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Abstract—Cyber-Physical Systems (CPS) are composed by
multiple subsystems that encompass numerous interdependencies.
Although indispensable and highly performant from a functional
perspective, complex interconnectivity constitutes paradoxically
a significant vulnerability when an anomaly occurs. Anomalies
could propagate and impact the entire CPS with irreversible
consequences. This paper presents an approach to assess the
anomaly propagation impact risk on a three layers oriented
graph which represents the physical, digital, and system variables
of a CPS components and interdependencies. Anomalies are
detected applying information quality measures, while potential
propagation paths are assessed computing the cumulated risk
represented by weights assigned to the graph edges. To verify
the cascading impact of different anomalies four cyber-attacks
- denial of service, sensor offset alteration, false data injection,
and replay attack - were implemented on a simulated naval water
distribution CPS. The propagation impact of three anomalies was
successfully assessed and the corresponding estimated propaga-
tion path, if applicable, confirmed.

Index Terms—Cyber-physical system, cybersecurity, propaga-
tion assessment, multilayer graph model, risk estimation.

I. Introduction

Cyber-physical systems (CPS), essential in the naval do-
main, rely on numerous interdependencies and interactions of
heterogeneous physical, digital, and communication compo-
nents [1]. Whereas such strong emergence of CPS is part of
the current progress towards autonomous ships, it has also
brought a major concern related to cybersecurity. Even if
global guidelines of the International Maritime Organization
have requested, among others, to address cybersecurity threats
by 2021 [2], currently only partial assessments of some risks
have been conceptualized in this domain. One of the reasons
that explain this setback is the increasing complexity of data
and information flow interdependencies, which hinder the
identification, modeling, and analysis of interactions between
connected components. Furthermore, conceptualizing the ves-
sels’ CPS as multilayer networks [3], it is evident that a cyber-
attack or a system malfunction could cause cascading failures,
engendering potential irreversible damage on board.

A crucial vessel system that could be the target of a cyber-
attack or break down because of an anomaly is the water
supply, which ensures a sustainable life condition level for crew

members and passengers. The water distribution CPS is com-
monly composed of several tanks to stock water, pumps to fill
up the tanks, valves to control water circulation, consumption
nodes, and the particular global control system. Water quality
and distribution alterations could generate infectious disease
transmission [4] that may compromise a given mission. Other
CPS like power generation, navigation, and propulsion will
produce equivalent detrimental issues on board. Considering
the consequences of cascading failures on naval CPS, the
major aim of this work is to define a CPS-adapted model
for the evaluation of how an altered subsystem could impact
other subsystems it is connected to, when an anomaly occurs,
to anticipate critical failures. This evaluation is based on
a multilayer graph model and a specific propagation risk
assessment. A naval water distribution study case is used to
test the proposed approach. This paper is organized as follows.
Section II introduces previous works on CPS modelling and
anomaly propagation. Section III describes the proposed graph
modeling and anomaly propagation approach. Section IV
presents the experimental setup of a simulated naval water
supply. The main results are presented in section V. Section
VI comments the conclusions and perspectives of the study.

II. Related Works
One of the most challenging aspects of CPS modeling is

cyber-physical duality. Physical components operate mostly in
continuous time, while cyber components run in a discrete-
time manner. Therefore, the connection between these two
operations is essential to model any CPS behavior. Initiatives
in the literature have reported about agent-based models to
describe interactions between physical and cyber components
within a CPS [5] and hybrid system behavior modeling of
the communication infrastructure in a smart grid [6]. Another
model [7], focused on CPS representation to enable combined
safety and security analyses, using a multilayered structure
to conceptualize subsystems and their interactions. Although,
without specifying subsystem interdependencies and covering
partially the cyber-physical duality, a recent work proposed to
weight interdependencies value, computed according to their
amount and a predefined protection level, to determine the risk
of anomaly propagation in an information technology network
[8].978-1-7281-5684-2/20/$31.00 ©2021 IEEE



CPS’s subsystem interdependencies encompass additional
complexity and could have a tremendous impact on system
performance, since a minor failure in a critical infrastruc-
ture could propagate through the entire system and trigger
numerous other failures [9]. However, a given CPS subsys-
tem interconnected to a failed one may not be immediately
impacted by that failure, and subsystems that do not interact
directly with the physical world could still be impacted by an
attack propagation. Because of these reasons, several analyses
of CPS interdependencies are based on graph abstraction, even
if the proposed CPS mathematical models do not reflect the
operational specifications of the subsystems interdependencies.
Graph modeling has been applied to optimize the recovery
ability of interdependent networks after cascading failures
[10], as well as to evaluate the propagation consequences
of attacks by comparing the dynamic behavior of physical
processes through their sensor measurements and control com-
mand outputs, in normal conditions and under attack [11].
These modelling approaches integrate only to a certain degree
part of the CPS specifications and application domains. Oth-
erwise, graph theory abstraction was used to model anomaly
propagation, matching critical infrastructures interactions and
interdependencies, based on mixed holistic reductionism [12],
which is not adapted to CPS. Our work intends to further unify
the CPS cyber space and physical world, with the perspective
of a generic and comprehensive methodology [13], to cover
the design, development, verification, and real-time analysis
of CPS. We focus on anomaly propagation assessment to
anticipate critical failures.

III. Proposed method
A. CPS graph generation model

In our previous work a simplified generic CPS-adapted
graph model was proposed [14]. This model focused on a
preliminary anomaly detection and propagation analysis, based
on data and information quality measures on a simplified CPS.
According to CPS specificities, each CPS subsystem node
belongs to the digital or physical layer of the multilayered
generated graph. A third layer groups the variables associated
to subsystem nodes. The three layers of the generated graph
model are illustrated in Fig. 1. Components of the layers are
assigned as follows:
• Digital subsystems: Integrate networking and/or comput-
ing capacities (e.g. in Fig. 1 PLCs and SCADA).

• Physical subsystems: Interact with a physical process,
transmit measured data or receive control commands (e.g.
in Fig. 1 PU10 and PU11 pumps, and T7 tank).

• System variables: Describe the CPS current state with
measured and control variables (e.g. in Fig. 1 pump state
B, flow 5 , and T7 tank level ;7).

The defined graph structure represents node dependencies
for both CPS modeling and anomaly propagation assessment.
These dependencies can be assembled in two major groups:
• Between subsystems of the digital and physical layers:
Defined digital/physical communication dependencies,

e.g sensor measurements transmission, PLC-to-actuator
control command, pump activation and tank fill-up.

• Between system variables of the third layer: State-
correlation model [15] of structural – a variable deviation
can cause the variation of others –, or operational –
subject to the activation of a specific value in other
variables – dependencies.

B. Anomaly detection
After the previous graph generation, anomalies in the CPS

are detected on the system variables layer. To this end, informa-
tion quality measures and parameters of concerned digital and
physical subsystems nodes are associated to each one of the
resulting CPS variables. The pertinence of these information
quality measures was validated previously in the case of a
static anomaly detection scenario [16]. An information quality
measure vector

−→
�&+ , composed by B dimensions of informa-

tion quality metrics, is defined as follows:

−→
�&+ ∈ {81, ..., 8B} (1)

These information quality vectors are assigned as measure
vectors

−→
�&+ of the corresponding system variables (Fig. 1).

Anomalies are detected when data flows of the CPS subsystem
contradict expected agreement levels of the quality measures.

C. Impact assessment processes of an anomaly propagation
Two distinct anomaly propagation assessment processes are

conducted on the proposed graph model. The first process is
initiated once an anomaly has been detected at a time C1. An
evaluation of the propagation on system variables (PSV) starts
to evaluate the potentially impacted variables. This propaga-
tion assessment process is conducted on the third layer of the
graph model, based exclusively on the graph characteristics
defined by the given system variables dependencies model.
Whenever the same anomaly impacts another system variable
at a time C2, and if this variable was previously identified
through the PSV evaluation at C1, an impact time on the second
system variable defined as ΔC = C2 − C1, confirms the estimated
propagation path.
The anomaly detection at C1 also initiates another anomaly

propagation assessment process on the first and second layers
of the graph model. It is based on weighting of dependen-
cies through propagation risk assessment of CPS subsystems.
To this end, four major metrics �= –that enhance anomaly
propagation risks– and '= –that reduce these risks– are
adapted to naval CPS features, taking into account subsystems
interactions, functional specifications, and the possible impact
on the whole system. Each � and ' metric is subdivided in
two submetrics, 4= or A=, defined with a level value from 1 to
4, organized in pairs:

�= =
{
4=,1, 4=,2

}
, '= =

{
A=,1, A=,2

}
, = = [1, 2] 0=3 = ∈ N

(2)

These metrics and associated submetrics, are defined as:



Fig. 1. Graph modeling of a simplified water distribution CPS

• Connectivity (�1: Defines the subsystem type of con-
nection (41,1) and the associated privileges (41,2).

• Knowledge (�2: Denotes the operational ignorance
degree (42,1) about the studied subsystem and its opera-
tional impact (42,2) in case of failure.

• Oversight ('1: Describes the subsystem communication
control (A1,1) and management (A1,2).

• Control ('2): Highlights the cyber-approval level (A2,1)
of the given subsystem and its resiliency (A2,2) in case of
failure.

It is assumed that applying prior expert knowledge, from
manufacturing to operational features, users estimate the risk
of each CPS subsystem. To feed the model, initially each
proposed submetric level must be associated to the given sub-
system specifications. The submetrics 4=,1 and A=,2 are paired
in 4 counterbalance associations. From these associations, four
propagation risk levels, !8 , are deduced as:

!1 =
41,1

A1,1
!2 =

41,2

A1,2
!3 =

42,1

A2,1
!4 =

42,2

A2,2
(3)

The sum of these four levels provides a weight % that
reflects the subsystem disposition to propagate an anomaly.
This estimation is repeated for each subsystem of the first and
second layers of the graph model and defined as nodes’ edges
weights:

% =

4∑
8=1

!8 0B !8 = [0, 25; 4] ; Cℎ4= % = [1; 16] (4)

For a given CPS, the propagation risk assessment is es-
timated for each one of its subsystems. As shown in Fig.
1, the values of % are dependency weights assigned to the
corresponding subsystems. A propagation impact score %�(
is calculated for each subsystem interconnection path in the
physical and digital layers, starting with the subsystem node
associated to the node variable where the anomaly was initially
detected. This score is a sum of the traveled % node weights
and depicts the possible anomaly impact of one graph path.

%�( =

3∑
8=1

%8 ; 3 > 0 (5)

IV. Experimentation
A. Naval water distribution CPS
The main purpose of a water distribution system is to satisfy

consumers demand and ensure a proper quality of the delivered
water. Various CPS components are needed to guarantee this
purpose. On the other hand, a ship water supply network (Fig.
2) is designed as for a small village. For this reason, the C-
town water distribution network was adapted to our study case.
It is composed by 388 nodes, 429 pipes, 7 tanks, 11 pumps,
4 valves (1 actionable), 9 PLC and 1 SCADA. Water storage
and distribution depends on the water levels of 7 tanks that
control when the 11 pumps should be activated. Each actuator,
i.e. pumps and valves, and each sensor, are connected to one
of 9 PLCs that control or monitor each of them. A SCADA
system collects the PLCs readings and coordinates the process.
PLCs that are controlling actuators, in accordance with sensor
readings, mostly receive this information from other PLCs. To
assess the anomaly propagation impact on physical and digital
systems, an entire simulation of the adapted water distribution
network physical and digital dimensions must be conducted.

B. Simulation of the water distribution network
The hydraulic simulation of the naval water distribution net-

work was implemented on EPANET. This application allows
performing extended-period simulations of a water distribution
network and offers a large range of CPS components models
like pumps, valves, storage tanks, reservoirs, pipes, and junc-
tions. Required functions to design, run, and modify simula-
tions by the effect of external parameters are also available. An
external toolbox, EpanetCPA, broadens EPANET features to
the cyber-physical domain, enabling to specify different kinds
of attacks on both physical and digital dimensions of a water
supply network [17].

C. Graph of the naval water distribution CPS
Each system and subsystem variable of the naval water

distribution network are defined by a node, with interdepen-
dencies between two nodes being represented by edges. The
structural and operational variable dependencies, determined
as part of the system design process, are built from the subsys-
tems interdependencies described in a study that characterized
cyber-physical attacks on water distribution systems [17]. A



Fig. 2. Representation of a simplified ship water distribution system

simplified illustration of the resulting generated graph model is
shown in Fig. 1. The modeled part of the water supply network
is in charge of T7, the tank-level controlled when pumps PU10
and PU11 are activated by PLC 5, and transmitted from PLC
9 to PLC 5 for process control. All variable values of actuators
and sensors are communicated through the PLCs-to-SCADA
connections for process monitoring.

D. Quality analysis
Quality evaluation can be measured by using multiple

dimensions depending on the studied CPS configuration [16].
For the study case, contextual information quality is evaluated
according to the presence of erroneous information (234AA ).
This metric denotes if information is different from the ex-
pected one. Extrinsic information quality is estimated accord-
ing to coherence (432>ℎ) to signify if information appears to
be logic compared to other information.

An information quality vector
−→
�&+ is defined for each

network’s subsystem and its associated variables. Information
quality of the pumps is evaluated through 234AA , to identify if
pump state B and flow 5 values match, and 432>ℎ to describe if
the pump state value is coherent with the associated tank level.
The tank information quality is calculated by using 234AA to
measure if the given tank level is a viable value, bounded by
the min and max tank-level thresholds. To follow any possible
anomaly propagation in the network, each quality metric is
associated as a parameter of the corresponding system variable
node.

E. Anomaly propagation assessment
To perform an anomaly propagation assessment on the naval

water distribution network, each subsystem of the generated
graph is weighed according to several metrics based on propa-
gation risk, which are weighted graph dependencies, as defined
in III-C. The weighting approach for edges is illustrated hereof
with the example of defining weights for PLC9 (Fig3). Each 4=
and A= submetric values are determined by the expert providing
the prior propagation assessment knowledge. These values
allow to calculate the 4 propagation risk levels !8 (equation
3) and to define %%!�9:

%%!�9 =

4∑
8=1

!8 =
3
1
+ 4
1
+ 3
1
+ 4
1
= 14 (6)

Fig. 3. Impact assessment of the anomaly propagation initiated by ;7

The assessment process is initiated by the anomaly detection
on a node of a subsystem variable. Next, a list of associated
subsystem variables that could be impacted by the identified
anomaly is obtained from the graph analysis. As shown in Tab.
II, the resulting PSV is calculated for each anomaly detection.
Then, the propagation evaluation starts on the subsystem
node associated to the node variable where the anomaly was
detected applying a quality metric. The anomaly propagation
is assessed for all paths of the given graph. A propagation
impact rate is calculated for each edge of the first and second
layers of the graph. This rate highlights the possible anomaly
impact on a subsystem and its propagation likelihood.
Fig. 3 depicts an application example of the described

approach for the simplified study case. An anomaly is detected
on the level node (;7) of tank 7:
• On the system variables layer: no other variable is im-
pacted.

• On the digital and physical subsystem layers: the anomaly
propagation is initiated from T7, the subsystem node as-
sociated with ;7. Therefore, each propagation path impact
score %�( needs to be calculated as defined in equation
(5).

V. Results and discussion

Four functional scenarios –denial of service (DoS), sensor
offset alteration, false data injection, and replay attack– on
which the water storage and distribution network is altered by



TABLE I
Scenario descriptions

Anomaly triggering Anomaly description

Scenario Condition Begin End Type Target Impacted security criteria

1 Time 50h 144h DoS Digital layer: communication between PLC1 and
PLC2 (;1 tank-level exchange)

Availability

2 Time 30h 144h Offset Physical layer: ;7 tank level Integrity

3 Tank 3 level ;3 ≤ 3 144h False data injection Physical layer: PU4 and PU5 pump stopping Integrity

4 Time 50h 144h Replay attack Digital layer: communication between PLC4 and
SCADA

Integrity

an attacker, like overflow or low-level of a tank, were designed
to evaluate the proposed anomaly propagation impact assess-
ment model (Table I). Each scenario extends during 144 hours
and corresponds to a specific type of cyber-attack initiated on
the digital or physical layer. Anomaly triggering conditions
are time-based (scenarios 1, 2, and 4) or depending on a
particular value reading (scenario 3). Changes in the quality
metrics at a given time C, associated to system variable nodes
detect anomalies. The main results of these four experiments
are summarized in Table II.

In the first scenario, an adversary floods the PLC2-to-PLC1
communication link, until unavailability, with a denial of
service (DoS) attack and impedes PLC1 to receive the T1
tank-level value (;1) from PLC2. It causes an altered state
change of PU1 and PU2 pumps, detected by the information
coherence evaluation 432>ℎ=CAD4 (anomaly propagation step
1, and step 2) at C = 57ℎ and C = 79ℎ of PU1 and PU2.
This initial anomaly detection on the system variable layer,
points towards a possible impact on T1 tank level (;1). A
T1 overflow is detected later (propagation step 3) with T1
234AA=CAD4, when T1 reaches its maximum level at C = 79, 9ℎ.
The ensuing anomaly verification impact time ΔC is calculated
as: ΔC = C2− C1 = 79, 6−57 = 22, 6ℎ. In this case, the proposed
model estimation of the T1 tank overflow is confirmed 22,6
hours later. Table III shows the most critical propagation
impact scores for each step of scenario 1.

In the second scenario, an attacker impacts the ;7 tank-level
integrity by adding a constant offset. As shown in Fig. 3, the
;7 value is transmitted from PLC9 to PLC5 for T7 level control
through the PU10 and PU11 pumps. This integrity alteration
generates a wrong pump state switch and has a critical impact
on the T7 tank level. As a consequence, T7 overflow is de-
tected through its associated erroneous information evaluation
234AA at C = 30ℎ. This anomaly has no impact on any other
subsystems.

In the third scenario, the PU4 and PU5 pumps are forced to
an improper state with a false data injection. Their integrity
is impacted with a constrained state that differs from the
process control needs, based on T3 tank level (;3). A first
anomaly detection at PU4 432>ℎ=CAD4 enables the propagation
assessment on the system variables layer, leading to a potential
impact on the T3 tank level (;3). Another anomaly is detected
at PU5 432>ℎ=CAD4. A low condition level is later detected

with T3 234AA=CAD4. As a result the estimated propagation
path is confirmed ΔC = 9, 8 hours later.
In the fourth scenario, the attacker snoops the commu-

nication link between PLC4-to-SCADA, then analyzes the
data, and stores the T3 tank level (;3) during the first five
hours. Next, the attacker channels again these readings with
a random added value until the end of the simulation. This
replay attack is too complex to be identified with the applied
information quality analysis. To detect this kind of attack, a
more elaborated quality metric should be implemented.
Obtained results show similar weights for various subsys-

tems of the studied CPS because of several factors. On the
one hand, an equivalent security criterion is applied homoge-
neously on the whole CPS system. On the other hand, given
the simulated experimentation conditions and the ensuing lack
of operational knowledge about the tested subsystems, sev-
eral assumptions were adopted to define the risk assessment.
Finally, although the approach was globally defined for the
whole water supply network, it could have been specifically
defined for each subsystem of the network, in accordance with
the respective operational constraints. It is important to note
that a comparison of the results with other approaches is far
from evident, since the examined components, dependencies,
and metrics differ considerably. For instance besides system
variables, our approach considers both the digital and physical
system layers, as well as all the concerned CPS subsystems
and interdependencies, instead of focusing only on the well-
known CPS physical behavior [11]. For the same reason, the
applied propagation risk assessment metrics differ with respect
to recently published works [8].

VI. Conclusion and future directions

Modern ships are defined as highly interconnected complex
systems and due to domain specificities, modelling of these
interconnections to evaluate anomaly propagation through the
multiple CPS components is very demanding. Yet, automatic
anomaly propagation impact assessment in CPS is fundamental
to identify evaluate, and anticipate the possible impact of
an anomalous event in a highly interconnected multilayer
network. In the case of a naval water distribution CPS, in
some cases such propagation can affect the entire system with
irreversible consequences.



TABLE II
Results of scenarios corresponding to the first anomaly propagation impact assessment process

Anomaly propagation step 1 Anomaly propagation step 2 Anomaly propagation step 3 AVIT

Scenario Detection PSV Detection PSV Detection PSV ΔC

1 edcoh = true B2 → 52 → ;1
edcoh = true B1 → 51 → ;1

cderr = true ;1 22,6 h
C = 57 h C = 79 h C = 79,6 h

2 cderr = true ;7
n/a n/a n/a n/a n/a

C = 30 h n/a n/a

3 edcoh = true B4 → 54 → ;3
edcoh = true B5 → 55 → ;3

cderr = true ;3 9,8 h
C = 3,9 h C = 11,3 h C = 13,7 h

PSV: Propagation on system variables; AVIT: Anomaly verification impact time

TABLE III
Scenario 1: Most critical propagation paths and specific step PIS

Step Propagation path PIS

1 PU2-T1-PLC2-PLC1-PU1-T1 47,75

2 PU1-T1-PLC2-PLC1-PU2-T1 47,75

3 T1-PLC2-PLC1-PU1-T1
T1-PLC2-PLC1-PU2-T1

41
41

The proposed approach evaluates anomaly propagation risk
according to naval water distribution CPS specificities, namely
the abstraction of physical and digital components, related
to the corresponding system variables, modeled in a three
layers directed graph. Whereas anomalies are detected by
means of information quality evaluations, the propagation risk
assessment is achieved applying the prior knowledge-based
weights that represent the likelihood of different components
interdependencies to propagate an anomaly.

Three out of four anomalies propagation were assessed, with
the confirmation of estimated propagation path when applica-
ble. Even though the proposed representation model facilitates
the implementation of diverse anomaly propagation scenarios,
it is somewhat limited by the demanding task of verifying
the exhaustiveness of CPS dependencies, particularly when
those dependencies are not explicitly provided by the CPS
manufacturer. Otherwise, risk assessment depends on expert
knowledge, implying that anomaly propagation assessment
results may differ from one expert to another. Nevertheless,
the weighting process could be improved by the definition of
complementary dynamic intrinsic information quality metrics
depending on the trust granted to a given subsystem and
its interdependencies. Also a unified knowledge base of risk
assessment will reduce the possible variability of results.
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