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Abstract

This paper considers low-density parity-check (LDPC) decoders affected by deviations introduced

by the electronic device on which the decoder is implemented. Noisy density evolution (DE) that allows

to theoretically study the performance of these LDPC decoders can only consider symmetric deviation

models due to the all-zero codeword assumption. A novel DE method is proposed that admits the use of

asymmetric deviation models, thus widening the range of faulty implementations that can be analyzed.

DE equations are provided for three noisy decoders: belief propagation, Gallager B, and quantized

min-sum (MS). Simulation results confirm that the proposed DE accurately predicts the performance

of LDPC decoders with asymmetric deviations. Furthermore, asymmetric versions of the Gallager B

and MS decoders are proposed to compensate the effect of asymmetric deviations. The parameters of

these decoders are then optimized using the proposed DE, leading to better ensemble thresholds and

improved finite-length performance in the presence of asymmetric deviations.

I. INTRODUCTION

In most applications of error-correction codes, the implementation complexity of the decoder is

a primary concern, and energy consumption is an important factor limiting the performance of

the codes. Unfortunately, it is becoming increasingly difficult to improve the energy efficiency

of integrated circuits while maintaining the abstraction that memory and computation circuits

behave deterministically [1]. A growing body of work is therefore being devoted to the study

of digital systems built out of unreliable circuit components. For instance, [2] considers fault-

tolerant linear computing, [3] addresses logistic regression on unreliable hardware, [4] considers

noisy binary recursive estimation, and [5] proposes to train deep neural networks for robustness

to hardware faults. Error-correction codes are closely related to the development of such systems,
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first because of the interest of developing more energy-efficient decoder implementations, but

also because they can be used within a computing system to restore the fully-reliable operation

abstraction when it might be required.

There has thus been significant interest in studying the operation of low-density parity-check

(LDPC) decoders in contexts where values stored in memory and/or the result of computations

can be affected by errors, or deviations [6]–[14]. Deviations in memory or computation circuits

result from the difficulty or impossibility of predicting the variations in the physical properties

of the circuit that occur at the time of fabrication or during operation of the system. Deviations

can be prevented by operating the system based on the worst-case conditions, but this can be

very costly in terms of energy consumption or performance. Instead, deviations can be modeled

and their impact taken into account.

Density evolution (DE) [15], [16] is a powerful tool for the performance analysis of LDPC codes.

DE consists of calculating the successive probability density functions of the messages exchanged

in the iterative LDPC decoder, which permits to evaluate the decoder error probability under

given channel conditions. For a given code degree distribution, DE thus allows to predict the

code ensemble threshold as the worst channel parameter that allows for a vanishing decoding

error probability over the ensemble of codes that follow the considered degree distribution.

The threshold is evaluated assuming that the codeword length tends to infinity. In this paper,

we are interested in analyzing the performance of decoders affected by deviations that can be

asymmetric, in the sense that the probability that a logic 0 deviates to a logic 1 is not necessarily

the same as the probability that a logic 1 deviates to a logic 0. When such asymmetric deviations

are applied to the messages exchanged in an LDPC decoder, the symmetry of the decoder in the

sense of [15] no longer holds. Standard DE [15], [16] requires symmetry assumptions on the

channel, the variable node (VN) mapping, and the check node (CN) mapping of the decoder.

Under the symmetry assumptions, it can be shown that the decoder error probability does not

depend on the transmitted codeword. This allows to calculate the successive message probability

density functions under the assumption that the all-zero codeword was transmitted, and greatly

simplifies the calculation. The symmetry assumptions were removed in [17], [18], which consider

non-symmetric channels, VN, and CN mappings. In [17], [18], the all-zero codeword assumption

cannot be considered and the successive message probabilities are conditioned on the codeword
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bits.

The literature on faulty LDPC decoders [6]–[14] assumes that deviations are introduced by the

hardware in the VN and CN mappings. In this setup, noisy DE was introduced in [6] and

latter considered for the analysis of bit-flipping decoders [8], [9], Gallager B decoders [7],

[10], Min-Sum decoders [11]–[13], and finite-alphabet iterative decoders (FAIDs) [14]. Most

of these works consider symmetric deviation models in addition to symmetric channels, VN,

and CN mappings, and their DE analyses consider the all-zero codeword assumption. The only

exception is [10], which considers non-symmetric deviation models in the Gallager B decoder.

However, the DE expressions obtained in [10] depend on the codeword weight, which makes

them difficult to manipulate. The theoretical part of [10] proposes approximations for the DE

expressions. However, the proposed approximations only apply to the Gallager B decoder with

hard-decision messages.

In this paper, we consider noisy DE with asymmetric deviation models and without the all-zero

codeword assumption. The DE expressions we derive however do not depend on the codeword

weight as in [10]. Instead, these expressions are conditioned on the codeword bit 0 or 1 at the

VN, following the approach of [17] for standard (non-faulty) DE. This approach leads to DE

expressions that are much simpler than in [10], and that can be applied to any type of LDPC

decoder. We introduce the general noisy DE method under asymmetric deviation models, and then

apply this method to three particular LDPC decoders: Belief Propagation (BP), Gallager B, and

quantized Min-Sum (MS) decoder. For each considered decoder, we provide the DE equations

under specific deviation models. In addition, in order to compensate asymmetric deviations in

the decoder, we propose to introduce asymmetric parameters in the Gallager B decoder and in

the quantized MS decoder. For the Gallager B decoder, we assume that the decision threshold

at VNs is asymmetric and depends on the sign of the channel output. For the quantized MS

decoder, we assume that the offset parameter and the scaling parameter are asymmetric, and

depend on the sign of the CN messages and on the sign of the channel outputs, respectively. For

the two decoders, we show that asymmetric decoder parameters allow to improve the decoders

threshold as well as their finite-length performance. Finally, the main contributions of the paper

can be summarized as follows:
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1) We extend the asymmetric DE analysis without deviations of [17] in order to capture

the effect of asymmetric deviations onto the LDPC decoders performance. For particular

asymmetric deviation models of interest, we provide the DE equations for three decoders:

BP, Gallager-B, and MS. The Gallager-B and MS have not been considered in [17], and [10]

only proposed approximated DE equations for the Gallager-B decoder.

2) We propose to introduce asymmetric parameters onto Gallager-B and MS decoders, while

in [10], only symmetric Gallager-B decoders were considered under asymmetric deviation

models. We then show how to optimize these asymmetric parameters so as to compensate

for asymmetric deviations introduced in the decoder.

The outline of the paper is as follows. Section II gives our assumptions and notations for

LDPC decoders under asymmetric deviations. Section III introduces the noisy DE analysis under

asymmetric deviations. Section IV provides the noisy DE equations for the three considered

decoders. Section V describes asymmetric decoder parameters. To finish, Section VI provides

simulation results.

II. LDPC DECODERS

In this section, we first describe standard LDPC decoders without deviations. We then introduce

the generic asymmetric deviation model we consider in this paper. Finally, we discuss practical

decoder implementations to convey that the deviation models and the assumptions it contains

are realistic.

A. Standard LDPC decoder without deviations

We denote by xn a binary codeword of length n. The codeword xn is transmitted over a noisy

independent and identically distributed (i.i.d.) channel P(y|x) which outputs a vector yn. For

simplicity, we assume that the considered channel P(y|x) satisfies the symmetry conditions

of [15] which can be stated as P(y|x = 1) = P(−y|x = 0). We denote by H the parity-check

matrix of LDPC code, of size m × n and rate R = m/n. In this paper, for simplicity, most of

the DE analysis is described for regular LDPC codes with VN degree dv and CN degree dc, but

we also show how to extend the DE analysis to irregular LDPC codes.
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We consider an LDPC decoder which performs L iterations and which satisfies the extrinsic

principle. The extrinsic principle means that when computing a message from VN v to CN c,

we use all the messages incoming to VN v, except the one coming from CN c. In this decoder,

the initial message incoming to a given VN is denoted β0. At iteration ` ∈ {1, · · · , L}, input CN

messages for a given CN are denoted (α
(`−1)
1 , · · · , α(`−1)

dc−1 ) and output CN message is denoted

β
(`)
dc

. The CN mapping is denoted Φc with

β
(`)
dc

= Φc(α
(`−1)
1 , · · · , α(`−1)

dc−1 ). (1)

In the same way, input VN messages for a given VN are denoted (β
(`)
1 , · · · , β(`)

dv−1) and the

output VN message is denoted α(`)
dv

. The VN mapping is denoted Φv with

α
(`)
dv

= Φv(β0, β
(`)
1 , · · · , β(`)

dv−1). (2)

We also consider an a posteriori probability (APP) mapping Φa. In the decoder, the decision on

the bit values is taken as

x̂ =

 0 if Φa(β0, β
(`)
1 , · · · , β(`)

dv
) > 0

1 if Φa(β0, β
(`)
1 , · · · , β(`)

dv
) < 0

In addition, if Φa(β0, β
(`)
1 , · · · , β(`)

dv
) = 0, then x̂ is sampled uniformly at random. The decoder

stops after L iterations or if the stopping condition Hx̂n = 0 is satisfied. Although it is often

used in LDPC decoder implementations, the stopping condition is not taken into account in the

DE analysis.

The above mappings Φv, Φc, Φa, give a generic description of a noiseless LDPC decoder which

satisfies the extrinsic principle. We choose this description because in this paper, we consider

several different decoders. In order to study a specific decoder such as Gallager B or MS, it

suffices to replace the mappings Φv, Φc, Φa, by the ones of the considered decoder.

B. Asymmetric deviation model

We now describe our main assumptions for the asymmetric deviation models we consider in this

paper. In the following, we denote by α̃(`)
i (i ∈ {1, · · · , dc−1}), and by β̃(`)

j (j ∈ {1, · · · , dv−1}),

the noisy versions of the messages α(`)
i and β(`)

j from VN to CN and from CV to VN, respectively.

Based on this notation, we first assume that hardware deviations are memoryless in the sense
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that deviations introduced at iteration ` are statistically independent of deviations introduced at

previous iterations. This can be expressed as

P(α̃
(`)
i |α

(`)
i , α̃

(`−1)
i , · · · α̃(1)

i ) = P(α̃
(`)
i |α

(`)
i ), (3)

P(β̃
(`)
j |β

(`)
j , β̃

(`−1)
j , · · · β̃(1)

j ) = P(β̃
(`)
j |β

(`)
j ) (4)

We also assume that deviations are applied on the noiseless mapping outputs α(`)
dv

and β
(`)
dc

.

More formally, this corresponds to assuming that

P(α̃
(`)
dv
|α(`)
dv
, β0, β

(`)
1 , · · · , β(`)

dv−1) = P(α̃
(`)
dv
|α(`)
dv

), (5)

P(β̃
(`)
dc
|β(`)
dc
, α

(`)
1 , · · · , α(`)

dc−1) = P(β̃
(`)
dc
|β(`)
dc

). (6)

Expressions (5) and (6) mean that, given the knowledge of the noiseless output, the noisy

output is statistically independent of the mapping inputs. As a result, the effect of deviations on

the decoder is entirely represented by the conditional probability density function P(α̃
(`)
dv
|α(`)
dv

)

and P(β̃
(`)
dc
|β(`)
dc

). Note that the probability density functions P(α̃
(`)
dv
|α(`)
dv

) and P(β̃
(`)
dc
|β(`)
dc

) may

vary from iteration to iteration. The above two assumptions are performed in most works on

LDPC decoders with deviations, see [6], [8], [9], [11]–[14], and Section II-C provides additional

justification based on hardware implementation considerations.

In addition, most existing works on faulty LDPC decoders [6], [8], [9], [11], [12], [14] assume

symmetric error models for which

P(α̃
(`)
dv
|α(`)
dv

) = P(−α̃(`)
dv
| − α(`)

dv
) and P(β̃

(`)
dc
|β(`)
dc

) = P(−β̃(`)
dc
| − β(`)

dc
). (7)

A different symmetry condition is provided in [13]. Assuming that the channel noise is repre-

sented by a vector zn such that yi = xizi for all i ∈ {1, · · · , n}, the symmetry condition of [13]

is given by

P(α̃
(`)
dv
|yn) = P(xα̃

(`)
dv
|zn) and P(β̃

(`)
dc
|yn) = P(−xβ̃(`)

dc
|zn), (8)

where x ∈ {−1, 1} is the codeword bit value associated to the VN that sends α̃(`)
dv

or receives β̃(`)
dc

.

The two models described by (7) and (8) give that the decoder error probability is independent

of the transmitted codeword. This allows to consider that the all-zero codeword was transmitted

in both the theoretical analysis and in the Monte Carlo simulations of the decoder.
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Here, unlike in [6], [8], [9], [11]–[14], we do not perform any assumption on the symmetry of

the probability density functions of α̃(`)
dv

and β̃
(`)
dc

. As a result, we cannot rely on the all-zero

codeword assumption. In Section III, we propose a noisy DE analysis that allows to evaluate

the performance of LDPC decoders under asymmetric deviation models without considering the

all-zero codeword assumption.

C. Faulty Decoder Implementations

To better place the proposed deviation model in context, let us briefly review some relevant

aspects of a decoder implementation.

1) Asymmetric deviations: The need to study asymmetric deviations, that is deviations for which

the probability of confusing a logic 0 for a 1 is different from the probability of confusing a

logic 1 for a 0, arises from the fact that digital systems are commonly engineered from physical

mechanisms that are asymmetric in nature. For instance, the vast majority of digital systems are

currently built out of CMOS circuits. In CMOS, a logic gate is composed of PMOS devices

used for pulling the output up to logic 1, and of NMOS devices used for pulling the output

down to logic 0, but PMOS and NMOS devices have different physical properties and must be

designed differently. The situation is common in data storage as well. An often used mechanism

called dynamic memory consists in storing an electric charge to represent a logic 1, but removing

the charge to represent a logic 0. This mechanism is also asymmetric in nature since a charge

is more likely to leak than to spontaneously appear. For instance, embedded dynamic random-

access memories (eDRAMs) are seen as a promising approach to increase storage densities of

on-chip memories, but the retention time of a bit stored in an eDRAM cell can be very different

depending on whether a 0 or a 1 is stored [19, Fig. 4]. Even static memories sometimes use

single-ended (and thus asymmetric) designs to balance the various conflicting requirements of

the design problem [20]. In all these cases, circuit designers usually aim to restore symmetry

by careful design, but this comes at a cost. For instance, [21] shows that optimizing the sum of

rise and fall times in a CMOS logic gate operated in the energy-efficient subthreshold regime

is achieved with unequal rise and fall times. As a result, allowing timing violations in such a

circuit would result in asymmetric deviations. Perhaps more importantly, as fabrication variations

become increasingly problematic when designing energy-efficient circuits, symmetry is one of

the engineered features of the system that will tend to break down.

November 17, 2020 DRAFT



8

2) Designing a faulty implementation: In order to use the proposed analysis to design a faulty

decoder implementation, it is necessary to ensure that the assumptions of Section II-B are verified.

At first, the memoryless assumptions (3), (4), might seem to be violated by the fact that

deviations can be due to fabrication variations, which are permanent. But an important distinction

must be made between physical circuits and decoder messages. Indeed, a different computing

circuit can be used to perform the computations associated with a particular Tanner graph node

at different iterations of the algorithm. Similarly, a message associated with a particular edge of

the Tanner graph can be stored at different memory locations at different times.

Assumptions (3), (4) remain adequate in a decoder implementation affected by permanent faults

if computations or message storage operations are realized by drawing at random a computation

unit or a memory unit, as the case may be, from a large pool of such units. This behavior

can be approximated in practice by enforcing in the implementation a process diversity policy,

that is by ensuring through a combination of system architecture and control assignments that

related parts of a computation are performed by different physical units. Fortunately, process

diversity can often be provided easily in practical LDPC decoder architectures. For instance, in

a parallel decoder architecture targeted at the widely used quasi-cyclic LDPC code family [22],

messages are routed between two pools of processing units by applying rotations to vectors of

messages. The rotation units could serve the additional purpose of assigning a given node to

different computing or memory circuits in different iterations so as to approximate memoryless

deviations.

On the other hand, depending on the type of deviation that is studied, there is no guarantee that

(5) and (6) are verified. When they are not, they should be seen as a necessary approximation to

make the DE tractable, with the redeeming factor that this approximation can be made as precise

as desired since a different deviation distribution can be used for every DE iteration.

III. NOISY DENSITY EVOLUTION WITH ASYMMETRIC DEVIATION MODELS

In this section, we propose a noisy DE analysis of LDPC decoders under asymmetric deviation

models. In particular, we introduce the mathematical formalism that allows to perform DE without

the all-zero codeword assumption. In our analysis, we consider the cycle-free assumption which

is usually used to derive DE equations [15], [16]. This assumption implies that the messages
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incoming to a VN or a CN are statistically independent.

A. Error probability evaluation

We now describe the DE analysis that allows to evaluate the message error probability of the

decoder at successive iterations. We denote by P
(`)
x (α) the probability density function of a

noiseless message α at a VN output, conditioned on the codeword bit x ∈ {0, 1} at this VN. We

also denote Q(`)
x (β) the probability density function of a noiseless message β at a CN output

conditioned on the codeword bit x at the VN that receives the message β. The notations P̃ (`)
x (α̃)

and Q̃(`)
x (β̃) hold for the probability density functions of noisy messages α̃ and β̃. Note that we

use the term probability density function, although in the paper we consider both continuous-

valued and discrete-valued decoder messages. In the latter case, the density function can be

defined from the counting measure and reduces to a probability mass function. Here, unlike

in [10], we consider conditioning on the bit value x rather than on the codeword weight w. This

is because [17] shows that the two approaches are equivalent, while the terms P (`)
0 (α), P (`)

1 (α),

etc. are simpler to evaluate when conditioned on x rather than on w.

DE consists of calculating the probability density functions P (`)
0 (α), P (`)

1 (α), etc., at successive

iterations `. The commonly considered symmetry assumptions restated in Section II-B lead to

the equalities P (`)
0 (α) = 1−P (`)

1 (α), Q(`)
0 (β) = 1−Q(`)

1 (β), and the same holds for P̃ (`)
x (α̃) and

Q̃
(`)
x (β̃). In standard DE, these equalities allow to consider the all-zero codeword assumption, and

as a result, only the terms P (`)
0 (α), Q(`)

0 (β) (for noiseless messages), P̃ (`)
0 (α̃), Q̃(`)

0 (β̃) (for noisy

messages), are calculated. On the contrary, here, such equalities do not hold and it is required

to calculate all the terms P (`)
0 (α), P

(`)
1 (α), Q(`)

0 (β), Q(`)
1 (β), and their noisy counterparts.

When the all-zero codeword assumption is removed, we can express the message error probability

p̃
(`)
e of the decoder as follows. First denote

P̃ (`)(α̃) =
1

2
P̃

(`)
0 (α̃) +

1

2
P̃

(`)
1 (−α̃). (9)

In this expression, the probability density functions P̃ (`)
0 (α̃) and P̃

(`)
1 (−α̃) are weighted with a

coefficient 1/2 because we assume that the transmitted codeword bits are equiprobable, which

is the capacity-achieving distribution when the channel is symmetric. We then have that the
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message error probability p̃(`)
e in the noisy decoder at iteration ` can be expressed as

p̃(`)
e =

∫ 0−

−∞
P̃ (`)(α̃)dα̃ +

1

2
P̃ (`)(0), (10)

where P̃ (`)(0) is the probability that a noisy message α̃ takes value 0. In the above expression, for

continuous-valued messages, the second term is often equal to 0, unless there is some mass point

at 0 (this would be the case, for instance, for the Self-Corrected Min-Sum decoder introduced

in [23]). For discrete-valued messages, (10) reduces to p̃(`)
e =

∑
α̃<0 P̃

(`)(α̃)+ 1
2
P̃ (`)(0). Also note

that p̃(`)
e depends on the probability density function P̃ (`)(α̃) whose expression itself depends

on the considered decoder. The expression of P̃ (`)(α̃) will be specified later in the paper for

different decoders.

An expression similar to (10) was considered in [17], [24] in the case of an asymmetric

communication channel, and asymmetric VN and CN mappings, but without deviations in the

decoder. In the expression of p̃(`)
e in (10), the second term comes from the case where the APP

decision gives Φa(β0, β
(`)
1 , · · · , β(`)

dv
) = 0. In addition, considering P̃ (`)

1 (−α̃) rather than P̃ (`)
1 (α̃)

in the definition of P̃ (`)(α̃) in (9) allows to have one single integral for the first term of p̃(`)
e .

As a result, in order to evaluate the message error probability p̃
(`)
e , we need to express the

probability density functions P̃ (`)
0 (α̃) and P̃ (`)

1 (α̃) for the two possible codeword bit values x = 0

and x = 1. The expressions of these probability density functions depend on the considered

LDPC decoder. In Section IV, we give their expressions for three decoders: BP, Gallager B, and

MS.

B. Threshold definition

The message error probability p̃
(`)
e defined in (10) is calculated under particular channel and

deviation models. The code ensemble threshold [15] permits to evaluate the average decoder

performance for the ensemble of all codes with regular degrees dv and dc. For decoders without

deviations, the threshold is evaluated as the worst channel parameter that allows to have a

vanishing error probability p(`)
e when the codeword length tends to infinity [15].

For decoders with deviations, the standard threshold definition does not apply. Indeed, deviations

usually prevent the decoder from reaching a zero error probability. Therefore, several alternative
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threshold definitions were introduced for decoders with deviations [6], [14]. In this paper, we

consider the definition of [6] which sets up a parameter ε and defines the threshold as the worst

channel parameter for which p̃
(`)
e < ε. Although introduced in the case of symmetric deviation

models, this definition still applies to the case of asymmetric deviations.

C. Finite-length evaluation of the message error probability

The error probability p̃
(`)
e defined in (10) is evaluated under asymptotic conditions, that is

assuming that the codeword length n goes to infinity. Alternatively, [25] describes a method

for evaluating the error probability at finite length as follows.

We first describe the method of [25] for a binary symmetric channel (BSC) with parameter p0.

We denote by p̃(`)
e,n the message error probability for a codeword length n. For a given value p0,

the error probability p̃(`)
e,n(p0) can be evaluated as

p̃(`)
e,n(p0) =

∫ 1/2

0

p̃(`)
e (z) ΦN

(
z; p0,

p0(1− p0)

n

)
dz . (11)

In this expression, p̃(`)
e (z) is the asymptotic error probability given in (10), whose expression

will be specified in Section IV, depending on the considered decoder. In addition, ΦN gives the

probability density function of a Gaussian random variable with mean p0 and variance p0(1−p0)
n

.

This expression is obtained by considering that the observed BSC parameter can be modeled

as a Gaussian random variable [26, Chapter 8]. We can apply the same method in order to

obtain the error probability p̃
(`)
e,n(σ2) for an Additive White Gaussian Noise (AWGN) channel

of variance σ2. For this, it suffices to apply (11) with p0 = 1
2
− 1

2
erf
(

1√
2σ2

)
, where erf is the

error function of the Gaussian distribution. In this case, in the integral in (11), the asymptotic

error probability p̃
(`)
e (z) is evaluated for a channel variance v2 that depends on z and is given

by v2 = 1

2(erf−1(1−2z))
2 .

This method allows to take into account the channel variations at finite-length. However, it still

assumes that the code is cycle-free, and hence does not evaluate the effect of cycles onto the

code performance. Since cycles are known to degrade the code performance at short length [27],

the method presented in this section is well-suited to evaluate the finite-length performance for

moderate to long lengths. We will use this method in our experiments in order to verify the
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accuracy of the DE equations that we now introduce for three decoders: BP decoder, Gallager-B

decoder, and quantized MS decoder.

IV. NOISY DENSITY EVOLUTION EQUATIONS

The DE methodology described in the previous section is generic and may be applied to any

type of LDPC decoder and deviation model that satisfies the assumptions of Section II. In this

section, we study three of the most common LDPC decoders: BP decoder, Gallager B decoder,

and quantized MS decoder. For each considered decoder, we give examples of asymmetric

deviation models and derive the corresponding noisy DE equations. In this part, we derive the

DE equations for regular (dv, dc) LDPC codes for the three decoders. We then show how to

extend the analysis to irregular LDPC codes.

A. BP decoder

We first consider the standard BP decoder with infinite precision on the messages. This first

derivation of DE equations under asymmetric deviation models is mostly of theoretical interest

since this decoder cannot be directly implemented in hardware. In the BP decoder, the messages

are initialized with the channel log-likelihood ratios (LLRs) as β0 = log P(X=0|y)
P(X=1|y)

. The VN and

CN mappings (1) and (2) are as follows:

α
(`)
dv

= β0 +
dv−1∑
j=1

β
(`−1)
j (12)

β(`) = g−1

(
dc−1∑
i=1

g
(
α

(`)
i

))
. (13)

where, according to [16], the function g : R→ R2 is defined as g(x) = (sgn(x),− log tanh |x
2
|),

and sgn(·) is the sign function.

For the BP decoder, we can consider for instance the additive deviation model described in [6],

[28]. In this model, noisy VN output messages α̃(`)
dv

are in the form

α̃
(`)
dv

= α
(`)
dv

+ b(`), (14)

where b(`) is a continuous random variable that represents the noise, and the noise on CN output

messages β(`)
dc

is also additive, and as such can be combined with additive noise on VN output
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messages without loss of generality since the VN mapping (12) is a sum. The random variable

b(`) is assumed independent of the noiseless message value α(`)
dv

. The probability density function

B of b(`) does not depend on `. For instance, [28] considers a zero-mean Gaussian distribution

for b(`). However, here, unlike in [6], [28], no symmetry assumption is placed on B, which

means that we might have B(α̃) 6= B(−α̃) (for instance, a χ2-distribution).

We now give the DE equations for the BP decoder with the above additive deviation model, which

generalize the asymmetric DE equations from [17] to handle deviations. First, the probability

density functions of the initial messages β0 depends on the channel model. For instance, for an

AWGN channel, β0 = 2y/σ2, where y is the channel output and σ2 is the channel variance.

In this case, the probability density function P
(0)
x of β0 is a Gaussian distribution with mean

2(1 − 2x)/σ2, where x ∈ {0, 1}, and variance 4/σ2. Then, the probability density function of

the noisy VN output messages α̃ can be expressed as

P̃ (`)
x (α̃) = P (0)

x ⊗
(
Q(`−1)
x

)⊗(dv−1) ⊗B(α̃), (15)

where ⊗ represents the convolution product, and (.)⊗d represents the power convolution operator.

By convention, (.)⊗0 = 1. Next, the probability density function of the noiseless CN output

messages β is given by

Q
(`)
0 (β) =

(
1

2

)dc−2 dc−1∑
v=0, even

(
dc − 1

v

)
Γ−1

(
Γ
(
P̃

(`)
0

)⊗(dc−1−v)

⊗ Γ
(
P̃

(`)
1

)⊗v)
(16)

Q
(`)
1 (β) =

(
1

2

)dc−2 dc−1∑
v=1, odd

(
dc − 1

v

)
Γ−1

(
Γ
(
P̃

(`)
0

)⊗(dc−1−v)

⊗ Γ
(
P̃

(`)
1

)⊗v)
(17)

where Γ is the density transform operator of the function g, see [18]. The VN output messages

probability density function (15) is obtained from the fact that the VN computation (12) is a

sum of independent messages. For the derivation of the CN output message probability density

function (16), see Appendix A. Finally, note that the density transform operator Γ and its inverse

Γ−1 do not have known analytical expressions. Therefore, for the BP decoder, DE is usually

evaluated either from message quantization [16] or from Monte-Carlo simulations [29].

B. Gallager B decoder

We now consider the Gallager B decoder with a BSC of parameter p0 and under an asymmetric

deviation model. The Gallager B decoder works with hard-decision messages α, β ∈ {0, 1}. In
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this decoder, the initial message β0 is equal to the channel output, that is β0 = y, with y ∈ {0, 1}.

The VN mapping is given by

α
(`)
dv

=

 β0 ⊕ 1 if
∣∣∣{d : β

(`−1)
d = β0 ⊕ 1}

∣∣∣ ≥ b`

β0 otherwise.
(18)

where b` is a decoder parameter that depends on the iteration number ` and can be optimized

with DE. The CN mapping is given by

β
(`)
dc

=
dc−1⊕
d=1

α
(`)
d , (19)

where
⊕

denotes the XOR sum of the α(`)
d .

For the Gallager B decoder, we can consider the same deviation model as in [10] and apply it

on the output CN messages αd. This model is described by two parameters ε01 and ε10 such

that ε01 = P(β̃d = 1|βd = 0) and ε10 = P(β̃d = 0|βd = 1), where we do not assume that

ε01 = ε10. Note that since the CN message computation (19) is a XOR sum, it is easy to show

that deviations applied onto VN messages could be combined with deviations applied at the

output CN messages. Therefore, the above deviation model which only considers some noise on

output CN messages can be considered without loss of generality.

With this model, the DE equations of the Gallager B decoder are as follows. The probability

density function of initial messages β0 is P (0)
0 (1) = p0 and P (0)

1 (1) = 1−p0. Then, the probability

density functions of the noiseless CN output messages βdc ∈ {0, 1} are given by

Q
(`)
0 (1) =

(
1

2

)dc−1 dc−1∑
v=0, even

(
dc − 1

v

)(
1−

(
1− 2P

(`)
0 (1)

)dc−1−v (
1− 2P

(`)
1 (1)

)v)
(20)

Q
(`)
1 (1) =

(
1

2

)dc−1 dc−1∑
v=1, odd

(
dc − 1

v

)(
1−

(
1− 2P

(`)
0 (1)

)dc−1−v (
1− 2P

(`)
1 (1)

)v)
(21)

The derivation of these expressions can be done by following the same steps as for the BP

decoder, see Appendix A. The probability density functions of the noisy CN output messages

β̃dv ∈ {0, 1} can be expressed as

Q̃(`)
x (0) = ε10Q

(`)
x (1) + (1− ε01)Q(`)

x (0). (22)
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From the condition ε01 6= ε10, we can show that Q̃(`)
0 (0) 6= 1−Q̃(`)

1 (0) in general. The probability

density functions of the noiseless VN output messages αd ∈ {0, 1} are given by

P (`)
x (0) =P (0)

x (0)
dv−1∑
v=b`

(
dv − 1

v

)(
1− Q̃(`)

x (1)
)dv−1−v

Q̃(`)
x (1)v

+ P (0)
x (1)

(
1−

dv−1∑
v=b`

(
dv − 1

v

)(
1− Q̃(`)

x (1)
)v
Q̃(`)
x (1)dv−1−v

)
, (23)

and P
(`)
x (1) = 1 − P

(`)
x (0). From these expressions, one can determine the code ensemble

threshold and optimize the decoder parameter b`.

Note that here, we considered messages in a binary alphabet {0, 1}. Therefore, the error proba-

bility calculation (10) cannot be applied. However, we can easily evaluate the Gallager B decoder

error probability as

p̃(`)
e =

1

2
P

(`)
0 (1) +

1

2
P

(`)
1 (0). (24)

C. Quantized Offset MS decoder

In this section, we consider a quantized offset MS decoder, which is often considered in practical

hardware implementations [13]. For message quantization in the decoder, we consider a uniform

quantizer on q bits, which gives 2q−1 quantization levels. The length of the quantization intervals

is µ and the message quantization alphabet isM = {−2q−1+1, · · · , 0, · · · , 2q−1−1}. We denote

by Q(.) the quantization function, with

Q(m)


2q−1 − 1 if m > 2q−1 − 1

−2q−1 + 1 if m < −2q−1 + 1

µ
⌊
m
µ

+ 1
2

⌋
otherwise.

(25)

For an AWGN channel with variance σ2, the messages are initialized as β0 = Q(2γy/σ2), where

y is the channel output and γ is a scaling factor. The VN mapping is then given by

α
(`)
dv

= Q

(
β0 +

dv−1∑
d=1

β
(`−1)
d

)
, (26)

where the quantization function Q only serves to perform message saturation. The CN mapping

is given by

β
(`)
dc

=

(
dc−1∏
d=1

sgn
(
α

(`)
d

))
max

(
min
d

∣∣∣α(`)
d

∣∣∣− λ, 0) (27)
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where sgn(·) is the sign function, and λ is the decoder offset parameter.

Here, we consider a deviation model at the bit level for the quantized messages α(`)
dv

. We use

(b1, · · · , bq) to represent the q bit values of a symbol m ∈ M. Then, as for the Gallager B

decoder described in Section IV-B, the deviation model is defined by the two parameters ε01 =

P(b̃j = 1|bj = 0) and ε10 = P(b̃j = 0|bj = 1), where b̃j is the noisy version of bj . For simplicity,

we assume that the noise parameters ε01 and ε10 are the same for all bits bj . In order to represent

this deviation model for the quantized decoder, we can construct a probability transition matrix

Π of size (2q − 1) × (2q − 1), as initially proposed in [14]. However, [14] requires symmetry

conditions for Π, which are unnecessary here. With the above deviation model, the components

of the matrix Π are such that

Πi,k = P(α̃
(`)
dv

= k|α(`)
dv

= i),

with i, k ∈M.

For the defined decoder and deviation model, the DE equations are as follows. The initial message

probability density functions P (0)
x can be evaluated by using the erf function, the error function

of the Gaussian distribution, and depend on the quantization intervals. The probability density

function of the noiseless VN output messages α(`)
dv

is then given by

P (`)
x (α) =

∑
β:Φv(β)=α

P (0)
x (β0)

dv−1∏
d=1

Q(`)
x (βd), (28)

where β = (β0, β1, · · · , βdv−1). Then, we use P
(`)
x = [P

(`)
x (−2q−1 + 1), · · · , P (`)

x (2q−1 − 1)] to

denote the probability density function in vectorial form of the noiseless VN output messages

α
(`)
dv

. With this notation, the probability density function in vectorial form P̃
(`)
x of the noisy VN

output messages α̃ is given by

P̃(`)
x = ΠP(`)

x . (29)

Note that this expression only depends on the transition matrix Π and could therefore be applied

to other deviation models. The probability density function of the noiseless CN output messages
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β̃ is given by

Q
(`)
0 (β) =

(
1

2

)dc−2 dc−1∑
v=0, even

(
dc − 1

v

) ∑
α:Φc(α)=β

v∏
d=1

P̃
(`)
1 (αd)

dc−1∏
d=v+1

P̃
(`)
0 (αd) (30)

Q
(`)
1 (β) =

(
1

2

)dc−2 dc−1∑
v=1, odd

(
dc − 1

v

) ∑
α:Φc(α)=β

v∏
d=1

P̃
(`)
1 (αd)

dc−1∏
d=v+1

P̃
(`)
0 (αd), (31)

where α = (α1, · · · , αdv−1). By convention, in the above expressions, if v = 0, we set
∏v

d=1 P̃
(`)
1 (αd) =

1, and if v = dc−1, we set
∏dc−1

d=v+1 P̃
(`)
0 (αd) = 1. The derivation of these expressions can be done

by following the same steps as for the BP decoder, see Appendix A. From these expressions,

one can determine the code ensemble threshold and optimize the decoder parameters γ and

λ. Finally, the DE equations given in this section could be easily extended to the case where

deviations appear at CN outputs, by considering a second transition matrix to be applied to a

vector of CN output messages probabilities.

D. Extension to irregular LDPC codes

We now describe how to extend the proposed DE analysis to the case of irregular LDPC codes.

We consider irregular LDPC codes with edge-perspective VN degree distribution λ(x) and with

edge-perspective CN degree distribution ρ(x) [16]. Following the notation of [16], the VN degree

distribution can be expressed as λ(x) =
∑

i≥2 λix
i−1, where λi is the fraction of edges emanating

from a VN of degree i, and the CN degree distribution is given by ρ(x) =
∑

j≥2 ρjx
j−1, where

ρj is the fraction of edges emanating from a CN of degree j.

Then, for each of the three considered decoders, we denote by P̃
(`)
x,i (α̃) the probability density

function of the noisy VN output messages, evaluated for dv = i. For instance, for the BP decoder,

P̃
(`)
x,i (α) is calculated from (15) by setting dv = i, but by still using Q

(`)
x . We also denote by

Q
(`)
x,j(β) the probability density function of the CN output messages, evaluated with dc = j,

from P̃
(`)
x (α). Then, at iteration `, the probability density functions of decoder messages have

expressions

P̃ (`)
x (α̃) =

∑
i≥2

λiP̃
(`)
x,i (α) (32)

Q(`)
x (β) =

∑
j≥2

ρjQ
(`)
x,j(β). (33)
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In the simulation section, we mainly focus on regular LDPC codes, but also evaluate the

performance of a few irregular LDPC codes from the proposed DE analysis.

V. ASYMMETRIC DECODER PARAMETERS

In this section, we want to optimize the decoder parameters under asymmetric error models. We

focus on the two practical LDPC decoders that were introduced in Section IV: the Gallager B

decoder and the offset MS decoder. We propose variants of these two decoders, in which the

parameter b` of the Gallager B decoder and the parameters γ, λ of the MS decoder are asymmetric

in the sense that they now depend on the signs of the messages exchanged in the decoder. We

show how to optimize these asymmetric parameters in order to improve the decoding performance

under asymmetric error models.

A. Asymmetric parameters in the Gallager B decoder

The standard Gallager B decoder described in Section IV-B depends on one parameter b` which

can vary from iteration to iteration. We now set two different parameters b0,` and b1,` and re-define

the Gallager B VN update (18) as

α
(`)
dv

=


1 if β0 = 0 and

∣∣∣{d : β
(`)
d = 1}

∣∣∣ ≥ b0,`,

0 if β0 = 1 and
∣∣∣{d : β

(`)
d = 0}

∣∣∣ ≥ b1,`,

β0 otherwise.

(34)

In this equation, the parameter b0,` is associated to channel output β0 = 0 while the parameter

b1,` is associated to channel output β0 = 1. The Gallager B CN update given in (19) does not

change.

With this new VN update, the VN message probability density functions P (`)
x (0) in (23) now

depend on both parameters b0,` and b1,`, and become

P (`)
x (0) =P (0)

x (0)
dv−1∑
v=b0

(
dv − 1

v

)(
1− Q̃(`)

x (1)
)dv−1−v

Q̃(`)
x (1)v

+ P (0)
x (1)

(
1−

dv−1∑
v=b1

(
dv − 1

v

)(
1− Q̃(`)

x (1)
)v
Q̃(`)
x (1)dv−1−v

)
. (35)

The expressions of the other probability density functions P̃ (`)
x (0) and Q

(`)
x (1) do not change

compared to Section IV-B.
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We now propose a method to optimize the two parameters b0,` and b1,`. For this, we first extend

the method of [10], [15] that only considers one single parameter b0,` = b1,` = b`. Denote

Hx (b0,`, b1,`) = P
(`)
x (0), where P

(`)
x (0) is evaluated with given parameters b0,` and b1,`. The

objective is to find the smallest integers b0,` and b1,` such that

H0 (b0,` + 1, b1,` + 1) ≥ H0 (b0,`, b1,`) , (36)

H1 (b0,` + 1, b1,` + 1) ≤ H1 (b0,`, b1,`) . (37)

The first inequality comes from the fact that we want to maximize P (`)
0 (0) and the second one

comes from the fact that we want to minimize P (`)
1 (0). These two inequalities can be restated

as

P
(0)
0 (1)

P
(0)
0 (0)

≥

(
dv−1
b0,`

)(
dv−1
b1,`

) (1− Q̃(`)
0 (1)

Q̃
(`)
0 (1)

)dv−1−b0,`−b1,`

, (38)

P
(0)
1 (1)

P
(0)
1 (0)

≤

(
dv−1
b0,`

)(
dv−1
b1,`

) (1− Q̃(`)
1 (1)

Q̃
(`)
1 (1)

)dv−1−b0,`−b1,`

. (39)

In addition, in order to take into account asymmetric deviations, we introduce a third condition,

that is that we would like to find parameters b0,`, b1,` that minimize the gap

|P (`)
0 (1)− P (`)

1 (0)| (40)

between P (`)
0 (1) and P (`)

1 (0). This third condition aims to reduce the asymmetry that is introduced

between P (`)
x (0) and P (`)

1 (0) by the deviations, see (22). At the end, at each iteration `, we propose

to select the two parameters b0,` and b1,` as follows:

1) From parameters b0,`−1 and b1,`−1 retained at iteration ` − 1, and from the correspond-

ing probability density functions P (`−1)
x and Q̃

(`−1)
x , we evaluate the probability density

functions Q̃(`)
x for all possible pairs of values (b0,`, b1,`) ∈ {ddv2 e, · · · , dv − 1}2. We then

compute the two sides of the two inequalities (38) and (39) for all pair of values (b0,`, b1,`).

2) We then identify the pairs of parameters (b0,`, b1,`) that satisfy both (38) and (39).

3) We retain the pairs of parameters (b0,`, b1,`) that minimize the sum b0,` + b1,`.

4) If there is more than one pair that achieves the minimum, we select the pair that minimizes

|P (`)
0 (1)− P (`)

1 (0)|.
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In our experiments, we show that considering two parameters with the above optimization method

allows to obtain better decoding performance than when considering one single parameter.

B. Asymmetric offset parameters in the quantized MS decoder

We now consider the quantized MS decoder introduced in Section IV-C, and propose to use two

scaling parameters γ0, γ1, and two offset parameters λ0 and λ1. The messages are now initialized

by using the two scaling parameters as

β0 =


Q(γ0y) if y ≥ 0,

Q(γ1y) if y < 0,

0 otherwise.

(41)

The VN mapping is still given by (26), but the CN mapping is now

β
(`)
dc

=


(∏dc−1

d=1 sgn
(
α

(`)
d

))
max

(
mind

∣∣∣α(`)
d

∣∣∣− λ0, 0
)

if
∏dc−1

d=1 sgn
(
α

(`)
d

)
> 0,(∏dc−1

d=1 sgn
(
α

(`)
d

))
max

(
mind

∣∣∣α(`)
d

∣∣∣− λ1, 0
)

if
∏dc−1

d=1 sgn
(
α

(`)
d

)
< 0,

0 otherwise.

(42)

As a result, the scaling parameter now depends on the sign of the output channel value, and the

offset now depends on the sign of the output message.

In order to take these asymmetric parameters into account, the DE equations given in Sec-

tion IV-C, are modified as follows. The probability density functions P (0)
x of the initial messages

can be evaluated from the quantization intervals and from the cumulative distribution function

provided in Appendix B. The probability density functions Q(`)
x of the CN messages are still

evaluated from (30) and (31), except that now the expression of the function Φc is given by (42)

and depends on the two offset values. Finally, the probability probability density functions P (`)
x

and P̃ (`)
x of the VN messages without and with deviations do not change and are still evaluated

from (28) and (29).

Finally, in order to optimize both offset and scaling parameters, we perform an exhaustive search

in order to select the four values of γ0, γ1, λ0 and λ1 that minimize the decoder error probability

p̃
(`)
e evaluated with asymptotic DE for given channel and deviation conditions. Simulation results

show the gain in performance obtained with these asymmetric parameters.
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Fig. 1. Regular code ensemble thresholds for ε10 = 10−3 with respect to ε01 for the Gallager B decoder, without the all-zero

codeword assumption (standard DE) and with the all-zero codeword assumption (Asym. DE).

VI. NUMERICAL RESULTS

This section provides simulation results for the Gallager B decoder and for the quantized Min-

Sum decoder. For both decoders, it gives threshold values obtained from the noisy DE analysis

presented in this paper for various channel and asymmetric deviation models. It also compares

the decoders finite-length performance predicted from noisy DE by using the method described in

Section III-C, with the performance evaluated from Monte Carlo simulations. Finally, it evaluates

the effect of asymmetric parameters introduced in Section V.

In the Monte-Carlo simulations performed in this section, we do not consider the all-zero

codeword. Instead, we generate information sequences at random and perform the encoding

with the generator matrix, see [30].

A. Gallager B decoder

In this section, we first provide the code ensemble thresholds obtained for a Gallager B decoder

under asymmetric deviations. For this decoder, we assume a BSC with crossover probability p.

Following the definition in Section III-B, we measure the threshold as the largest value of p

for which p̃
(`)
e < 10−3, where p̃(`)

e is expressed in (24) with respect to the probability density
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functions P̃ (`)
x obtained by DE, and where p is found using a binary search. We consider four

regular codes with dv = 3 and dc = 4, 5, 6, 12, respectively, and parameters L = 200 iterations,

b` = 2, and ε10 = 10−3. From the DE equations provided in Section IV-B, we calculate the

thresholds for the four considered codes. In Figure 1, we show the thresholds for different values

of ε01, obtained with the asymmetric DE presented in this paper, and also the thresholds obtained

from standard noisy DE [6] performed with the all-zero codeword assumption. The thresholds

for standard noisy DE were evaluated by calculating only the probability density functions Q(`)
0 ,

Q̃
(`)
0 , and P

(`)
0 in (21), (22), (23), respectively, and Q

(`)
0 was calculated by considering that

P
(`)
0 = 1− P (`)

1 , as in standard DE. As a result, the curves for standard DE were evaluated for

the same values ε01 6= ε10 as in asymmetric DE. As expected, in all the considered cases, we

observe from Figure 1 that the thresholds decrease with ε01. In addition, we observe that the

thresholds obtained under the all-zero codeword assumption differ from the thresholds obtained

without this assumption, which shows the need to remove the all-zero codeword assumption in

DE under asymmetric deviations. Nonetheless, for small values of ε01, the two threshold values

are the same. This comes from the fact that for a small amount of deviations, the noisy thresholds

become equal to the noiseless threshold.

Then, in order to verify the accuracy of the proposed asymmetric DE, we use the method

described in Section III-C that allows to predict the decoder performance at finite-length from

DE. We construct one regular (3, 4)-code, one regular (3, 6)-code, and one regular (3, 12)-code,

both of length N = 10000, with a Progressive-Edge-Growth (PEG) algorithm [27]. The (3, 4)

and (3, 6) code both have girth 10, while the (3, 12)-code has girth 6. We then fix deviation

parameters ε01 = 10−2, ε10 = 10−4. We evaluate the Bit Error Rate (BER) performance of

the two codes from Monte Carlo simulations, and compare the obtained BERs to the ones

predicted by the finite-length DE-based method described in Section III-C. We apply the method

of Section III-C with and without the all-zero codeword assumption. Figure 2 shows the obtained

BERs with respect to the crossover parameter p. We see that our DE analysis without all-zero

codeword assumption accurately predicts the decoder performance of the finite-length codes. On

the contrary, we observe a gap between the performance predicted with the all-zero codeword

assumption, and the BERs obtained from Monte Carlo simulations. This shows the accuracy and

the interest of the method proposed in this paper. Finally, Figure 2 shows that an error floor
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(3,12), Standard FL-DE

(3,12), Asym. FL-DE

(3,12), sim

(3,6), Standard FL-DE

(3,6), Asym. FL-DE

(3,6), sim

(3,4), Standard FL-DE

(3,4), Asym. FL-DE

(3,4), sim

Fig. 2. For the Gallager-B decoder, comparison of BER measured from Monte-Carlo simulations and evaluated with the

finite-length DE-based method (FL-DE), with and without the all-zero codeword assumption, for (3,4), (3,6), and (3,12) regular

codes of length N = 10000, with ε01 = 10−2, ε10 = 10−4. For each considered setup, the curves of Monte Carlo simulations

and of FL-DE without the all-zero codeword assumption are superimposed.

appears for both codes for low values of p. This error floor is due to deviations introduced in

the decoder, which DE can capture, and not to short-length effects such as Tanner graph cycles.

Finally, we evaluate the performance of the Gallager B decoder with asymmetric parameters

introduced in Section V, both from threshold computation and from finite-length performance

analysis. For threshold comparison, as before, we set L = 200 iterations and ε10 = 10−3.

We consider three regular (5, 6), (9, 10), and (5, 10) codes. For each code, we consider two

Gallager B decoders: the first one with a symmetric parameter b` (optimized with the method

of [15]), and the second one with two asymmetric parameters b0,` and b1,` (optimized with the

method of Section V). Figure 3 (a) shows the thresholds obtained for the two methods for various

values of ε01. We observe that asymmetric parameters improve the decoder thresholds compared

to symmetric parameters.

We also confirm these results on finite-length simulations. For the (5, 6) and the (5, 10) code,

we compare the BER performance obtained with both symmetric and asymmetric decoder
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(a) (b)

Fig. 3. (a) Threshold optimization with both symmetric and assymmetric Gallager B decoder parameters, for (5,6), (9,10),

and (5,10) regular codes, and for ε10 = 10−3. The x-axis label ε01 is the deviation parameter from bit value 0 to bit value

1. (b) Finite-length performance of (5, 6) and (5, 10)-codes of length N = 10000 for the Gallager B decoder with symmetric

and asymmetric parameters, with ε01 = 5 × 10−2, ε10 = 10−4. The finite-length performance is measured from Monte-Carlo

simulations and evaluated from the finite-length DE-based method (FL-DE) without the all-zero codeword assumption. For each

considered setup, the curves of Monte Carlo simulations and of FL-DE are superimposed.

parameters. In both cases, we predict the BER from the finite-length DE-based method of

Section III-C, and evaluate the BER from Monte Carlo simulations on codes of length N = 10000

and girth 8. The results are shown in Figure 3 (b) for ε01 = 5 × 10−2, ε10 = 10−4, and L = 5

iterations. We observe that asymmetric parameters clearly improve the BER performance of the

Gallager B decoder under asymmetric deviations. We also see that the method of Section III-C

accurately predicts the BER performance at finite length, which validates the asymmetric DE

analysis introduced in this paper.

B. Quantized Min-Sum decoder

We now consider the quantized Min-Sum decoder with the asymmetric deviation model described

in Section IV-C. We consider an AWGN channel with variance σ2 and normalized Signal-to-

Noise Ratio (SNR) snr = 10 log10

(
1

2Rσ2

)
in dB. In this case, the code ensemble threshold is

defined as the smallest value of snr for which p̃(`)
e < 10−3 for a large enough `. For the decoder

parameters, we fix L = 100 iterations, q = 7, ∆ = 0.25, γ = 1, λ = 0, and ε10 = 10−3. We

also assume a sign-magnitude binary representation for the messages exchanged in the decoder.
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(a) (b)

Fig. 4. (a) Regular code ensemble thresholds with respect to ε01 for the quantized Min-Sum decoder, with and without the

all-zero codeword assumption, and with ε10 = 10−3. The x-axis label ε01 is the deviation parameter from bit value 0 to bit value

1. (b) For the quantized Min-Sum decoder, comparison of BER measured from Monte-Carlo simulations and evaluated with the

finite-length DE-based method (FL-DE), with and without the all-zero codeword assumption, for (3,4) and (3,6) regular codes

of length N = 10000, with ε01 = 5 × 10−4, ε10 = 10−3. For each considered setup, the curves of Monte Carlo simulations

and of FL-DE without the all-zero codeword assumption are superimposed.

From the DE equations provided in Section IV-C, we calculate the thresholds with respect to the

parameter ε10 for four regular codes with VN degree dv = 3 and with CN degrees dc = 4, 5, 6, 12,

respectively. Figure 4 (a) shows the thresholds obtained with respect to ε01 with standard noisy-

DE [6] with the all-zero codeword assumption, and with the asymmetric noisy-DE analysis

introduced in this paper. The thresholds for standard noisy DE were evaluated by calculating

only the probability density functions Q(`)
0 , Q̃(`)

0 , and P (`)
0 in (28), (29), (30) and by considering

that P (`)
0 = 1− P (`)

1 . As expected, the code ensemble thresholds increase with ε01. In addition,

the thresholds obtained with standard DE differ from thresholds obtained with our DE analysis,

although for small values of ε01, the two threshold values are the same.

We then evaluate the finite-length performance of the quantized Min-Sum decoder over one

(3, 4) regular code and one (3, 6) regular code. For the decoder, we set parameters L = 50,

q = 7, ∆ = 0.25, γ = 1, λ = 0, ε01 = 5 × 10−4, ε10 = 10−3. For each considered code, we

evaluate the BER from Monte-Carlo simulations realized on codes of length N = 10000 and

girth 10 constructed from the PEG algorithm. We compare the obtained BER values with the
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Fig. 5. For the quantized Min-Sum decoder, comparison of BER measured from Monte-Carlo simulations and evaluated with

the finite-length DE-based method (FL-DE) with parameters ε01 = 5× 10−4, ε10 = 10−3 for two irregular codes: one with rate

1/4 and length N = 8000 and one with rate 1/2 and length N = 9972.

performance predicted by the finite-length DE-based method of Section III-C, evaluated with and

with standard DE (with the all-zero codeword assumption) and with our method (without the all-

zero codeword assumption) . The results are shown in Figure 4 (b). We observe that our method

accurately predicts the decoders performance evaluated with Monte-Carlo simulations, while the

curve obtained from standard DE shows a gap with the simulations. These results confirm that

the DE method introduced in this paper accurately predicts the performance of quantized Min-

Sum decoders with asymmetric deviations, while standard Density Evolution with the all-zero

codeword assumption is not accurate. Finally, as for the Gallager B decoder, we observe an error

floor at high SNR values, which is due to the deviations in the decoder.

We also evaluate the finite-length performance of the quantized Min-Sum decoder over two

irregular LDPC codes, both constructed with the PEG algorithm. The first irregular LDPC code

has rate 1/2, codeword length N = 9972, and degree distributions λ1(x) = 0.7857x2 +0.2143x8,

ρ1(x) = x6 [31]. The second irregular code has rate 1/4, codeword length N = 8000, and degree

distributions λ2(x) = 0.1688x+ 0.1624x2 + 0.1313x8 + 0.2264x9 + 0.007575x10 + 0.2737x14 +

0.02986x15, ρ2(x) = 0.19x5 + 0.81x6. For the decoder, we set parameters L = 50, q = 5,

∆ = 0.5, γ = 1, λ = 0, ε01 = 5 × 10−4, ε10 = 10−3. For each of the two irregular codes,
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(a) (b)

Fig. 6. (a) SNR threshold optimization with symmetric and asymmetric offset and scaling parameters for the quantized Min-Sum

decoder, for (3, 4), (3, 6), and (4, 5)-codes, and for ε10 = 10−5. The x-axis label ε01 is the deviation parameter from bit value 0

to bit value 1. (b) Comparison of BER with respect to SNR for the quantized Min-Sum decoder, for symmetric and asymmetric

decoder parameters, for codes of length N = 10000 with ε10 = 10−5, and ε01 = 5 × 10−2. For each considered setup, plain

curves (performance evaluated from FL-DE) and dashed curves (performance evaluated from Monte Carlo simulations) are

superimposed.

Figure 5 compares the BER performance evaluated with Monte-Carlo simulations, with the

BER performance predicted by the finite length DE method. This Figure confirms that the

asymmetric DE method developed in this paper also allows to consider irregular LDPC codes.

The gap between the curves obtained from Monte-Carlo simulations and the curves obtained by

finite-length DE are slightly increased compared to regular codes considered in Figure 4 (b).

This is probably due to the fact that the considered irregular codes are more dense, and hence

contain more short cycles, than the regular codes.

We now evaluate the performance of the quantized Min-Sum decoder with asymmetric scaling

and offset parameters introduced in Section V-B. We consider regular (3, 4), (3, 6), and (4, 5)-

codes, and decoder parameters given by L = 10 iterations, q = 4, ∆ = 1, and ε10 = 10−5.

In Figure 6 (a), we show the SNR thresholds with respect to the noise parameter ε01, obtained

by considering symmetric and asymmetric parameters. We observe that asymmetric parameters

improve the decoder performance compared to symmetric parameters. In our simulations, we

observed that both the scaling parameter and the offset parameter need to be asymmetric.
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TABLE I

OPTIMIZED SYMMETRIC AND ASYMMETRIC PARAMETER VALUES FOR THE QUANTIZED MIN-SUM DECODER, FOR (3, 4),

(3, 6), AND (4, 5)-CODES, FOR ε10 = 10−5 .

Symmetric parameters Asymmetric parameters

code ε01 γ λ Threshold γ0 γ1 λ0 λ1 Threshold

(3,4) 0.01 0.85 0 3.45 dB 0.90 0.80 0 0 3.30 dB

0.03 0.55 1 7.08 dB 1.0 0.25 1 0 5.01 dB

(3,6) 0.01 0.70 0 2.75 dB 0.75 0.7 0 0 2.74 dB

0.03 0.60 1 4.89 dB 1.0 0.35 1 0 3.68 dB

(4,5) 0.01 0.95 0 4.58 dB 0.95 0.90 0 0 4.48 dB

0.05 1.0 0 7.31 dB 1.0 0.25 1 0 6.38 dB

For instance, symmetric scaling parameter with asymmetric offset do not improve much the

performance compared to the fully symmetric setup. In addition, Table I provides the optimized

values of the symmetric and asymmetric parameters as well as the corresponding thresholds, for

two values of ε10 for the three considered codes. The values in the Table confirm that asymmetric

parameters allow to improve the decoder thresholds.

At the end, we confirm the interest of asymmetric quantized Min-Sum parameters on finite-

length simulations. We consider decoder parameters given by L = 10 iterations, q = 4, ∆ = 1,

ε10 = 10−5, and ε01 = 5 × 10−2. For (3, 4) and the (3, 6) regular codes, we compare the

BER performance obtained with optimized symmetric and asymmetric decoder parameters. In

both cases, we predict the BER from the finite-length DE-based method of Section III-C, and

evaluate the BER performance from Monte Carlo simulations on codes of length N = 10000 and

girth 8 obtained from a PEG algorithm. The results are shown in Figure 6 (b), and confirm that

asymmetric parameters clearly improve the BER performance of the quantized Min-Sum decoder

under asymmetric deviations. We also see that the method of Section III-C accurately predicts

the BER performance at finite length, which validates the asymmetric DE analysis introduced

in this paper.
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VII. CONCLUSION

We considered noisy LDPC decoders under asymmetric deviation models and derived the noisy

DE equations without the all-zero codeword assumption for three noisy decoders: the BP decoder,

the Gallager B decoder, and the quantized offset MS decoder. We then proposed to compensate

the effects of asymmetric deviations by introducing asymmetric parameters in the Gallager B

and quantized MS decoders. Numerical simulations confirmed both the accuracy of the proposed

DE method, and the performance improvement provided by the use of asymmetric parameters.

Future work will target the optimization of irregular degree distributions and protographs under

asymmetric deviation models.
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APPENDIX A

CN MESSAGE PROBABILITY DENSITY FUNCTION IN THE BP DECODER

We derive the CN output message probability density function (16) for the BP decoder. At the

CN, the output message is denoted β and the input messages are denoted αi. We first consider

the case where the VN that receives message β has value x = 0. Denote by x1, · · · , xdc−1 the

bit values of the VNs that sent messages α1, · · · , αdc−1. Denote by V the random variable that

represents the number of values 1 among x1, · · · , xdc−1. By marginalization with respect to V ,

we have

Q
(`)
0 (β) = P(β|x = 0) =

dc−1∑
v=0

P(V = v|x = 0) P(β|x = 0, V = v). (43)

If v is odd, then P(V = v|X = 0) = 0, since x+
∑dc−1

i=1 xi = 0. If v is even, then

P(V = v|X = 0) =

(
dc − 1

v

)(
1

2

)dc−2

.

In addition,

P(β|x = 0, V = v) = Γ−1

(
Γ
(
P̃

(`)
0

)⊗(dc−1−v)

⊗ Γ
(
P̃

(`)
1

)⊗v)
,

since (x1, · · · , xdc−1) contains v values 1 and (dc−1−v) values 0. Combining these expressions

gives Q(`)
0 (β) in (16). The derivation of Q(`)

1 (β) follows the same process.
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APPENDIX B

PROBABILITY DENSITY FUNCTION OF INITIAL MESSAGES IN THE QUANTIZED MIN-SUM

DECODER WITH ASYMMETRIC PARAMETERS

In this part, we consider an AWGN channel with variance σ2. In order to compute the probability

density functions P (0)
x of initial messages in the quantized Min-Sum decoder with asymmetric

parameters, we need to determine the cumulative distribution function of a random variable

z = 2γ(y)y
σ2 , where γ(y) = γ0 if y ≥ 0, and γ(y) = γ1 if y < 0. We denote by Fz|x(t) = P(z ≤ t|x)

the cumulative distribution function of the random variable z conditioned on x ∈ {0, 1}.

The cumulative distribution function Fz|x(t) can be expressed as

Fz|x(t) = P

(
2γ(y)y

σ2
≤ t|x

)
(44)

= P

((
2γ(y)y

σ2
≤ t

)
∩ (y ≥ 0) |x

)
+ P

((
2γ(y)y

σ2
≤ t

)
∩ (y ≤ 0) |x

)
(45)

by the law of total probability. We then treat separately the case where t < 0 and the case t ≥ 0,

starting with the first case.

Since γ(y) > 0, the condition t < 0 implies that y < 0. As a result, when t < 0, the cumulative

distribution function Fz|x(t) is given by Fz|x(t) = P
(

2γ1y
σ2 |x

)
. We denote µ1(x) = 2γ1(1−2x)

σ2 and

σ2
1 =

4γ21
σ2 . Then, the random variable 2γ1y

σ2 follows a Gaussian distribution with mean µ1(x) and

variance σ2
1 . As a result,

∀t < 0 , Fz|x(t) =
1

2
+

1

2
erf
(
t− µ1(x)√

2σ1

)
(46)

where erf is the error function of the Gaussian distribution.

Now, for t ≥ 0, the cumulative distribution function Fz|x(t) is given by

Fz|x(t) = P

(
2γ(y)y

σ2
≤ 0|x

)
+ P

(
0 ≤ 2γ(y)y

σ2
≤ t|x

)
. (47)

We denote µ0(x) = 2γ0(1−2x)
σ2 and σ2

0 =
4γ20
σ2 . Then, the random variable 2γ0y

σ2 follows a Gaussian

distribution with mean µ0(x) and variance σ2
0 . As a result,

∀t ≥ 0 , Fz|x(t) =
1

2
+

1

2
erf
(
−µ1(x)√

2σ1

)
+

1

2
erf
(
µ0(x)√

2σ0

)
+

1

2
erf
(
t− µ0(x)√

2σ0

)
. (48)

November 17, 2020 DRAFT



31

REFERENCES

[1] P. Gupta, Y. Agarwal, L. Dolecek, N. Dutt, R. K. Gupta, R. Kumar, S. Mitra, A. Nicolau, T. S. Rosing, M. B. Srivastava,

S. Swanson, and D. Sylvester, “Underdesigned and opportunistic computing in presence of hardware variability,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 32, no. 1, pp. 8–23, Jan 2013.

[2] Y. Yang, P. Grover, and S. Kar, “Computing linear transformations with unreliable components,” IEEE Transactions on

Information Theory, vol. 63, no. 6, pp. 3729–3756, 2017.

[3] ——, “Fault-tolerant distributed logistic regression using unreliable components,” in 2016 54th Annual Allerton Conference

on Communication, Control, and Computing (Allerton). IEEE, 2016, pp. 940–947.

[4] E. Dupraz and L. R. Varshney, “Binary recursive estimation on noisy hardware,” in 2019 IEEE International Symposium

on Information Theory (ISIT). IEEE, 2019, pp. 877–881.

[5] G. B. Hacene, F. Leduc-Primeau, A. B. Soussia, V. Gripon, and F. Gagnon, “Training modern deep neural networks for

memory-fault robustness,” in 2019 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2019, pp.

1–5.

[6] L. Varshney, “Performance of LDPC codes under faulty iterative decoding,” IEEE Transactions on Information Theory,

vol. 57, no. 7, pp. 4427–4444, 2011.

[7] F. Leduc-Primeau and W. J. Gross, “Faulty Gallager-B decoding with optimal message repetition,” in Proc. 50th Allerton

Conf. on Communication, Control, and Computing, Oct. 2012.
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