a similar
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end-to-end architecture has also been proposed in Barth et al.
(2020).

Given some initialization, one may also consider an iterative
gradient-based descent which applies at each iteration k

X(k+1)
p � X(k) − λJUθ(X(k))

X(k+1)(Ω) � Y(Ω)
X(k+1)(Ω) � X(k+1)

p (Ω)
. (10)

where JUθ
is the gradient of energy Uθ with respect to state X, λ

the gradient step, and Ω the missing data area. Automatic
differentiation tools embedded in neural network frameworks
may provide the numerical computation for gradient JUθ

, given
the NN-based parameterization for energy Uθ . This may prove
numerically expensive and was not further investigated in this
work. Given the considered form for energy Uθ , its gradient with
respect to X decomposes as a product

JUθ(X) � Jψ(X)(X − ψ(X)), (11)

and X − ψ(X)may be regarded as a suboptimal gradient descent.
Hence, rather than considering the true Jacobian Jψ for operator
ψ, we may consider an approximation through a trainable
network G() such that the gradient descent becomes

X(k+1)
p � X(k) − G(X(k),ψ(X(k))),

X(k+1)(Ω) � Y(Ω),
X(k+1)(Ω) � X(k+1)

p (Ω).
(12)

Here, G(X(k),ψ(X(k))) � ~G(X(k) − ψ(X(k))), and ~G is a neural
network to be learned jointly to ψ during the learning stage.
Interestingly, this gradient descent embeds the fixed-point
algorithm when ~G is the identity.

Let us denote, respectively, by IFP and IG the fixed-point and
gradient-based NN-based interpolators, which implement NI

iterations of the proposed interpolation updates. Below, INN

will denote both IFP and IG. Whereas IFP is parameter free,
IG involves the parameterization of operator G. We typically
consider a CNN with ReLu activations with increasing numbers
of filters through layers up to the final layer, which applies to a
linear convolution with a number of filters given by the
dimension of state X.

3.3 End-To-End Architecture and
Implementation Details
Given the parameterizations for energy Uθ and the associated
NN-based interpolators presented previously, we design an
end-to-end learning for energy representation Uθ and
associated interpolator INN . It uses as inputs an observed
sample Y(i) and the associated missing data-free domain Ω(i).
Using a normalization preprocessing step, we initially fill
missing data with zeros to provide an initial interpolated
state to the architecture. We provide a sketch of the
architecture in Figure 1. As illustrated, this architecture
applies a number of elementary blocks Bψ,G, with each
block corresponding to one iterative update using either
fixed-point update (Eq. 9) or gradient-based update (Eq.

12). Each block uses as input the output of the previous block
along with the missing data mask Ω. The number of blocks NI

refers to the number of iterations of the considered iterative
solver.

Regarding implementation details, beyond the design of the
architectures, which may be application dependent for
operators ψ and G (see Section 4), we consider an
implementation under tensor flow/Keras. Regarding the
training strategy, we use Adam optimizer. We iteratively
increase the number of blocks NI to avoid the training to
diverge. Similarly, we decrease the learning rate across
iterations, typically from 1e-3 to 1e-6 every 50 epochs. In
our experiments, we typically consider from 5 to 15 blocks. The
batch size is typically set according to the available RAM on the
considered GPU. We refer the reader to our Keras
implementation available online, which provides the details
of the considered experimental setting. Regarding
computational complexity issues, the complexity of the end-
to-end architecture mainly depends on the neural network
parameterization of operator ψ. A typical training phase with
several hundreds of epochs typically lasts a few hours using an
NVIDIA V100 GPU for the considered space–time case
studies.

4 EXPERIMENTS

In this section, we report numerical experiments on different
datasets to evaluate and demonstrate the relevance of the
proposed scheme. We first report numerical experiments on a
simple synthetic 2D case study using MNIST data to gain insights
on the different key components of the proposed framework. We
then consider two observing system simulation experiments
(OSSEs) corresponding to realistic sampling patterns for

FIGURE 1 | Sketch of the considered end-to-end architecture: We
depict the considered NI-block architecture which implements a NI-step
interpolation algorithm described in Section 3.2. Each block Bψ,G refers to
iterative fixed-point update (Eq. 9) or gradient-based update (Eq. 12).
Operator ψ is defined through energy representation (Eq. 8), and G refers to
the NN-based approximation of the gradient-based update for considered
iterative update. This architecture uses as input a mask Ω corresponding to
the missing data-free domain and an initial gap-filling X(0) for state X. We
typically initially fill missing data with zeros for centered and normalized states.
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satellite-derived sea surface geophysical fields, namely, sea surface
temperature (SST) derived from infrared satellite sensors and sea
surface height (SSH) derived from narrow-swath and wide-swath
satellite altimeters. In all experiments, we refer to the AE-based
frameworks, respectively, as FP(d)-ConvAE and G(d)-ConvAE
using the fixed-point or gradient-based interpolator, where d
refers to the number of blocks BΨ,G in Figure 1, that is, the
number of iterative updates of the considered interpolation
procedures (see Section 3.2 for more details). Similarly, we
refer to the Gibbs-based frameworks, respectively, as FP(d)-
GENN and G(d)-GENN.

As evaluation metrics, we consider the reconstruction score
computed over the observation domain, referred to as the
R-score.

R − score � 1 − 1
Nσ2

∑
i

1

|Ωi| ∑s ∈ Ωi

(Xtrue
i,s − Xi,s)

2
,

where Xi,s is the interpolated state for the ith sample at site s, Xtrue
i,s

is the associated groundtruthed state at site s, N is the total
number of samples,Ωi is the subset of observed sites in domainD
for the ith sample, and σ is the pixel-level variance of the
considered dataset. Similarly, we define an interpolation score,
referred to as I-score, which evaluate the reconstruction
performance for gaps

I − score � 1 − 1
Nσ2

∑
i

1∣∣∣∣Ωi

∣∣∣∣
∑
s ∈ Ωi

(Xtrue
i,s − Xi,s)

2
.

We also evaluate the quality of the trained representation ψ
through the AE-score defined as

AE − score � 1 − 1
Nσ2

N∑
i

1

|D| ∑s ∈ D
(Xtrue

i,s − ψ(Xtrue
i (s)))2.

When considering the training scheme which only relies on
observation data, that is, we never exploit the gap-free dataset
during the training stage, we may compute these metrics both for
the training and test datasets.

4.1 MNIST Case Study
We evaluate the proposed framework on MNIST dataset for
which we simulate missing data patterns. MNIST dataset
provides a dataset of 28 × 28 grayscale images of digits, which
make it well suited for evaluation purposes. For this dataset, we
only evaluate the AE-based setting. We consider the following
convolutional AE architecture with a 20-dimensional encoding
space:

• Encoder operator ϕE: Conv2D (20)+ ReLU + AvPooling +
Conv2D (40) + ReLU + AveragePooling + Dense (80) + ReLU +
Dense (20);

• Decoder operator ϕE: Conv2DTranspose (40) + ResNet +
ResNet; where, ResNet is a simple residual network (He et al.,
2016) with the following residual unit Conv2D (40) + ReLU +
Conv2D (20).

This parameterization was selected from experiments on gap-
free data to check that the resulting 20-dimensional
representation accounts for more than 90% of the total
variance of the MNIST test dataset. We noted experimentally
that the training and interpolation performance did not vary a lot
when modifying the parameteriration of the hidden layers of the
encoder and decoder. In these experiments, we consider a batch
size of 256. We used the reference training and test MNIST
datasets. The training phase involved 100 epochs.

We generate random missing data patterns composed of NS

squares of size WS ×WS, where the center of the square is
randomly sampled uniformly over the image grid. As
illustrated in Figure 2, we consider four missing data patterns:
NS � 20 and WS � 5, NS � 30 and WS � 5, NS � 3 and WS � 9,
andNS � 6 and WS � 9. To illustrate the considered training
procedure, we report in Supplementary Appendix an example
of plot of the training loss computed for the training and test

FIGURE 2 | Illustration of the considered MNIST dataset with the
selected missing data patterns: We randomly remove data from N W ×W
square areas.

FIGURE 3 | Illustration of the training pattern of the proposed end-to-
end learning scheme: We plot the evolution of the training loss (blue) for the
training (-) and the test (–) datasets as a function of the number of training
epochs for a FP-ConvAE architecture and the MNIST dataset with three
randomly sampled 9 × 9 gaps.We also plot the evolution of the I-score (black).
We increase the number of fixed-point iterations from one to five at epoch 12
and from five to 10 at iteration 40 and from 10 to 15 at iteration 80.
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datasets as a function of the number of epochs for FP(15)-
ConvAE architecture and the missing data pattern NS � 3 and
WS � 9.

As mentioned above, we evaluate as performance measures an
interpolation score (I-score), a global reconstruction score
(R-score) for the interpolated images, and an auto-encoding
(AE-score) score of the trained auto-encoder applied to gap-
free data, in terms of explained variance. We also evaluate a
classification score (C-score), in terms of mean accuracy, using
the 20-dimensional encoding space as feature space for
classification with a 3-layer multilayer perceptron (MLP). The
results are consistent across the different missing data
configurations. We report the performance measures for the
test dataset in Table 1 for NS � 3 and WS � 9, and in
Supplementary Appendix: detailed results for the MNIST
dataset for the three other ones.

With a view to illustrating the training pattern of the
considered end-to-end learning approach for the MNIST
dataset, we display in Figure 3 the training loss and the I-score
as a function of the number of epochs for a FP-ConvAE
architecture and the missing data pattern given by NS � 3 and
WS � 9. At epoch 12, we increase the number of fixed-point
iterations from 1 to 5, which leads to an abrupt decrease of the
I-score, which may also be observed in the training loss. By
contrast, the increase from 5 to 10 fixed-point iterations at epoch
40 leads to a much smaller improvement: here only a few percent.
The same occurs with the increase from 10 to 15 fixed-point
iterations with an improvement below 1%. We noticed
experimentally that increasing the number of fixed-point
iterations may result in numerical instabilities, leading the
training procedure to diverge if the learning rate is not
appropriately set.

For benchmarking purposes, we also report the performance
of the DINEOF framework (Alvera-Azcarate et al., 2016; Ping
et al., 2016), which uses a 20-dimensional EOF trained on the
gap-free dataset; the auto-encoder architecture (ConvAE) also
trained on a gap-free dataset, and the considered convolutional
auto-encoder trained using an initial zero filling for missing
data areas and a training loss computed only of observed data
areas. The latter can be regarded as a FP(1)-ConvAE
architecture using a single fixed-point block in Figure 1.

TABLE 1 | Performance of AE schemes in the presence of missing data for the MNIST dataset: for a given convolutional AE architecture (see main text for details), the EOF
and ConvAE models trained on gap-free data with a 15-iteration projection-based interpolation (resp., DINEOF and DINConvAE); a zero-filling strategy with the same
ConvAE architecture, which can be regarded as an instance of the proposed scheme with a fixed-point solver using only one iteration (FP(1)-ConvAE); and the fixed-point
and gradient-based versions of the proposed scheme. For each experiment, we evaluate four measures: the mean of the reconstruction performance for the known image
areas (R-score), the interpolation performance for themissing data areas (I-score), the reconstruction performance of the trained AEwhen applied to gap-free images (AE
score), and the classification score of a multilayer perceptron (MLP) classifier trained in the trained latent space for training images involving missing data. The metrics are
evaluated for both the training dataset (first row of each model) and the test dataset (second row; numbers in parentheses). We report here the results for missing
patterns with 3 9 × 9 missing data areas (NS � 3 and W � 9). R-score, I-score, and AE-score values are given as percentage of explained variance. The results for the
other missing data patterns are reported in Supplementary Table S1.

MNIST Model I-score R-score AE-score C-score (%)

NS � 3 DINEOF −41.65% (−44.77%) 33.08% (32.26%) 64.36% (65.11%) 96.23
W � 9 DINConvAE −1.21% (−3.08%) 72.57% (71.96%) 93.42% (92.35%) 98.12

FP(1)-ConvAE 3.55% (1.85%) 74.04% (72.93%) 89.21% (89.05%) 97.76
FP(15)-ConvAE 46.91% (44.12%) 85.13% (83.79%) 91.87% (91.38%) 97.90
G (14)-ConvAE 46.74% (43.76%) 85.72% (83.98%) 92.09% (91.39%) 97.76

FIGURE 4 | Illustration of reconstruction results for MNIST examples: For
each panel, the first column refers to zero-ConvAE results and the second one
to FP(15)-ConvAE. The first row depicts the reference image, the second row
themissing datamask, and the third one the interpolated image. The first
two panels illustrate interpolation results for training data and the last two for
test data. We depict grayscale amid images using false colors to highlight
differences.
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Overall, for NS � 3 and WS � 9, we retrieve the best
interpolation and reconstruction performance (e.g., best
I-score up to 44.1% for the test dataset) using the proposed
end-to-end learning framework. By contrast, auto-encoder
representations trained on gap-free data and used as a plug-
and-play prior in fixed-point iterative interpolation scheme
lead to significantly worse performance (resp. I-score of -44.8
and 1.2% using an EOF decomposition and the proposed
ConvAE auto-encoder). We also report a gain of more than
40% in the interpolation score with respect to a
straightforward zero-filling strategy combined with the
considered auto-encoder architecture. Regarding the
comparison between the fixed-point and gradient-based
architectures, we report relatively similar performance, with
slightly better I-scores for the fixed-point setting and R-scores
for the gradient-based one. Interpolation examples reported in
Figure 4 are in line with these quantitative results.

In terms of representation power, the auto-encoder
representations learned with missing data reach a
representation score above 90%, which is only slightly below
the score of the same architecture trained from gap-free data (AE
scores of 91.0 vs. 92.3%). Similar conclusions can be drawn from
the other missing data patterns as detailed in Supplementary
Appendix: detailed results for the MNIST dataset. Overall, the
proposed scheme guarantees a good representation in terms of
AE score with an additional gain in terms of interpolation

performance, typically between ≈ 15 and 30%, depending on
the missing data patterns, with the gain being greater when
considering larger missing data areas. Interestingly, the
representation scores of the auto-encoders trained with
missing data do not vary a lot.

4.2 Sea Surface Temperature (SST) Case
Study
The second case study addresses satellite-derived sea surface
temperature (SST) fields. Given their relatively high sampling
in space and time, SST data play a key role in the analysis and
reconstruction of upper ocean dynamics. Due to the sensitivity of
high-resolution SST sensors to the cloud cover, SST datasets
issued from infrared sensors may involve large missing data rates
(typically, between 70 and 90%, see the second row of Figures 5, 6
for an illustration). For evaluation purposes, we consider an OSSE
to build a groundtruthed dataset from high-resolution numerical
simulations, namely, NATL60 data (Molines, 2018) and real
cloud masks from the METOP AVHRR sensor (Ouala et al.,
2018). We consider series of 128 × 512 images over eleven
consecutive days from June to August at a 0.05 resolution in
an open ocean region in the North East Atlantic from (40.58°N,
46.3°W) to (53.04°N, 16.18°W). Overall, we randomly sample
400 128 × 512 × 11 image series as training data and 150 as the
test dataset.

FIGURE 5 | Interpolation examples for SST data used during training: the first row, reference SST images corresponding to the center of the considered 11-day
time window; the second row, associated SST observations with missing data; the third row, interpolation issued from the FP(15)-GENN2 model; and the last row,
reconstruction of the gap-free image series issued from the FP(15)-GENN2 model; interpolation issued from an OI scheme using a Gaussian covariance model with
empirically tuned parameters.

FIGURE 6 | Interpolation examples for SST data never seen during training: the first row, reference SST images corresponding to the center of the considered
11 day time window; the second row, associated SST observations with missing data; the third row, interpolation issued from the FP(15)-GENN2 model; and the last
row, reconstruction of the gap-free image series issued from the FP(15)-GENN2 model; interpolation issued from an OI scheme using a Gaussian covariance model with
empirically tuned parameters.
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For this case study, we consider the following four
architectures for the AEs and the GENNs:

• ConvAE1: The first convolutional auto-encoder involves
the following encoder architecture: five consecutive blocks
with a Conv2D layer, a ReLu layer, and a 2 × 2 average
pooling layer: the first one with 20 filters, the following four
ones with 40 filters, and a final linear convolutional layer
with 20 filters. The output of the encoder is 4 × 16 × 20. The
decoder involves a Conv2DTranspose layer with ReLu
activation for an initial 16 × 16 upsampling stage, a
Conv2DTranspose layer with ReLu activation for an
additional 2 × 2 upsampling stage, a Conv2D layer with
16 filters, and a last Conv2D layer with 5 filters. All Conv2D
layers use 3 × 3 kernels. Overall, this model involves ≈
400,000 parameters.
• ConvAE2: We consider a more complex auto-encoder with
an architecture similar to ConvAE1, where the number of
filters is doubled (e.g., the output of the encoder is a 4 × 16 ×
40 tensor). Overall, this model involves ≈ 900,000
parameters.
• GENN1,2: We consider two GENN architectures. They
share the same global architecture with an initial 4 × 4
average pooling, a Conv2D layer with ReLu activation with a
zero-weight constraint on the center of the convolution
window, a 1 × 1 Conv2D layer with N filters, a ResNet
with a bilinear residual unit composed of an initial mapping
to an initial 32 × 128x (5*N) space with a Conv2D + ReLu
layer, a linear 1 × 1 Conv2D + ReLu layer with N filters, and
a final 4 × 4 Conv2DTranspose layer with a linear activation
for an upsampling to the input shape. GENN1 and GENN2

differ in the convolutional parameters of the first Conv2D
layers and in the number of residual units. GENN1 involves
5 × 5 kernels,N � 20 and three residual units for a total of ≈
30,000 parameters. For GENN2, we consider 11 × 11 kernels,
N � 100 and 10 residual units for a total of ≈ 570,000
parameters.

These different parameterizations were selected so that
ConvAE1 and GENN2 involve similar modeling complexities.
Empirically, we noted that GENN architectures were more
relevant when applied on a subsampled version of the SST
fields. As such, the considered architecture for operator ψ
involves an initial average pooling layer to subsample the
spatial domain by a factor of four and a final upsampling
block so that the output shape is the same size as the input
shape. The application of GENNs to the finest resolution showed
a lower performance. This is regarded as an illustration of the
requirement for considering a scale-selection problem when
applying a given prior. The upsampling block involves the
combination of a Conv2DTranspose layer with 11 filters, a
Conv2D layer with ReLu activation with 22 filters, and a
linear Conv2D layer with 11 filters. Regarding the training
procedure, we considered a batch size of 4, 400 epochs and an
early stopping criterion to select the best performance on the
training dataset. For benchmarking purposes, we proceed similar
to the MNIST case study. As OI is the most widely applied
interpolation method in geoscience, we include an OI with a
Gaussian covariance model tuned using cross-validation.

Similar to the MNIST dataset, we report the performance of
the different models in terms of interpolation score (I-score),
reconstruction score (R-score), and the auto-encoding score (AE-
score) both for the training and the test dataset. As for a given
type of architecture for operator Φ (e.g., EOF vs. ConvAE vs.
GENN), the different parameterizations lead to similar results, we
only report in Table 2 the performance for the parameterization
leading to the best interpolation scores. The detailed version of
these results are included in Supplementary Appendix. Overall,
the NN models clearly outperform the EOF-based scheme in
terms of interpolation and reconstruction scores close to 80%
when the EOF-based scheme reaches a score below 35%. GENN
and ConvAE models retrieve relatively similar reconstruction
scores (e.g., I-score of 89.2 vs. 88%). We might however notice
that GENN schemes involve a much lower complexity (e.g.,
30,000 parameters for GENN1 vs. 900,000 parameters for

TABLE 2 | Performance on the SST dataset: We evaluate for each model interpolation, reconstruction, and auto-encoding scores, respectively, I-score, R-score, and AE-
score, in terms of percentage of explained variance, respectively, for the interpolation of missing data areas, the reconstruction of the whole fields with missing data, and
the reconstruction of gap-free fields. For each model, we evaluate these scores for the training data (first row) and the test dataset (second row in brackets). In these
experiments, we considered four different auto-encodermodels: namely, 20- and 80-dimensional EOFs and ConvAE1,2 models and twoGENNmodels. GENN1,2, combined
with three interpolation strategies: the classic zero-filling strategy (zero), the proposed iterative fixed-point (FP) and gradient-based (G) schemes, the figure in brackets
denoting the number of iterations. For instance, FP(10)-GENN1 refers to GENN1 with a 10-step fixed-point interpolation scheme. The EOFs are trained from gap-free
data. We also consider an OI scheme with a space–time Gaussian covariance with empirically tuned parameters. We refer the reader to the main text for the detailed
parameterization of the considered models. Here, we report, for each auto-encoder type, the best configuration in terms of the interpolation score. The detailed results
are reported in Supplementary Appendix.

SST Model I-Score R-score AE-score

OI 67.59% (57.29%) 70.97% (61.00%) –

FP(5)-EOF(20) 32.52% (39.22%) 34.94% (30.39%) 74.17% (56.00%)
AE models FP(1)-ConvAE2 86.70% (86.37%) 87.14% (86.87%) 67.20% (54.77%)

FP(10)-ConvAE2 88.71% (85.02%) 89.14% (85.49%) 86.24% (80.76)
G (8)-ConvAE2 90.47% (88.00%) 90.98% (88.39%) 86.33% (78.33%)
FP(1)-GENN1 85.46% (79.39%) 86.71% (80.30%) −94.84% (−172.68%)

GENN models FP(15)-GENN1 89.22% (87.45%) 90.07% (88.50%) 92.61% (90.18%)
G (12)-GENN1 89.83% (89.16%) 90.56% (90.00%) 92.23% (90.98%)
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ConvAE2). The gradient-based interpolators slightly outperform
the fixed-point architectures (e.g., I-scores of 89.2 vs. 87.5% for
GENN1 architectures). Compared with zero-filling schemes, we
report a very significant improvement of all scores when
considering ConvAE architectures (e.g., 80.8 vs. 54.8% for the
AE-score). This improvement is not as significant for GENN
schemes for the interpolation and reconstruction scores.
However, in such settings, the representation learned with a
zero-filling strategy is meaningless (a negative AE score to be
compared to a 91.0% AE score for the gradient-based GENN
interpolator). We may also point out the significant gain in terms
of the reconstruction score with respect to an OI with a Gaussian
covariance model (57.29% for the OI vs. 89.16% for G (12)-
GENN1 in terms of the interpolation score of the test dataset). For
the detailed results reported in Supplementary Appendix:
detailed results for SST case study, we may note that changes
in the complexity of the considered auto-encoder architectures
only weakly affect the performance. As such, the choice of the
auto-encoder type and of the considered interpolation scheme
seems to be a stronger driver of the reported performance.

We illustrate these results in Figures 5, 6, which further
stresses the gain with respect to OI for the reconstruction of
finer-scale structures. The consistency between the interpolation
results and the reconstruction of the gap-free image from the
learned energy-based representation further stresses the ability of
the proposed approach to extract a generic representation from
irregularly sampled data. These results also emphasize a much
greater ability of the proposed learning-based scheme to
reconstruct finer structures, which can hardly be reconstructed
by an OI scheme with a Gaussian space–time covariance model.
We may recall that the latter is the state-of-the-art approach for
the processing of satellite-derived earth observation data (Cressie
and Wikle, 2015).

4.3 Sea Surface Height Case Study
This case study addresses satellite altimetry, which is the main
source of observation data to retrieve sea surface currents on a
global scale (Chelton and Wentz, 2005; Dufau et al., 2016).
Current and upcoming satellite altimetry missions involve
narrow-swath and wide-swath sensors on polar-orbiting
satellites characterized by very high missing data rates with
respect to a reference global grid, typically above 95% as

illustrated in Figure 7. The space–time interpolation of
satellite altimetry data is then a key challenge to produce sea
surface current fields (Pascual et al., 2007; Ballarota et al., 2019).
Here, we implement an OSSE for both nadir along-track altimeter
data and of wide-swath altimeter data from the upcoming SWOT
mission (Gaultier et al., 2015). For the former, we simulate the
2013 4-altimeter configuration for nadir along-track altimeter
data. The OSSE relies on NATL60 high-resolution deterministic
ocean simulation of the North Atlantic (Molines, 2018). As the
case study region, we focus on a region along the Gulf Stream
[33°N, 43°N; −65°W, −55°W] mainly driven by energetic
mesoscale dynamics.

As baseline, we consider the operational processing chain
for gridded altimeter fields, which relies on an OI scheme. All
methods are applied to the anomaly with respect to this OI
baseline. For benchmarking purposes, we run two state-of-the-
art data-driven approaches, namely, the analog data
assimilation (AnDA) (Lguensat et al., 2017) and the
DINEOF algorithm (Ping et al., 2016). As for the SST case
study, we train the EOF representation from the gap-free
version of the training dataset. The AnDa scheme combines
the exploitation of a gap-free reference dataset to design an
analog dynamical model with a state-of-the-art ensemble
Kalman filter to address the interpolation issue. Here, we
implement the patch-based version of AnDA as presented
in Fablet et al. (2017). As AnDA and DINEOF schemes rely
on some training on a gap-free dataset, we use for evaluation
purposes a 20-day test period in December, with the remaining
data being used as training data except 10 days before and after
the 20-day test period.

Regarding the proposed end-to-end learning framework, we
consider architectures similar to the ones applied to the SST case
study, namely, architectures ConvAE1 and GENN1 for operator ψ
in (Eq. 5). To account for the knowledge of the OI baseline, states
X and observations Y concatenate two components: a coarse-scale
SSH component corresponding to the OI baseline and a fine-scale
SSH component corresponding to the anomaly of the SSH field
with respect to the OI baseline. Here, we consider 5-day time
windows. This amounts to considering tensors X and Y of
dimension 10 × 200 × 200. Similar to the SST case study, we
gradually increased the number of iterationsNI of the solver from
5 to 15 with a batch size of four and up to 300 epochs. We

FIGURE 7 | Illustration of the considered SSH dataset on April 8th, 2013: from left to right, reference SSH field (groundtruth), satellite-derived observation data
(nadir along-track data and SWOT data), and optimally interpolated field (OI).

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org May 2021 | Volume 7 | Article 6552249

Fablet et al. Joint Interpolation and Representation Learning

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


obtained the best performance over the test period using five or 10
iterations depending on the parameterization.

Similar to the SST case study, we first applied the proposed
unsupervised end-to-end learning strategy as synthesized in
Table 3. As SSH fields involve a rather low contrast, we compute
all performance metrics for the norm of the gradient of the SSH fields,
which relate to the norm of sea surface current. We may notice that
ConvAE architectures lead to poor performance and even degrade the
reconstruction with respect to the OI baseline. These results suggest
that auto-encoder architectures applied globally cannot account for the
space–time variability observed in the case study area for spatial scales
below a few hundreds of kilometers. This is particularly emphasized by
poor AE scores. By contrast, GENN architectures seemmore adapted
with the best performance issued from the fixed-point solver.
However, in the unsupervised case, we only report a relatively
marginal gain with respect to the OI baseline. We hypothesize that
this relates to the very high missing data rates. In such cases, we also
noted an early stopping criterion to be necessary after 10 to 20 epochs
to avoid over-fitting issues.

To further evaluate this point, we perform a supervised learning
experiment, where all end-to-end learning architectures are trained
to minimize the reconstruction of the true field, assuming we are
provided with a fully groundtruthed gap-free training dataset.
Interestingly, using such a supervised learning strategy, we report
much greater improvement for the reconstruction of the SSH
gradients, for example, I-scores of ≈ 88.3% for FP(5)-GENN
architecture vs. 84.06% for the OI baseline. When comparing to
DINEOF and AnDA schemes, we slightly outperform AnDA in the
supervised case. We may notice that AnDA also requires the
existence of a gap-free reference dataset. By contrast, DINEOF,
similar to ConvAE architectures, reports worse performance for the
reconstruction of the norm of the SSH gradient, which emphasizes
the limitation of methods based on global dictionaries to decompose
the space–time variability of SSH fields.

In Figure 8, we visualize interpolation examples for specific
data of the test period. They further illustrate the low relevance of

DINEOF and ConvAE approaches to improve the reconstruction
of SSH gradients with respect to the OI baseline. They also make
clear the much better reconstruction performance of GENN
architectures trained in a supervised fashion rather than in a
non-supervised one. In these experiments, gradient-based end-
to-end architectures may generate local artifacts, whereas the
fixed-point ones appear more stable. We refer the reader to the
study by Beauchamp et al. (2020) for a detailed intercomparison
of data-driven approaches for the interpolation of SSH fields for
different satellite altimeter datasets.

5 RELATED AND FUTURE WORK

This section further discusses the proposed framework with
respect to the related work, especially optimal interpolation,
learning-based interpolator, and energy-based representation
of signals and images.

Optimal interpolation: As stated in (Eq. 3), OI can be regarded as
a relaxed version of (Eq. 1), where energy Uθ involves a quadratic
form associated with the covariance model ΣX . Such OI formulation
can be solved analytically from the inversion of the covariance
matrix ΣX . We refer the reader to the study by Cressie and Wikle
(2015) for a review on the main types of covariance models and on
their application for time, space, and space–time interpolation issues.
Similar to covariance models, the proposed representation amounts
to defining a prior on stateX through an energy formulation, but this
is not restricted to linear–quadratic forms. From the consideredNN-
based architectures, we embed nonlinear transforms.Whereas in the
present work, we consider fixed-point and gradient-based schemes
corresponding to the limit case, λ � ∞; future work could
investigate these minimization schemes coupled with observation
noise models as in (Eq. 4). In this context, ADMM algorithms Boyd
et al. (2010) may also be of great interest to address more complex
observation models.

Learning interpolators: A significant amount of work has been
dedicated to the development of learning-based schemes for
interpolation issues. Regarding deep learning models, most of
the proposed approaches focus on directly learning the
interpolation algorithms using some initialization, typically a
zero-filling initialization (Xie et al., 2012; Yan et al., 2018).
Examples of such approaches include both auto-encoder–like
CNN architectures (Xie et al., 2012; Yan et al., 2018) and CNN
architectures inspired from reaction–diffusion PDEs (Chen et al.,
2015) derived from variational formulations (Bertalmio et al.,
2000). Rather than deriving the architecture from the gradient
descent algorithm associated with some a priori energy
formulation, we here aimed to jointly learn an energy-based
representation of the class of signals or images of interest and
the NN-based implementation of the associated minimization
scheme. Regarding the latter, we have shown that the parameter-
free fixed-point architecture may prove efficient. In Barth et al.
(2020), a similar end-to-end architecture is proposed; however, it
does not explicitly rely on an underlying variational formulation
and only explores auto-encoder architecture. Recent studies have
also investigated the learning of variational formulations
associated with gradient-based solvers (Kobler et al., 2020).

TABLE 3 | Evalulation of the benchmarked methods for the SSH case study using
an unsupervised and supervised training strategy: we evaluate for the gradient
norm of the SSH fields (∇SSH), the interpolation, and reconstruction scores,
respectively, the I-score, as well as auto-encoding scores when relevant. For
benchmarking purposes, we consider OI, AnDA, and DINEOF schemes.
Regarding the proposed framework, we evaluate two settings using an
iterative fixed-point procedure: namely, FP(5)-ConvAE architecture based on
a convolutional auto-encoder architecture and FP(5)-GENN based on a Gibbs
energy representation.

Model I-Score R-score AE-score

∇SSH ∇OI 84.06 90.24 –

∇AnDA 88.00 92.53 –

∇DINEOF 80.76 91.20 −42.18
Unsup ∇FP(5)−ConvAE 78.54 95.73 −35.26

∇G(5)−ConvAE 82.18 96.41 −42.47
∇FP(5)−GENN 85.61 98.93 76.00
∇G(5)−GENN 82.93 98.50 82.36

Sup ∇FP(10)−ConvAE 82.87 96.02 −26.36
∇G(10)−ConvAE 85.19 97.90 −17.77
∇FP(10)−GENN 88.28 97.90 73.29
∇G(10)−GENN 87.93 96.35 77.87
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Gradient-based solvers appear more flexible than fixed-point
ones to account for more complex observation models. In this
context, future work could further explore and benchmark the
derivation and learning of computationally efficient
minimization architectures including using ideas from meta-
learning approaches (Hospedales et al., 2020).

Representation learning and energy-based representations:
Representation learning is among the key feature of deep
learning methods to infer relevant computational
representations of some underlying processes given
observation data (Bengio et al., 2013). One may cite a variety
of case studies showing neural networks trained on a given task
embedded in some representation, which is of interest for many
other tasks. Here, we consider the auto-encoder score to evaluate

the representation capacity of a model trained from irregularly
sampled data. Our results point out that given some appropriate
design of the end-to-end architecture, the model learned from
data with very high missing data rates can infer a relevant
representation of the gap-free states. To this end, we rely on
energy-based representations. Such representations have been
widely explored as such representations are the core of physics-
informed representations, for example, Gibbs models in statistical
physics and Hamiltonian representations in mechanics (Geman,
1990). From the mid-70s, both continuous and discrete energy
representations have been considered in signal and image
processing to address inverse problems. Among others, we
may cite denoising, interpolation, segmentation, and super-
resolution issues (Geman, 1990; Roth and Black, 2009;

FIGURE 8 | Comparison of data-driven interpolation methods for the norm of the gradient of the SSH field on April 8th, 2013: reference SSH field (groundtruth),
optimally interpolated field (OI) (left panel), and data-driven interpolations of the SSH field using DINEOF, AnDA, FP(5)-ConvAE, and FP(5)-GENN methods. We refer the
reader to the main text for details on these methods.
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Freeman and Liu, 2011). In Roth and Black (2009), higher-order
Markovian fields were investigated with nonlinear functions of
many filter responses. Similar to these energy priors, the proposed
GENN architecture decomposes as a sum of terms which only
involves local neighborhoods. The latter relates to the Markovian
property embedded in Gibbs priors. Whereas the calibration of
such Gibbs models generally involves a relatively low number of
parameters, their NN-based implementation allows us to consider
much more complex parameterizations as well as to learn such
representations in unobserved (latent) spaces. In the reported
application, we consider an energy-based representation in a
downscaled version of the considered spatial domain and learn
the associated upscaling operator. As shown here, it also provides
new means to jointly learn such priors and solve the associated
inverse problemwhen considering irregularly sampled training data.
Regarding deep learning models, restricted Boltzman machines
(RBMs) are active research topics (Salakhutdinov and Hinton,
2009; Zhang et al., 2018). They also involve an energy-based
formulation which relates the observed data to latent variables. A
number of applications support their relevance, including when
dealing with missing data. Numerically speaking, they exploit
MCMC techniques, which are computationally expensive and
may make their combination with other DL architectures more
difficult. Here, through the considered parameterization (Eq. 8), we
can derive simple and efficient inversion schemes from a learned
energy representation. This property may open new avenues for a
plug-and-play exploitation of such trainable priors for addressing
other tasks than those considered during training. Besides, future
work may also extend the proposed framework to trainable
observation models.

Dealing with missing data: As stated in the introduction, dealing
with missing data is often critical to address real-world issues and
datasets, especially in spaceborne earth observation. Missing data
may be due to sensor characteristics (sensitivity to acquisition
conditions, acquisition sampling patterns, . . .) as well as to
intrinsic features of the considered systems and processes. As a
typical example, ocean dynamics (e.g., currents and geophysical
tracer dynamics) are only defined within the ocean. Hence, the
application of deep learning schemes to gridded representations of
the ocean has to deal with missing data areas, including land areas.
Given the texture-like and relatively low-contrast patterns depicted
by geophysical dynamics, zero-filling strategies aremost likely to lead
to artifacts. CNNs defined on irregular graphs (Defferrard et al.,
2016; Vialatte et al., 2016) may be an alternative. Here, we consider
another alternative where the trainable energy-based representation
applies to the entire regularly gridded domain. Among others, the
proposed approach makes, for instance, the learning of
representations feasible, which apply both on the open ocean (in
areas with no land regions) and in coastal areas. Overall, future work
will further explore the potential of the proposed framework for the
identification and exploitation of deep learning representations for
the characterization, modeling, and reconstruction of geophysical
dynamics from satellite remote sensing data.

Unsupervised vs. supervised learning: The reported experiments
suggest that for missing rates up to 80% of the considered domain, as
illustrated by MNIST and SST case studies, we may be able to learn

directly the interpolation scheme and the underlying variational
representation from observation datasets involving gaps. This is of
key interest for a plug-and-play application to real datasets with no
preprocessing steps. We also expect the proposed AE and GENN
architectures to be flexible and generic to adapt to a variety of
multivariate signals, images, and image time series. For larger
missing data above 90%, the experiments reported for the SSH
case study suggest that the training phase should be constrained by
complementary data to lead to a relevant interpolation performance.
Whereas we tested an idealized fully supervised setting, one may
expect the same performance with a reference target dataset with
gaps if the latter is sufficiently large. For a given observing system,
such a reference dataset could be provided by another observing
system, which could sense the considered process for specific time
periods and/or regions, possibly according to an irregular
space–time sampling. These results open research avenues to
further investigate irregularly sampled multisensor datasets during
the training phase of the proposed end-to-end architecture. The fast-
sampling phase of the upcoming SWOT mission could be a typical
example (Gaultier et al., 2015). During this fast-sampling phase,
some ocean regions will involve a better space–time sampling. As
such, one could explore the related SSH datasets as relevant
groundtruthed reference datasets to train end-to-end architectures
using as inputs other narrow-swath altimeters as well as other sea
surface tracers. Here, we believe that multimodal extensions of the
proposed framework could be of key interest.
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