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Abstract The Simple Ranking Method using Reference Profiles (or SRMP) is
a Multi-Criteria Decision Aiding (MCDA) technique based on the outranking
paradigm, which allows to rank decision alternatives according to the preferences
of a decision maker (DM). Inferring the preference parameters of such a model
can lead to a cognitive fatigue of the DM, who is often asked to express several
preferential statements about pairs of alternatives during the elicitation process.
To limit the DM’s effort, we propose in this work an incremental elicitation process
to select informative pairs of alternatives to be presented to the DM sequentially
with the aim of refining the SRMP model until a robust recommendation can be
made. We study several different heuristics for selecting the pair of alternatives to
be submitted to the DM at each step. Following extensive numerical experiments
we identify one of the proposed heuristics as performing significantly better than
the others and we provide several guidelines for its use in practice.

Keywords Multi-Criteria Decision Aiding · Incremental elicitation process ·
Selection heuristic · Reference profiles · Pairwise comparisons

1 Introduction

Multi-Criteria Decision Aiding (MCDA) [31] is a methodology to support decision
makers (DMs) when multiple criteria have to be taken into consideration, whether

A. Khannoussi (corresponding author)
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the goal is to choose among a set of decision alternatives, sort them into predefined
categories, or rank them from the “best” to the “worst” one. A large variety of
MCDA techniques have been proposed to help the DM solve complex decision
problems by taking into account his/her preferences and are roughly classified
into three approaches [7,14] (1) Multi-Attribute Value Theory (MAVT) [20] , (2)
outranking-based approaches [15] and (3) rule-based models [18].

Whatever the type of the method, the preferences of the DM have to be elicited
(by learning or inferring the model parameters).

An indirect elicitation approach can be used in practice, where the DM is only
asked to express holistic judgments on alternatives (like assignment examples, a
partial pre-order on the alternatives, pairwise comparisons of alternatives, ...). In
the literature, the indirect approach can be divided into two categories [23]: the
first, where the learning data are given prior to the learning algorithm as a “batch”
[7], and the second, called “incremental elicitation” [4,10], in which the learning
data arrives sequentially and the preference model is improved iteratively.

A standard setting in incremental elicitation is to start from a predefined set
of alternatives and present queries to a DM typically in the form of pairwise
comparisons of alternatives from this set. One can mention configuration problems
in which the DM has to choose a product among many defined in a combinatorial
space [5,2].

Compared to a batch setting, incremental preference elicitation should first
of all decrease the number of necessary holistic judgements that the DM has to
provide. Second, by decreasing this number, it should decrease the overall cognitive
effort of the DM (even if certain of the judgements might be harder to make).

We consider, in this paper, the topic of incremental learning of the parame-
ters of the Simple Ranking Method using Reference Profiles (SRMP) [6,29]. This
method is based on the outranking paradigm and allows to rank decision alterna-
tives according to the preferences of a DM. It is very useful in real-world appli-
cations as it can easily handle heterogeneous evaluation scales, while at the same
time constructing a transitive global weak preference relation. Its similarity to
normative outranking-based sorting approaches also helps to justify the decision
recommendations [8]. SRMP constructs a ranking of alternatives by comparing
them in pairs to a set of reference profiles [29,28].

Through this contribution, we first propose an incremental elicitation process
of SRMP models and guidelines for selecting pairs of alternatives to present to
the DM during this process with the aim of reducing his/her cognitive effort. We
then study various selection heuristics, and determine experimentally, on a very
large number of artificially generated data, which ones perform best on average.
We show that, when adopting the proposed selection heuristic, it is possible to
reduce the number of iterations of the incremental elicitation process, compared
to a random selection strategy.

The rest of this article is structured in the following way: Section 2 introduces
the SRMP model and presents a state of the art on incremental elicitation. Section
3 presents the proposed incremental elicitation process of SRMP models, detailing
the selection heuristics for selecting learning pairs of alternatives and the genera-
tion of intermediate SRMP models. Section 4 provides an experimental analysis,
using generated data, of several process components (learning set heuristics and
SRMP model generation). We finish with the concluding remarks and perspectives
for future work in Section 5.
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2 State of the art

2.1 Simple Ranking Method using Reference Profiles: SRMP

In outranking methods, an “at least as good as” relation is built between alter-
natives evaluated on multiple criteria. This binary relation, called “outranking
relation” [30] is often denoted by %. An alternative a outranks an alternative b
when a weighted majority of criteria validates the fact that a is performing at
least as good as b and there is no criterion where b seriously outperforms a. The
majority-related condition is usually called concordance, whereas the second con-
dition is called discordance or veto principle. From a computational point of view,
various implementations of these conditions, and their combination, have been
proposed in the literature (see, e.g., [31]). These various implementations result
most of the time in a valued outranking relation, where the value represents the
strength of the “at least as good as” statement.

Comparing all the alternatives pair-wisely according to such a relation does not
necessarily generate a transitive relation, and may also result in cycles, thus making
it impossible to create a complete ranking [15]. It has therefore been proposed by
Rolland [29] to use a so-called reference point in the comparison of two alternatives:
a is considered as strictly preferred to b if and only if the outranking relation
between a and the reference point is stronger than the outranking relation between
b and the reference point. Let us now show how this is implemented more formally.

We denote with A a set of n alternatives and withM = {1, . . . ,m} the indexes
of m criteria. The evaluation of an alternative a ∈ A on criterion j ∈M is denoted
with aj . a can therefore be identified with its performance tuple a ≡ (a1, . . . , am).
With each criterion is associated a preorder %j , s.t. if the DM considers that a is
at least as good as b on j then aj %j bj .

SRMP [29] is an outranking method defined by several parameters, whose
values may differ from one DM to another :

– the set of reference profiles P = {ph,∀h ∈ 1..k}. These reference profiles domi-
nate each other, i.e. if ph ≡ (ph1 , . . . , p

h
j , . . . , p

h
m) and pl ≡ (pl1, . . . , p

l
j , . . . , p

l
m),

then phj %j plj ,∀h, l ∈ 1..k, h > l, ∀j ∈M ;
– the lexicographic order of the profiles σ. This corresponds to a permutation on

1..k and represents the order in which the profiles will be used when comparing
alternatives;

– the criteria weights wj ≥ 0, ∀j ∈M , where
∑
j∈M

wj = 1.

When comparing two alternatives of A with respect to a profile ph, h ∈ 1..k,
two situations can arise :

– one alternative (say a) is preferred to the other one (say b) with respect to ph,
i.e. a �ph b, which arises if and only if∑

j∈C(a,ph)

wj >
∑

j∈C(b,ph)

wj ,

– the two alternatives (say a and b) are indifferent with respect to ph, i.e. a ∼ph b,
which arises if and only if ∑

j∈C(a,ph)

wj =
∑

j∈C(b,ph)

wj ,



4 Khannoussi et al.

where C(a, ph) = {j ∈ M : aj %j phj } is the set of criteria on which alternative

a ∈ A is at least as good as profile ph.
To rank a, b ∈ A using the SRMP procedure, we sequentially consider the

profiles pσ(1), pσ(2), . . . , pσ(k) according to the lexicographic order. Intuitively, a
preference between a and b is formed as soon as we encounter a profile in the
lexicographic order for which a is preferred to b or vice-versa. Otherwise, a and b are
considered as indifferent, which means that no profile has been able to discriminate
between them. More formally, for any two alternatives a, b ∈ A, we say that:

– a is strictly preferred to b, denoted by a � b, if and only if:

∃h ∈ {1, . . . , k} s.t. a �pσ(h) b and ∀l < h, a ∼pσ(l) b (1)

– a is indifferent to b, denoted by a ∼ b, if and only if:

∀h ∈ {1, . . . , k}, a ∼pσ(h) b (2)

2.2 Illustrative example

To explain how the SRMP ranking method works, we present an illustrative ex-
ample. We consider a decision problem where different job offers have to be ranked
according to a candidate’s preferences. Let us consider three job offers x, y and z
which are evaluated on three criteria: the salary (S) (in ke, the higher, the better),
the location (L) (in km, the lower, the better) and job appeal (J) (good %J fair
%J poor %J very poor). The evaluations of the alternatives on these three criteria
are presented in Table 1, along with the preference parameters, which have been
previously elicited from the candidate.

S L J
x 41 2 good
y 46 4 poor
z 43 5.5 fair
p1 42 5 poor
p2 45 3 good
w 1/3 1/3 1/3
σ (1, 2)

Table 1 Evaluations of the alternatives and SRMP parameters

The two reference profiles allow to define three segments on the performances
on each criterion: better than p2; between p1 and p2; worse than p1. In other
terms, the reference profiles allow to identify an ordered encoding for each criterion
defined by three ordered intervals of performances (A, B, and C) as illustrated in
Figure 1, such that:

A performances above p2 on each criterion are denoted A (which can be inter-
preted as “good”).

B performances between p1 and p2 on each criterion are denoted B (which can be
interpreted as “intermediate” or “fair”).
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C performances below p1 on each criterion are denoted C (interpreted as “insuf-
ficient”).

The evaluations of the alternatives through this encoding are presented in
Table 2.

S L J
x A A C
y B B A
z B C B

Table 2 Encoding of the evaluations of the alternatives

B

C

S L J

2

4

3

5

5.5

41

42

43

45

46 good

fair

poor

very poor

P1

P2

x

y

z

A

Fig. 1 SRMP example

To rank the three alternatives according to this SRMP model, we first compare
each of the alternatives to the others using the profiles in the lexicographic order
σ = (1, 2). For p1 :∑

j∈C(x,p1) wj = 0 + 1/3 + 1/3 = 2/3∑
j∈C(y,p1) wj = 1/3 + 1/3 + 1/3 = 1∑
j∈C(z,p1) wj = 1/3 + 0 + 1/3 = 2/3

⇒
y �p1 x
y �p1 z
x ∼p1 z

Profile p1 is not able to discriminate between x and z, and therefore we continue
with profile p2, respecting the lexicographic order.

For p2 : ∑
j∈C(x,p2) wj = 0 + 1/3 + 1/3 = 2/3∑
j∈C(z,p2) wj = 0 + 0 + 0 = 0

}
⇒ x �p2 z

The final ranking is thus y � x � z, hence y is considered as globally the best
alternative, followed by x and then by z.
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2.3 Learning the parameters of an SRMP model

The DM’s preferences are usually transformed into values or constraints on the
parameters of the MCDA model at hand (e.g. criteria weights, profiles and their
lexicographic order for SRMP models). They can be given directly by the DM
through a direct preference elicitation approach, however, such an approach is
usually too difficult in practice, as the DM needs to have a very good understand-
ing of the MCDA model [25]. Therefore, a second approach, known as indirect
elicitation, starts from partial knowledge on the output of the method, such as,
for example, pair-wise comparisons of alternatives in the ranking context and in-
fers a set of model parameters that satisfy them. A third option is a mix between
the direct and the indirect approaches, where parts of the preference parameters
are given directly by the DM, whereas others are inferred through an indirect ap-
proach. For example, in the case of an SRMP model, the reference profiles and
their lexicographic order could be given directly by the DM, while the criteria
weights can be inferred from pairwise comparisons of alternatives.

Recent works propose an indirect elicitation approach for SRMP models where
the DM expresses his/her preference through pair-wise comparisons of alternatives
that will be used to infer the model’s parameters (e.g. criteria weights, profiles and
their lexicographic order). In [27], Olteanu et al. formulate the SRMP preference
elicitation as a mixed integer linear optimization problem (MIP) defined by a set
of linear constraints related to the set of alternatives, the criteria, the number of
profiles and the binary comparisons (preference / indifference) of alternatives pro-
vided by the DM. Belahcène et al. [1] propose another approach using the Boolean
satisfiability (SAT) formulation which consists of a set of boolean variables and
logical propositions about these variables. Compared to the previous proposition,
this approach is faster and can handle larger sets of pairwise comparisons of alter-
natives. Liu et al. [22] propose a metaheuristic to elicit the parameters of an SRMP
model which is faster than the MIP approach but it does not guarantee that the
best model which would perfectly match the provided pair-wise comparisons will
be found.

2.4 Active learning and incremental preference elicitation

Classically, machine learning methods are defined as algorithms which infer struc-
tural information from given data. Some of these techniques restrict themselves
to a classical batch setting, where data is given in bulk prior to model training.
However, in many applications, data arrives through a constant stream, which
requires the model to be adapted continuously.

Active learning [33] focuses on learning in such a streaming setting and where
an oracle is used during the process. More precisely, unlike the traditional frame-
work where data is known and imposed, in active learning, it is the learning algo-
rithm that asks for information for specific data. More precisely, these algorithms
receive learning data sequentially, one by one or chunk by chunk, and use this data,
together with the previously learned model and the oracle’s input to produce a
new, better model. These algorithms come in three forms in the literature [33] :
generation of instances, online and offline learning algorithms. In the first case,
new instances that need to be labelled are generated so as to be as informative as
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possible for the learning algorithm, whereas in the second case, the learning data
arrives sequentially, and the learning algorithm decides whether it is necessary
to present it to the oracle or not. Offline learning algorithms suppose that there
exists a database of such instances, and select which instances will be presented
to oracle. A few examples of the use of active learning techniques can be found
for the incremental construction of decision trees for classification or regression
[13,17,32] and several incremental SVM models are presented in [35]. Syed Shakib
Sarwar et al. [34] present an approach for active learning in Deep Convolutional
Neural Networks.

In our context, where the decision algorithm is an MCDA algorithm, the ac-
tive learning topic has mostly been tackled from the offline learning point of view,
and is usually called incremental preference elicitation [16]. In the MAVT context,
Holloway et al. [19] show the importance of the order of the pair-wise comparisons
in decreasing the number of questions in order to reduce the cognitive effort of
the DM. Ciomek et al. [11] present a set of heuristics to minimize the number
of elicitation questions and prioritize them in the context of single choice deci-
sion problems. They conclude that the best performing heuristic depends on the
problem settings (e.g. number of criteria and alternatives). In the same context,
Benabbou et al. [2] select a set of pair-wise questions using a min-max regret strat-
egy. This strategy reduces the number of pair-wise questions but the performance
guarantee is weakened (with some acceptable bounds to the ideal situation). Based
on the min-max regret, it is possible to relax the impossibility for the user to make
mistakes when answering to the queries, thanks to the use of a Bayesian frame-
work [3]. Finally, Olteanu [26] presents strategies for generating alternatives for
an incremental elicitation of majority-rule sorting models.

Inspired by the machine learning field and the previously mentioned work in
MCDA, we choose to study in this work the incremental elicitation of SRMP
models in order to reduce the cognitive effort of the DM during the preference
elicitation process. We therefore propose heuristics to select pairs of alternatives
from an existing database, which the DM has to compare. To our knowledge, no
previous work deals with incremental elicitation for ranking problems and more
specifically with the Simple Ranking Method Using Reference Profiles (SRMP).

3 Incremental elicitation of SRMP models

3.1 Incremental elicitation process

In order to decrease the cognitive effort of the DM during the preference elicitation
process, we propose to reduce the number of learning examples which are presented
to him/her, while ensuring at the same time that the learned preference model
represents well enough his/her real preferences.

Therefore, we propose an incremental elicitation process for the SRMP model
which is illustrated in Figure 2. As mentioned in Section 2.4, the classical setting
for incremental elicitation is the existence of a database of alternatives. In the
case of SRMP, the information provided by the DM is under the form of pairwise
comparisons of alternatives. Consequently, here we have as input a database of
pairs of alternatives D ⊆ A×A.
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Ask DM to 
compare (x,y)

 x > y | x < y | x ~ y

Select a pair
(x,y)

Add comparison 
to D

DM changes or 
deletes 

comparisons?

Any SRMP 
model 

compatible 
with    found?

Yes Yes

Yes

No Stop condition
 verified?

Finish

N
o

Find incompatible
 comparisons

No

Start

Update D

(3.2)

(3.3)

(3.4)

Fig. 2 Incremental elicitation process (the numbers next to the boxes correspond to the
sections of this article in which further details are given).

Once the process is started, the knowledge base L is first set to the empty set.
During the process it will contain the pairs of alternatives for which the DM has
expressed his / her preferences. At each iteration of the process a heuristic selects
a pair of alternatives (x, y) (box (3.2) in Figure 2) from the database D that will
be proposed to the DM. He/she then expresses his/her preferences on this pair
of alternatives by comparing them, either in the form of an indifference or of a
preference of one alternative over the other. This information is then added to
the knowledge base L containing the comparisons from the previous iterations,
which is then used to construct a new SRMP model. When inferring the model
(box (3.3) in Figure 2) we may have two outcomes: either i) an SRMP model
compatible with L is found; or ii) no feasible SRMP model is found. In the first
case we continue the incremental elicitation process. In the second one, the DM’s
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preferences expressed on the last pair of alternatives turn out to be incompatible
with his/her preferences expressed previously. It is then important to solve this
problem in order to continue the incremental elicitation process and have at the
end an SRMP model compatible with all expressed preferences. We propose in the
context of this work to determine the set of subsets of incompatible comparisons
(box (3.4) in Figure 2) and present them to the DM. The DM may change some
of his / her prior comparisons so that all of them are compatible with an SRMP
model or may decide to remove some of them from L and continue the elicitation
process (box (3.3) in Figure 2). If the DM decides to delete one of the subsets then
he/she agrees that the inferred SRMP model does not take into consideration
this preference information and if later, the obtained model is faced with this
subset of pairs of alternatives, it will generate a different recommendation from
the preferences that he/she initially expressed. After that, the process returns to
the step of finding an SRMP model compatible with L. In the case where the
DM does not agree to change one of the subset comparisons or delete it then the
incremental process stops. Other ways of solving this compatibility problem could
be imagined, as for example adding a missing criterion, or changing the preference
model. However this is beyond the scope of this research.

This procedure is repeated and stops when a “good enough” preference model
is obtained (i.e. the stop condition is verified). It is obvious that “good enough”
might have different definitions, depending on the context of the application, or the
DM. Later in this work (in Section 4.4) we give some advice on how to determine
in practice when to stop the process.

We detail how to select a pair of alternatives at each iteration (box (3.2) in
the Figure 2) in Section 3.2. In Section 3.3 we present the method used to find
a compatible SRMP model with the DM’s preferences. The methodology used to
find the incompatible evaluations (box (3.4) in Figure 2) is detailed in Section 3.4.

3.2 Selecting pairs of alternatives

We begin by describing in more detail the second step of the elicitation process,
consisting in selecting the pair of alternatives to present to the DM at each iteration
of the process (the first being the initialization of the knowledge base L to the
empty set).

As this is an exploratory research topic, we present below several heuristics
which we will evaluate in Section 4 in order to recommend the solution that min-
imizes the number of iterations needed by the proposed elicitation process.

To simplify the notation, we will suppose here, without any loss of general-
ity, that all the evaluations are numerical, and that all the criteria have to be
maximized. The proposed heuristics can easily be adapted to the case where the
criteria have heterogeneous scales. We also denote with maxj (resp. minj) the
highest (resp. lowest) evaluation on criterion j.

These heuristics can be divided into two sub-groups: those using only the set
of alternatives and those also using the SRMP model that was built during the
previous iteration of the elicitation process.
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3.2.1 Hrnd: random choice

This heuristic belongs to the first group and is mainly used as a baseline to assess
the efficiency of the other heuristics. A random pair of alternatives is selected from
the database D of possible pairs, using a uniform distribution. Consequently, Hrnd
returns the pair (a, b)rnd such that :

(a, b)rnd = random(D)

3.2.2 Hsim: similar alternatives

The idea behind this heuristic is to make the DM compare alternatives which
are very “similar”. In this particular case, we use an adapted L1 norm d, how-
ever, other types of distances may be used. Consequently, Hsim returns the pair
(a, b)sim such that :

(a, b)sim = argmin
(x,y)∈D

d(x, y), where d(x, y) =
1

m
·
m∑
j=1

|xj − yj |
maxj −minj

,∀(x, y) ∈ D.

3.2.3 Hdis: dissimilar alternatives

This heuristic is opposite to the previous one and uses the L1 norm to deter-
mine the dissimilarity of pairs of alternatives. Consequently, Hdis returns the pair
(a, b)dis such that :

(a, b)dis = argmax
(x,y)∈D

d(x, y)

3.2.4 Hcp: alternatives close to a profile

This heuristic belongs to the second class of heuristics and uses the SRMP model
from the previous iteration in order to select the following pair of alternatives.
During the first iteration we fix a number of pairs (e.g. 10% of the total number
of pairs) which are chosen randomly from D in order to construct a first SRMP
model and then iteratively select the following pair using the heuristic detailed
below. This initial step will be performed for all heuristics that we will present
further.

The concept of using a distance is also maintained here, however we compare
an alternative a ∈ A to a profile ph ∈ {p1, p2, ..., pk} of the SRMP model as follows:

dw(a, ph) =
1

m
·
m∑
j=1

wj |aj − phj |
maxj −minj

,

where w = (w1, . . . , wm) corresponds to the criteria weights of the current SRMP
model. This corresponds to a weighted L1 norm between an alternative and a
reference profile.
Hcp selects the pair of alternatives which is closest to the profiles. Hcp returns

the pair (a, b)cp such that :
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(a, b)cp = argmin
(x,y)∈D

1

k

k∑
h=1

min(dw(x, ph), dw(y, ph))

3.2.5 Hmp: alternatives maximizing the number of profiles needed to discriminate
between them

For this heuristic, we look for pairs of alternatives that are ideally indifferent when
using the SRMP model previously generated, or which require as many profiles
as possible in order to denote a preference of one over the other. Our intuition is
that confronting the DM with such a pair of alternatives will induce additional
constraints reducing as much as possible the search space of feasible SRMP models.

We begin by looking for pairs of alternatives (a, b) ∈ D that are indifferent
using the previously generated SRMP model. If no such pair can be found, we
then look for pairs where a preference is expressed using the last profile in the
lexicographic order. If again no such pair can be found we consider the pairs
discriminated by the previous profile in the lexicographic order and so on, until
reaching pairs discriminated using the first profile.

To model this more formally, let us associate an integer penalty score with the
logical propositions of Table 3. With each pair (a, b) ∈ D we associate the penalty
of the first proposition which is true in the sequence from Table 3. Finally, the
Hmp heuristic selects a pair (a, b) from D that minimizes this penalty.

Penalty Proposition
1 (a ∼pσ(1) b and . . . and a ∼pσ(k) b)
2 (a ∼pσ(1) b and . . . and a ∼pσ(k−1) b and a �pσ(k) b)
. . . . . .
k (a ∼pσ(1) b and a �pσ(2) b)
k+1 (a �pσ(1) b)

Table 3 Hmp penalty function

3.3 Finding compatible SRMP models

After selecting a pair (a, b) of alternatives and receiving the result of the compar-
ison from the DM, we add it to L. More precisely, L is composed of two subsets
L� and L∼ s.t. L = L� ∪ L∼. We add the pair to L� either as (a, b) if the DM
prefers a to b, or as (b, a) if the DM prefers b to a. Alternatively, this pair is added
to L∼ if the DM considers a to be indifferent to b. Using this information, which
is accumulated following each iteration, we then try to find an SRMP model that
is compatible with it.

As multiple SRMP models may represent the same preference information
expressed by the DM, we explore here several ways in which to generate such a
model, if one exists. In all cases, we will be using exact approaches using Mixed-
Integer Linear programs, or MIPs.
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3.3.1 MIPfirst: first feasible SRMP model

This first approach uses a MIP inspired from [27]. The MIP is simplified by re-
moving the objective function (replacing it with a constant value) in order to find
the first feasible SRMP model. The parameters of this model are given in Table 4.

A the set of alternatives (n in total)
M the set of criteria indices (m in total)
k the number of reference profiles
minj the smallest evaluation on each criterion j ∈M
maxj the largest evaluation on each criterion j ∈M
dirj the preference direction of each criterion j ∈M (1 for increasing and −1 for decreasing)
G the alternatives evaluations, or performance table, given as a matrix of size n×m

(with ga,j ∈ [0, 1] containing the evaluation of alternative a ∈ A on criterion j ∈M)
L� set of ordered pairs (a, b) ∈ A×A where a is preferred to b by the DM
L∼ set of pairs (a, b) ∈ A×A where a and b are indifferent to the DM
σ a k-tuple encoding a permutation of 1, ..., k corresponding to a lexicographic order

of the reference profiles
γ a small constant used to model strict inequalities

Table 4 Parameters of MIPfirst.

The variables of the model are presented in Table 5.

wj continuous : the criteria weights of the SRMP model, ∀j ∈M
phj continuous : the performance of the reference profiles of the SRMP model

∀j ∈M , ∀h ∈ 1, ..., k
δha,j binary : 1 if alternative a outranks profile h on criterion j and 0 otherwise

∀a ∈ A, ∀j ∈M , ∀h ∈ 1, ..., k
ωha,j continuous : equal to wj if δha,j = 1 and to 0 otherwise, ∀a ∈ A, ∀j ∈M , ∀h ∈ 1, ..., k

sha,b binary : 1 if alternative a is preferred to alternative b w.r.t. reference profile h

and 0 if alternative a is indifferent to alternative b w.r.t. reference profile h
∀(a, b) ∈ L�, ∀h ∈ 0, ..., k

Table 5 Variables of MIPfirst.

The formulation of the MIP is thus as follows:

max 0

s.t. :

wj > γ ∀j ∈M (3)
m∑
j=1

wj = 1 (4)

maxj > phj > minj ∀j ∈M,∀h ∈ 1, ..., k
(5)

dirj · ph+1
j > dirj · phj ∀j ∈M,∀h ∈ 1, ..., k − 1

(6)
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dirj · (ga,j − phj ) > (maxj −minj + 1) · (δha,j − 1) ∀a ∈ A,∀j ∈M,∀h ∈ 1, ..., k
(7)

(maxj −minj + 1) · δha,j > dirj · (ga,j − phj ) + γ ∀a ∈ A,∀j ∈M,∀h ∈ 1, ..., k
(8)

wj > ωha,j ∀a ∈ A,∀j ∈M,∀h ∈ 1, ..., k
(9)

ωha,j > 0 ∀a ∈ A,∀j ∈M,∀h ∈ 1, ..., k
(10)

δja,j > ωha,j ∀a ∈ A,∀j ∈M,∀h ∈ 1, ..., k

(11)

ωha,j > δja,j + wj − 1 ∀a ∈ A,∀j ∈M,∀h ∈ 1, ..., k

(12)
m∑
j=1

ω
σ(h)
a,j >

m∑
j=1

ω
σ(h)
b,j + γ − (1 + γ) · (1− sσ(h)

a,b + s
σ(h−1)
a,b ) ∀(a, b) ∈ L�,∀h ∈ 1, ..., k

(13)
m∑
j=1

ω
σ(h)
a,j >

m∑
j=1

ω
σ(h)
b,j − s

σ(h)
a,b − s

σ(h−1)
a,b ∀(a, b) ∈ L�,∀h ∈ 1, ..., k

(14)
m∑
j=1

ω
σ(h)
a,j 6

m∑
j=1

ω
σ(h)
b,j + s

σ(h)
a,b + s

σ(h−1)
a,b ∀(a, b) ∈ L�,∀h ∈ 1, ..., k

(15)

s
σ(0)
a,b = 0 ∀(a, b) ∈ L� (16)

s
σ(k)
a,b = 1 ∀(a, b) ∈ L� (17)

m∑
j=1

ωha,j >
m∑
j=1

ωhb,j ∀(a, b) ∈ L∼,∀h ∈ 1, ..., k

(18)
m∑
j=1

ωha,j 6
m∑
j=1

ωhb,j ∀(a, b) ∈ L∼,∀h ∈ 1, ..., k

(19)

The objective function only seeks to find a model compatible with the given
pair-wise comparisons, therefore it is fixed to a constant. Constraints (3) and (4)
normalize the criteria weights, make them sum up to 1 and ensure they have
non-zero values. Constraints (5) and (6) are used to bound the profiles evalua-
tions and maintain the dominance constraint between them, given the direction of
preferences on each criterion. Constraints (7) and (8) model δha,j as mentioned in

Table 5, while constraints (9), (10), (11) and (12) model ωha,j as the minimum value

between wj and δha,j . Constraints (13), (14) and (15) model the preference rela-
tion between alternatives a and b following their comparison to a reference profile
pσ(h), when a is preferred to b. Constraint (13) models a strict preference in favor
of alternative a over alternative b w.r.t. profile pσ(h). Constraints (14) and (15)



14 Khannoussi et al.

model an indifference between a and b w.r.t. profile pσ(h). The binary variables
that can be found in these three sets of constraints together with constraints (16)
and (17) are needed to enforce that at least one profile discriminates between the
two alternatives and that all prior profiles in the lexicographic order do not. When
a profile pσ(h) models a preference between a and b, i.e. sσ(h) = 1, the constraints
for the following profile, pσ(h+1), are relaxed. If on the other hand profile pσ(h)

does not model a preference of a over b then sσ(h) = 0 and an indifference relation
between a and b w.r.t. this profile is enforced. Furthermore, the constraints on
the following profile, pσ(h+1), are not relaxed, and therefore either a preference
of a over b or an indifference between them will be modeled using this profile.
This constraint enforcement propagation is stopped by forcing the constraints for
the last profile to model a preference (sσ(k) = 1) between a and b. If this is not
possible, we observe a propagation in the opposite direction as sσ(k−1) needs to
become 1 in order to relax the constraints modeling a preference using the last
profile. Again, this propagation is stopped by setting sσ(0) = 0 so that the first set
of constraints cannot be relaxed without modeling a preference between a and b.

Finally, constraints (18) and (19) model the indifference relation between all
pairs of alternatives (a, b) ∈ L∼, where a and b need to be considered as indifferent
for all reference profiles ph, h ∈ 1, ..., k.

3.3.2 MIPclose: closest SRMP model to the previous one

A second configuration seeks to find an SRMP model that is as close as possible,
in terms of the distance between its parameters, to the model that was extracted
during the previous iteration of our incremental process. This is important to
ensure stability in the interactive process with the DM.

We adapt the MIP from the previous subsection by adding several additional
parameters (Table 6), variables (Table 7), constraints and by changing the objec-
tive function.

w
′
j the weights of the previous SRMP model, ∀j ∈M

p
′h
j the profiles of the previous SRMP model, ∀j ∈M, ∀h ∈ 1, ..., k

Table 6 Additional parameters of MIPclose.

dwj continuous : the distance between wj and w
′
j , ∀j ∈M

dphj continuous : the distance between phj and p
′h
j , ∀j ∈M , ∀h ∈ 1, ..., k

Table 7 Additional variables of MIPclose.

The MIPclose model is presented below :

min
1

m

∑
j∈M

dwj +
1

k

k∑
h=1

∑
j∈M

dphj
maxj −minj
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s.t. :

Constraints (3) to (19) from MIPfirst

dwj > wj − w
′

j ∀j ∈M (20)

dwj > w
′

j − wj ∀j ∈M (21)

dphj > phj − p
′h
j ∀j ∈M,∀h ∈ 1, ..., k (22)

dphj > p
′h
j − phj ∀j ∈M,∀h ∈ 1, ..., k (23)

The objective function seeks to minimize the distance between the parameters
of the SRMP model inferred during the previous iteration and the one currently
being inferred, namely the criteria weights and the reference profiles. The two
terms are normalized and equally weighted by the objective function.

All of the constraints from MIPfirst are also present in MIPclose, with the
addition of four constraints needed to model the distances between the model
parameters. The first pair of constraints (20) and (21) are used to model the
absolute value of the difference between the weights on any criterion. The following
two constraints (22) and (23) model the absolute value of the difference between
the evaluations of profiles on any criterion.

3.3.3 MIPcenter: an SRMP model equally distanced from limit models

A third configuration seeks to find a model that is somewhat centered within the
search space of feasible SRMP models, with the aim that, subsequent input from
the DM will manage to reduce this search space as much as possible. In order to
achieve this, we first search for the two most distant SRMP models compatible
with the current input of the DM and then, using them, search for a third model
that is equally and most closely distanced from them. Finding the two most distant

wlj continuous : the criteria weights of each of the two SRMP models, ∀l ∈ {1, 2}, ∀j ∈M
pl,hj continuous : the performance of the reference profiles of each of

the two SRMP models, ∀l ∈ {1, 2}, ∀j ∈M , ∀h ∈ 1, ..., k

δl,ha,j binary : 1 if alternative a outranks profile h on criterion j and 0 otherwise

∀l ∈ {1, 2}, ∀a ∈ A, ∀j ∈M , ∀h ∈ 1, ..., k

ωl,ha,j continuous : equal to wj if δha,j = 1 and to 0 otherwise

∀l ∈ {1, 2}, ∀a ∈ A, ∀j ∈M , ∀h ∈ 1, ..., k

sl,ha,b binary : 1 if alternative a is preferred to alternative b w.r.t. reference profile h

and 0 if alternative a is indifferent to alternative b w.r.t. reference profile h
∀l ∈ {1, 2}, ∀(a, b) ∈ L�, ∀h ∈ 1, ..., k

dwj continuous : the distance between w1
j and w2

j , ∀j ∈M
dphj continuous : the distance between p1,h

j and p2,h
j , ∀j ∈M , ∀h ∈ 1, ..., k

uwj binary : 1 if w1
j >= w2

j , ∀j ∈M , and 0 otherwise

uphj binary : 1 if p1,h
j >= p2,h

j , ∀j ∈M , ∀h ∈ 1, ..., k, and 0 otherwise

Table 8 Variables of MIPdistant.

SRMP models is done using the MIPdistant mathematical model. This model
has the same parameters as MIPfirst but adds an additional index l ∈ {1, 2} to
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all of its variables. Additional variables are also needed in order to measure the
distance between the two generated SRMP models. As the objective function of
this model will be to maximize the distance between the two models, instead of
minimizing it like in the case of MIPclose, the variables measuring the distance
between the criteria weights and the profiles evaluations need to be both lower
and upper bounded. For this reason, binary variables indicating which of the two
models parameters (criteria weights and profiles evaluations) is larger, also need
to be added. We depict the variables of MIPdistant in Table 8.

The MIPdistant model is presented below :

max
1

m

∑
j∈M

dwj +
1

k

k∑
h=1

∑
j∈M

dphj
maxj −minj

s.t. :

Constraints (3) to (19) from MIPfirst with the l index ∀l ∈ {1, 2}
dwj > 0 ∀j ∈M (24)

dwj > w1
j − w2

j − (1− uwj) ∀j ∈M (25)

dwj 6 w1
j − w2

j + (1− uwj) ∀j ∈M (26)

dwj > w2
j − w1

j − uwj ∀j ∈M (27)

dwj 6 w2
j − w1

j + uwj ∀j ∈M (28)

dphj > 0 ∀j ∈M,∀h ∈ 1, ..., k
(29)

dphj > p1,h
j − p2,h

j − (1− uphj ) ∀j ∈M,∀h ∈ 1, ..., k

(30)

dphj 6 p1,h
j − p2,h

j + (1− uphj ) ∀j ∈M,∀h ∈ 1, ..., k

(31)

dphj > p2,h
j − p1,h

j − uphj ∀j ∈M,∀h ∈ 1, ..., k

(32)

dphj 6 p2,h
j − p1,h

j + uphj ∀j ∈M,∀h ∈ 1, ..., k

(33)

The objective function of this model maximizes the distance between the
weights of the two generated SRMP models and the distance between their profiles.

Constraints (3) to (19) from MIPfirst are replicated for each set of SRMP
model parameters, i.e. ∀l ∈ {1, 2}. In this way, both models are compatible with
the currently expressed preference information of the DM. Constraints (24) to (28)
model the distance between the weights of the two models, while constraints (29)
to (33) model the distance between their profiles.

With the two found SRMP models, we then look for another model which is
equally distanced from these two models but also as close as possible. This corre-
sponds to a bi-objective problem however we reduce it to a mono-objective problem
by linearly combining the two objectives in order to facilitate its resolution.
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A new model, called MIPcenter is therefore defined. The parameters of this
model contain again those ofMIPfirst. We also take the results given byMIPdistant
in the form of wlj ,∀l ∈ {1, 2}, j ∈ M and pl,hj ,∀l ∈ {1, 2}, j ∈ M,h ∈ 1..k, which
are added as parameters to MIPcenter.

The variables of MIPcenter contain the variables of MIPfirst, plus a few
additional variables given in Table 9.

dwlj continuous : the distance between wj and wlj , ∀l ∈ {1, 2}, ∀j ∈M
dpl,hj continuous : the distance between phj and pl,hj , ∀l ∈ {1, 2}, ∀j ∈M , ∀h ∈ 1, ..., k

DWj continuous : the distance between dw1
j and dw2

j , ∀j ∈M
DPhj continuous : the distance between dp1,h

j and dp2,h
j , ∀j ∈M , ∀h ∈ 1, ..., k

Table 9 Additional variables of MIPcenter.

The MIPcenter model is presented below :

min
1

2

∑
l∈{1,2}

( ∑
j∈M

dwlj
m

+
k∑
h=1

∑
j∈M

dpl,hj
k(maxj −minj)

)
+

+
( ∑
j∈M

DWj

m
+

k∑
h=1

∑
j∈M

DPhj
k(maxj −minj)

)

s.t. :

Constraints (3) to (19) from MIPfirst

dwlj > wj − wlj ∀j ∈M,∀l ∈ {1, 2} (34)

dwlj > wlj − wj ∀j ∈M,∀l ∈ {1, 2} (35)

dpl,hj > phj − pl,hj ∀j ∈M,∀h ∈ 1, ..., k,∀l ∈ {1, 2} (36)

dpl,hj > pl,hj − p
h
j ∀j ∈M,∀h ∈ 1, ..., k,∀l ∈ {1, 2} (37)

DWj > dw1
j − dw2

j ∀j ∈M (38)

DWj > dw2
j − dw1

j ∀j ∈M (39)

DPhj > dp1,h
j − dp2,h

j ∀j ∈M,∀h ∈ 1, ..., k (40)

DPhj > dp2,h
j − dp1,h

j ∀j ∈M,∀h ∈ 1, ..., k (41)

The objective function takes into account, in equal measure, two distances:
(i) the average distance between the weights and profiles of the SRMP model it
generates and the two previously generated models and (ii) the difference between
these two distances. The first part ensures that the SRMP model is as close as
possible to the two models, while the second part ensures that it is evenly distanced
from them.

Constraints (3) to (19) from MIPfirst are used to ensure that the generated
SRMP model is compatible with the preference information expressed by the DM.
Constraints (34) to (35) and (36) to (37) are used to model the distances between
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the criteria weights and the reference profiles of the generated SRMP model and
each of the two models generated byMIPdistant. The following constraints (38)
and (39) (resp. (40) and (41)) are similar, and model the distance between these
criteria weights (resp. reference profiles) distances.

3.4 Finding incompatible comparisons

During the elicitation process, when no valid SRMP model can be found using
either of the three previously presented approaches, we need to identify and resolve
any situation where the DM’s input is inconsistent with an SRMP model. For
this reason, we use an approach very similar to the one in [24], where we adapt
MIPfirst in order to detect all inconsistently compared single pairs of alternatives,
one after the other, then all sets of two pairs of alternatives and so on, until the
DM accepts to change or remove one of them. We do not consider currently the
number and the order of the pairs of alternatives that should be presented to the
DM, nevertheless, this would be an important topic for a future study.

We outline the process of extracting sets of inconsistent comparisons in Algo-
rithm 1. This algorithm makes use of an adapted MIP. We update the MIPfirst

program by adding a set of binary variables t(a,b), which are set to 1 if the com-
parison between alternatives a and b is enforced ∀(a, b) ∈ L. To do this, we add
the expression −(1 − t(a,b)) to the right-hand side of constraints (13), (14) and
(18), and the expression +(1−t(a,b)) to the right-hand side of constraints (15) and
(19). When t(a,b) = 0, all of these constraints are relaxed and no longer enforce
the preference or indifference comparison between alternatives a and b. We denote
this program as MIPinc.

Algorithm 1: Finding inconsistent sets of pair-wise comparisons

1 S ← {{(x, y)}}, with (x, y) last pair from L
2 Add constraint t(x,y) = 1 to MIPinc

3 while stop condition not met do
4 T ← {(a, b) ∈ L|t(a,b) = 0}
5 S ← S ∪ {T }
6 Add constraint

∑
(a,b)∈T

t(a,b) > 1 to MIPinc

7 return S

Algorithm 1 starts with a set containing the last pair of alternatives from L.
This is due to the fact that we only use this algorithm if MIPfirst does not find a
feasible SRMP model following the inclusion of the DMs preferences on the last
pair of alternatives (x, y). We can therefore assume that the expressed preference
on the last pair of alternatives is incompatible with an SRMP model.

The MIPinc program seeks to maximize the number comparisons that it en-
forces (by setting the t variables to 1). Hence, for the last pair of alternatives
(x, y), we add a constraint fixing its t(x,y) variable to 1, so that any subsequent
execution of MIPinc does not find it as an incompatible comparison again.
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The main loop of the algorithm repeats more or less the same process, by
executing MIPinc and extracting the set of pairs of alternatives that could not be
enforced (T ). These pairs will have their corresponding t variables set to 0. This
set is then added to S and a constraint stating that at least one of its comparisons
need to be fulfilled during the following executions is added. In this way, other
sets of comparisons partially overlapping with the currently found one will not be
excluded.

The stopping condition may be linked to the size of S or to the cardinality of
T . As previously mentioned, we do not currently consider the topic of the order,
the number or size of inconsistent sets of pairs of alternatives that are presented
to the DM.

4 Empirical validation

The goal of this section is to study empirically which combination of heuristic
/ MIP configuration leads to the “best” SRMP model with the fewest possible
pairwise comparisons.

In order to limit the number of computational experiments needed for this
study we initially carry out an experiment seeking to study the relevance of having
fewer or more reference profiles in an SRMP model. Given these limits, we then
proceed to testing the aforementioned strategies.

4.1 Expressiveness of the SRMP model

We define the expressiveness of the SRMP model by its ability to reproduce the
DM’s preferences. The purpose of our experiment is to find the number of profiles
necessary to achieve a good expressiveness of the SRMP models for problems with
up to 7 criteria.

We begin by generating a set of 100 models for each of the three cases where
the number of criteria m ∈ {3, 5, 7}. For simplicity, we consider the evaluation
scales to be in the [0, 1] interval with higher values being considered preferable to
lower ones. We also fix the number of profiles k to 10, which we consider to be
a reasonably large number of profiles that a DM would be willing to consider in
practice. For each model we :

– construct the k profiles by drawing k values from a uniform distribution on the
[0, 1] interval on each criterion and then assigning them in increasing order to
each profile;

– randomly generate the m criteria weights using the approach of Butler et al.
[9];

– randomly generate a permutation of the sequence {1, ..., k} as the lexicographic
order.

We then construct a total of 5, 000 pairs of alternatives with randomly gen-
erated criteria evaluations (again using uniform distributions in the [0, 1] interval
for each criterion) for each of the three scenarios where m ∈ {3, 5, 7}. These al-
ternatives are then compared pair-wisely using each of the 100 generated SRMP
models. For each model, we report the percentage of pairs of alternatives that
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Fig. 3 Percentage of pairs of alternatives distributions as a function of the lexicographic order
index of the discriminating reference profile.

were discriminated using the first profile in the lexicographic order, then using the
second one, and so on until considering all 10 reference profiles. Figure 3 presents
these distributions as boxplots.

We observe that in all scenarios, the first profile is able to discriminate between
the largest proportion of pairs of alternatives. This proportion increases as the
number of criteria increases. When considering problems containing 3 criteria, we
observe that the second and third profiles in the lexicographic order are used,
to lower extents, in order to model a preference between pairs of alternatives.
However, we may easily state that from the fourth profile onward the added benefit
of including these profiles in the model is marginal. When considering 5 criteria,
the first two profiles model the large majority or preference relations, while when
considering 7 criteria even the second profile becomes somewhat unnecessary.



SRMP: Incremental elicitation of the preference parameters 21

Nevertheless, while very few randomly generated pairs of alternatives require
more than two or three reference profiles in order to model a preference between
them, real case scenarios may include a larger proportion of such alternatives.
Therefore an incremental approach where the elicitation process starts with an
SRMP model with fewer reference profiles which are then increased when a sig-
nificant proportion of pairs of alternatives cannot be properly modeled, may be
considered.

4.2 Design of experiments

Our second set of experiments follows the incremental elicitation process presented
in Section 3.1 with an additional phase to test the quality of the obtained SRMP
model. A database D of 100 pairs of alternatives generated randomly from a uni-
form distribution, is used as input for all the proposed heuristics of Section 3.2,
combined with the 3 possible MIP configurations of Section 3.3. The chosen heuris-
tic selects a pair of alternatives from D at each iteration i. The DM is replaced for
our experiments with a randomly generated SRMP model MDM (using the same
approach as the one presented in the previous section), which is used to compare
pairs of alternatives. Consequently this leads to the case where there is no incom-
patibility in the DM’s preferences. The comparisons from each iteration i generate
new constraints for the model that needs to be determined, which we denote as
Mi.

To test the quality of a model, we use a test database Dtest composed of 5000
pairs of alternatives (generated in the same way as in the previous section). Two
ranking are constructed, one using the original SRMP model MDM and another
using the currently generated SRMP model Mi. The quality of Mi is evaluated
using Kendall ’s rank correlation [21] τ between the two rankings. τ varies between
1 and -1, with τ = 1 indicating that the two rankings are identical and τ = −1
indicating that they are completely reversed.

We repeat this process for 100 different DM (i.e. randomly generated SRMP
models MDM) and 100 different artificial databases D, composed each of 100 pairs
of alternatives, evaluated on different numbers of criteria (m ∈ {3, 5, 7}). We also
fix the number of profiles of the SRMP models to 2.

The calculations are performed on multiple servers configured with 20 CPUs
(which allow the MIP solver CPLEX to reach a parallelism of 20 for the resolution
of the MIP) and 30 GB of RAM.

4.3 Experimental results and discussion

Figure 4 depicts the mean value of the Kendall’s tau and its standard deviation
for each iteration of the proposed approach (one additional pair of alternatives
selected at each iteration) when considering problems with 3 criteria and SRMP
models with 2 profiles (2P 3C) and using the Hrnd /MIPfirst configuration. The
results show an expected trend in which the value of Kendall’s tau increases with
the number of pairs of alternatives used to learn the SRMP model and increases
towards 1. This means that the more learning pairs are used, the closer Mi is to
MDM . The standard deviations associated with the average values depicted in this
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Fig. 4 Mean and standard deviation Kendall’s tau for 2P 3C using Hrnd / MIPfirst

figure are small and they also decrease with the addition of more learning pairs.
They correspond on average to a value of ∼ 0.095.

Figure 5 represents the mean value of Kendall’s tau using the different proposed
heuristics and theMIPfirst configuration. We notice different trends while at the
same time increasing in all cases towards a value of 1. Initially, during the first
iterations, all heuristics have somewhat similar and poor performances due to the
small number of pairs of alternatives considered leading to not very expressive
SRMP models. As more information is gathered, we observe a clear separation in
favor of Hmp. During the last final iterations, the heuristics again reach similar
performances. This can be explained by the fact that the set of learning pairs
becomes mostly identical for all of them as we deplete pairs of alternatives in D
(which contains 100 pairs of alternatives, the same as the number of performed
iterations).

In order to validate these observations, we use the Kolmogorov-Smirnov statis-
tical test [12] in order to compare the average performance of any two heuristics
across all iterations of the elicitation protocol. A significant difference occurs when
the p-value reported by this test is less then 0.05.

Following this test, we confirm that the Hmp has a significantly different per-
formance in terms of its reported Kendall’s tau when compared to the other tested
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Fig. 5 Mean Kendall’s tau for 2P 3C using the different heuristics andMIPfirst configuration

heuristics. Table 10 shows the corresponding p-values of the Kolmogorov-Smirnov,
which are all below 0.05.

Hrnd Hsim Hdis Hcp

Hmp 0.00193 0.01216 4.785e-06 0.00193

Table 10 Kolmogorov-Smirnov test results (p-values) for 2P 3C usingMIPfirst configuration

Figure 6 depicts the mean value of the Kendall’s tau for the three possible
MIP configurations (MIPfirst, MIPclose and MIPcenter) and two different
problem sizes: 2 profiles 3 criteria (2P 3C) and 2 profiles 5 criteria (2P 5C).
The results show an expected trend in which the Kendall’s tau values increase
together with the number of pairs of alternatives used to learn the SRMP model
and tend towards 1. We observe also that if the number of criteria increases,
the maximum value for Kendall’s tau that can be reached decreases, indicating
that more learning examples are needed. The results also show that the heuristic
Hmp (depicted in black) seems to perform better than the others regardless of the
considered MIP configuration and problem size. This is again validated using the
Kolmogorov-Smirnov test. We also observe that Hmp reaches a higher Kendall’s
tau value faster (i.e. with fewer learning examples). For example for the first graph
in Figure 6 (2P 3C /MIPfirst), Hmp reaches a Kendall’s tau value of 0.9 around
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Fig. 6 Mean Kendall’s tau for 2P 3C and 2P 5C

iteration 50, while the other heuristics need more than 80 iterations pairs to reach
the same value.

These observations serve to choose the Hmp heuristic but not the MIP config-
uration (MIPfirst, MIPclose and MIPcenter). As shown in Figure 7 it is not
easy to choose specially between the MIPfirst and MIPcenter configurations.
For that we have decided to consider the computation time (including selecting
the learning pairs using a heuristics and solving the MIP) as a deciding factor.
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Fig. 8 Execution time for 2P 3C
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Fig. 9 Execution time for 2P 5C

Figures 8 and 9 depict at each iteration the number of tests that have an
execution time below one, two, five, ten and thirty minutes, below and above one
hour for all the different combinations (heuristics and MIP configurations) for 2P
3C and 2P 5C respectively. For example in Figure 8 for Hmp /MIPfirst we can
see that for 30 cases out of 100 the computation time to learn an SRMP model
with 50 learning pairs is less than 1 minute while for the same configuration of 2P
5C (Figure 9) for 20 cases out of 80 the computation time is less than 30 minutes.

We observe that the more the problem is complex the more the computation
time increases and the MIPfirst configuration takes significantly less time com-
pared to MIPclose and MIPcenter (for both problem sizes).

As a consequence, for both problem sizes, the best combination of a heuristic
and a MIP configuration is identified as Hmp /MIPfirst.

In order to expand our study, a more complex problem (i.e. 2 profiles and 7
criteria) is tested but as shown in Table 11 the time needed for an exhaustive test
of 2P 5C problems is about one year with more than twenty server instances with
20 CPUs and 30GB RAM each. Also, the trend observed in Figures 8 and 9 shows
that computation time increases significantly with the number of criteria. Because
of this, for problems containing 7 criteria, we decided to study only theMIPfirst
configuration and compare the Hmp heuristic with the Hrnd one.

Figure 10 depicts the mean Kendall’s tau at each iteration of Hmp and Hrnd
for 2P 7C problems. We confirm our previous observation that Hmp performs
better than Hrnd by using the Kolmogorov-Smirnov test.

We have also considered problems with SRMP models containing 3 profiles.
However, due to the execution time (which is significantly higher than for models
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Random Similar Dissimilar CloseProfile MaxProfiles
First feasible 223 331 135 190 450
Min Distance 616 689 600 517 828

Center 793 1001 556 659 1151

Table 11 Rounded global execution time in days for an exhaustive test of 2P 5C
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Fig. 10 Mean Kendall’s tau of Hmp and Hrnd for 2P 7C

with 2 profiles), we only tested the incremental process with a subset of the 100
problems for 3 profiles and 3 criteria (3P 3C. These results show again that Hmp
is significantly different from all the other heuristics, and provides better values
for Kendall’s tau with fewer iterations.

4.4 In practice

In this section we present how our results can be used in a practical context and
give an answer to one of our research questions corresponding to the number of
learning pairs / iterations that are needed to achieve a “good enough” SRMP
model with an objective to reduce the cognitive effort of the DM.

An SRMP model is considered to be “good” by the DM if this model can
reach a given Kendall’s tau value. Once this is given, we use the mean Kendall’s
tau results from our experiments in order to find the number of pairs that would
be required to reach this value. For example, Figure 11 depicts the mean Kendall’s
tau of Hmp / MIPfirst on the left, and the cumulative execution time on the
right for 2P 3C, where the DM fixes τ = 0.8. We observe that we need about 30
learning pairs and it would take about 18 minutes in total (on the left of Figure
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11). For the 2P 5C problem the DM fixes τ = 0.8 and we find that around 56
learning pairs (on the left of Figure 12) are required while around 1600 minutes
of execution time would be required in total (on the right of Figure 12).

3030

18

Fig. 11 Mean Kendall’s tau and cumulative mean execution time of Hmp /MIPfirst for 2P
3C

5 Conclusion

In this paper, we propose an incremental elicitation process for SRMP models in
which we use a heuristic to select a pair of alternative at each iteration of the
process. Different heuristics and MIP configurations have been studied in order
to choose the combination that would reduce the most the cognitive effort of the
DM. This corresponds to the Hmp / MIPfirst combination, due to its efficiency
in both quality of the provided solution and reduced execution time.

The experiments show the limits of our proposal in terms of execution time.
First it was not possible for us to perform more exhaustive tests for the more
complex problems (more than 2 profiles and 7 criteria) due to the total expected
time for these tests (despite the amount of computation resources used). Second,
for a real-word use of this elicitation process, computing time is still an issue
because at each iteration it could potentially take a lot of time to solve the MIP,
specially if the number of learning examples increases, or the number of profiles
and criteria become large.

To solve this last issue, we will pursue the study of a metaheuristic approach for
inferring an SRMP model in a reasonable computing time. In real-world decision
problems, another option could also be to use a SAT solver instead of the MIP
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one. We will additionally consider new heuristics for learning pairs selection and
expand our tests to more complex problems.
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