
HAL Id: hal-03337122
https://imt-atlantique.hal.science/hal-03337122

Submitted on 7 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Power-Efficient Deep Neural Networks with Noisy
Memristor Implementation

Elsa Dupraz, Lav R Varshney, François Leduc-Primeau

To cite this version:
Elsa Dupraz, Lav R Varshney, François Leduc-Primeau. Power-Efficient Deep Neural Networks
with Noisy Memristor Implementation. ITW 2021: IEEE Information Theory Workshop, Oct 2021,
Kanazawa, Japan. �10.1109/ITW48936.2021.9611431�. �hal-03337122�

https://imt-atlantique.hal.science/hal-03337122
https://hal.archives-ouvertes.fr


Power-Efficient Deep Neural Networks with
Noisy Memristor Implementation

Elsa Dupraz†, Lav R. Varshney‡, and François Leduc-Primeau∗
† IMT Atlantique, Lab-STICC, UMR CNRS 6285, F-29238, France

‡ Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, USA
∗ Department of Electrical Engineering, École Polytechnique de Montréal, Montreal (QC), Canada

Abstract—This paper considers Deep Neural Network (DNN)
linear-nonlinear computations implemented on memristor cross-
bar substrates. To address the case where true memristor
conductance values may differ from their target values, it in-
troduces a theoretical framework that characterizes the effect of
conductance value variations on the final inference computation.
With only second-order moment assumptions, theoretical results
on tracking the mean, variance, and covariance of the layer-by-
layer noisy computations are given. By allowing the possibility
of amplifying certain signals within the DNN, power consump-
tion is characterized and then optimized via KKT conditions.
Simulation results verify the accuracy of the proposed analysis
and demonstrate the significant power efficiency gains that are
possible via optimization for a target mean squared error.

I. INTRODUCTION

When implemented on electronic circuits, Deep Neural Net-
works (DNNs) demand important data transfers between mem-
ories and processors, which severely affects their power con-
sumption and latency. As an alternative emerging paradigm,
computation-in-memory consists of performing computation
operations directly within the memory [1]. In this work, we
consider implementing Deep Neural Networks (DNNs) from
memristor crossbars developed for analog in-memory compu-
tation [2]–[4], where the synaptic weights of neural networks
are encoded in memristance values [5]. When building a
computational system from a memristor crossbar, one of the
main difficulties is to set up memristance values with arbitrary
precision [3]. Hence in this work, we consider the setting
where memristance values are noisy, and evaluate the effect
of noise on the inference phase of the DNN.

It is shown in [6] that noise can sometimes help in the
inference performance of neural networks by getting them
unstuck from local minima. Several works in the literature also
investigate the robustness of DNNs to undesired noise [7]–
[9], though without considering the in-memory computation
framework. As a key issue, the DNN robustness is strongly
related to the power consumption of its electrical circuit
implementation [9]. In this work, we investigate this key issue
in the context of in-memory computing, by first aiming to
predict the effect of noisy memristor values onto the final DNN
computation. The physical substrate of memristors and their

This work was supported in part by the “Make our Planet Great Again”
Initiative of the Thomas Jefferson Fund, by grant ANR-17-CE40-0020 of the
French National Research Agency ANR (project EF-FECtive), and by IVADO
grant PRF-2019-4784991664.

computational and noise properties make the mathematical
problem quite different from the above works [6]–[9].

We first introduce a theoretical analysis that consists of
tracking the evolution of the first and second-order moments
over the successive layers of a DNNs, as functions of the noise
variance of memristor values. These recursive expressions are
obtained from second-order Taylor expansions of the means,
variances, and covariances of the layers outputs, taking into
account the noisy linear computation realized from memristor
crossbars, and the non-linear activation functions at each layer.
This extends our previous moment analysis of [10] which
considered noisy dot-product computation from memristor
crossbars. The proposed analysis is very generic as it only
performs a few assumptions on the mean and variance of each
memristance value, without any further assumption on their
statistical distribution. The accuracy of the proposed analysis
is verified using Monte Carlo simulations. Then, as a second
important contribution, we propose to optimize the power
consumption of a DNN memristor-based implementation. In
a first step, we show how to evaluate the expected power
consumption of one memristor crossbar, by applying the
second-order Taylor expansion approach to electrical formula
that provide the power of one specific memristor in a crossbar.
In a second step, we formulate a power optimization problem
under constraints on the final variance at the network output,
and provide analytical solutions to this problem by relying
on the Karush-Kuhn-Tucker (KKT) conditions. Our numerical
results demonstrate significant power gains compared to the
non-optimized case.

The remainder of this paper is organized as follows. Sec-
tion II presents the noisy memristor crossbar architecture.
Section III develops the moment-evolution methodology. Sec-
tion IV addresses power optimization. Section V provides sim-
ulation results. In what follows, E[·] refers to the expectation,
V[·] to the variance, and C[·, ·] to the covariance. The notation
J1,ΨK indicates the set {1, 2, . . . ,Ψ}.

II. NOISY ARCHITECTURES FOR DEEP NEURAL
NETWORKS

A. DNN computation

In this work, we consider a feedforward NN with T layers.
The network input is a vector x of length K, and the network
output is a vector y of length N . Layer t ∈ J1, T K of the
network is composed by Nt neurons and outputs a vector x(t)



of length Nt. We use W(t) to denote the weight matrix of
layer t, where the matrix W(t) is of size Nt × Nt−1. For
a given activation function f , layer t performs the following
linear and non-linear operations:

z(t) =W(t)x(t−1), for all t ∈ J1, T K, (1)

x
(t)
k = f(z

(t)
k ), for all t ∈ J1, T K and all k ∈ J1, NtK, (2)

where z(t) is a vector of length Nt. In this work, we consider f
to be the sigmoid function f(z) = 1

1+e−z , which is commonly
considered in several NN implementations. The theoretical
analysis developed in this paper can be easily extended to other
activation functions f , given they are twice differentiable.

B. Memristor-based implementation of DNN

In this work, we consider the setting where the non-linear
operation (2) is realized either in the CMOS layer of a CMOL
architecture [11], by analog computation [5], or a similarly
mathematizable physical substrate. There is no fundamental
difference in considering either of these implementations and
this implies that in our analysis, the noise is only on the
conductance values of the memristors.

Then, the linear operation (1) is a dot-product computation
which can be realized by a memristor crossbar. Since memris-
tor conductance values can only be positive, the computation
operation (1) is realized from two crossbars: one for the
positive part, and one for the negative part of the computa-
tion [3]. Therefore, we let W(t) = W(t,+) − W(t,−), where
W(t,+) contains the positive components of W (t), andW(t,−)

contains the absolute values of the negative components of
W(t). The matrices W(t,+) and W(t,−) are then converted
into matrices G(t,+) and G(t,−), respectively, where G(t,+) and
G(t,−) contain positive conductance values g(t,+)

i,j and g
(t,−)
i,j .

These conductance values are chosen so that the computation
of the z(t)

j in (1) can be equivalently performed as

z
(t)
j =

Nt−1∑
i=1

g
(t,+)
i,j x

(t)
i

g0 +
∑Nt−1

k=1 g
(t,+)
k,j

−
Nt−1∑
i=1

g
(t,−)
i,j x

(t)
i

g0 +
∑Nt−1

k=1 g
(t,−)
k,j

(3)
where g0 is a pull-down conductance. Note that in expres-
sion (3), a part of the coefficients g(t,+)

i,j and g(t,−)
i,j are equal

to zero, when the corresponding coefficients in W(t,+) and
W(t,−) are equal to zero.

C. Noisy conductance values

When considering dot-product computation from memris-
tor crossbars, one key issue is the difficulty in setting up
conductance values g(t,+)

i,j , g(t,−)
i,j with arbitrary precision [3].

Therefore, we think of the conductance values as noisy, so
that the deterministic quantities g(t,+)

i,j , g(t,−)
i,j , are replaced by

random variables G(t,+)
i,j , G(t,−)

i,j , in (3). We further assume
that whenever g(t,+)

i,j 6= 0, the corresponding random variable
G

(t,+)
i,j has mean g(t,+)

i,j and variance σ2. In the same way, we
assume that the random variables G(t,−)

i,j such that g(t,−)
i,j 6= 0

have mean gt,−i,j and the same variance value σ2. On the

contrary, if g(t,+)
i,j = 0 (respectively g

(t,−)
i,j = 0), we assume

that G(t,+)
i,j = 0 (respectively G(t,−)

i,j = 0) as well. In order to
develop an analysis which applies to a large class of problems,
physical substrates, and noise environments, we do not make
any further assumption beyond the second-order moments on
e.g., the distribution of the random variables G(t,+)

i,j and G(t,−)
i,j .

In addition, since the non-linear operations (2) are not realized
from memristor crossbars, we assume that no additional noise
is introduced during these operations. Finally, we denote the
random versions of vectors x(t) and z(t) by X(t) and Z(t).

III. PERFORMANCE ANALYSIS OF NOISY
MEMRISTOR-BASED IMPLEMENTATION OF DNN

With the mathematical model of the noisy memristor-based
DNN implementation in place, now we derive our theoretical
performance analysis. We aim to express the MSE between
the correct network output x(T ) and its noisy version X(T ).
For this, we follow the approach of [10], and provide iterative
expressions of the first and second-order moments (means,
variances, and covariances) of the successive random variables
X(t) and Z(t) calculated at each layer t of the network. These
iterative expressions are obtained from second-order Taylor
expansions [12] of the considered moments. Compared to [10]
which focused on linear recursive computations, we must now
take the non-linear computation (2) into account in the moment
expressions. We must also consider the fact that the linear
computation (3) is separated into one positive part and one
negative part; the effect of this separation was not evaluated
in [10]. Finally, in this section, we consider the viewpoint
of one layer, and drop the index t in order to simplify the
notation.

A. Moments after linear computation
In this part, we evaluate the second-order moments of the

random vector Z after applying the linear operation (3) from
memristor crossbars. We first rewrite the components Zj of Z
as

Zj = Z
(+)
j − Z(−)

j =
T

(+)
j

∆
(+)
j

−
T

(−)
j

∆
(−)
j

, (4)

where T (+)
j =

∑N
i=1G

(+)
ij Xi, ∆

(+)
j = G0 +

∑N
i=1G

(+)
ij , and

likewise for T (−)
j and ∆

(−)
j . We then introduce the notation

E[Xi] = νi, Var[Xi] = γ2
i , and for all i′ 6= i, C[Xi, Xi′ ] =

γi,i′ , respectively for the mean, variance, and covariance of
the components Xi of X. The next two theorems provide the
mean, variance, and covariance of the positive components
Z

(+)
j .

Theorem 1. For all j ∈ J1, NK, the second-order Taylor

expansions of the mean µ(+)
j = E[Z

(+)
j ] and variance ρ(+)

j

2
=

V[Z
(+)
j ] of Z(+)

j are given by

µ
(+)
j =

E[T
(+)
j ]

E[∆
(+)
j ]

−
C[T

(+)
j ,∆

(+)
j ]

E[∆
(+)
j ]2

+
V[∆

(+)
j ]E[T

(+)
j ]

E[∆
(+)
j ]3

ρ
(+)
j

2
=

V[T
(+)
j ]

E[∆
(+)
j ]2

+
3E[T

(+)
j ]2V[∆

(+)
j ]

E[∆
(+)
j ]4

−
4E[T

(+)
j ]C[∆

(+)
j , T

(+)
j ]

E[∆
(+)
j ]3



where
E[T

(+)
j ] =

N∑
i=1

g
(+)
ij νi (5)

E[∆
(+)
j ] = g0 +

N∑
i=1

g
(+)
ij (6)

V[∆
(+)
j ] = N

(+)
j σ2 (7)

C[∆
(+)
j , T

(+)
j ] = σ2

N∑
i=1

p
(+)
i,j νi (8)

V[T
(+)
j ] = σ2

N∑
i=1

p
(+)
i,j (γ2

i + ν2i ) +

N∑
i=1

N∑
i′=1

g
(+)
i,j g

(+)

i′,j γi,i′ (9)

In the above expressions, p(+)
i,j = 1 if g(+)

ij 6= 0, p(+)
i,j = 0

otherwise, and N (+)
j =

∑N
i=1 p

(+)
i,j .

Theorem 2. For all (j, j)′ ∈ J1, NK2 such that j′ 6= j, the
covariance ρ(+)

j,j′ = C(Z
(+)
j , Z

(+)
j′ ) can be expressed as

ρ
(+)

j,j′ =

N∑
i=1

N∑
i′=1

E

[
G

(+)
i,j

∆
(+)
j

]
E

[
G

(+)

i′,j′

∆
(+)

j′

]
γi,i′ (10)

and the second-order Taylor expansion of E
[
G

(+)
i,j

∆
(+)
j

]
is

E

[
G

(+)
i,j

∆
(+)
j

]
=

E[G
(+)
i,j ]

E[∆
(+)
j ]

−
C[G

(+)
i,j ,∆

(+)
j ]

E[∆
(+)
j ]2

+
V(∆

(+)
j )E[G

(+)
i,j ]

E[∆
(+)
j ]3

where C[G
(+)
i,j ,∆

(+)
j ] = σ2.

In order to obtain the mean, variance, and covariance of
Z

(−)
j , it suffices to replace “+” by “−” in Theorems 1

and 2. The next theorem then provides the mean, variance,
and covariance of the components Zj of Z.

Theorem 3. For all (j, j)′ ∈ J1, NK2, and j′ 6= j, the mean
µj = E[Zj ], variance ρj2 = V[Zj ], and covariance ρj,j′ =
C(Zj , Zj′) are given by

µj = µ
(+)
j − µ(−)

j

ρ2
j = ρ

(+)
j

2
+ ρ

(−)
j

2
− 2C[Z

(+)
j , Z

(−)
j ]

ρj,j′ = ρ
(+)
j,j′ + ρ

(−)
j,j′ − C[Z

(+)
j , Z

(−)
j′ ]− C[Z

(−)
j , Z

(+)
j′ ]

where

C[Z
(+)
j , Z

(−)
j ] =

N∑
i=1

N∑
i′=1

E

[
G

(+)
i,j

∆
(+)
j

]
E

[
G

(−)

i′,j

∆
(−)
j

]
γi,i′ .

B. Moments after non-linear computation
We now evaluate the means, variances, and covariances, of

random variables Xi = f(Zi), after the sigmoid activation
function f .

Theorem 4. For all (i, i)′ ∈ J1, NK2, and i′ 6= i, the second-
order Taylor expansions of the mean νi = E[Xi] and variance
γ2
i = V[Xi] of the random variable Xi, are given by

νi = f (µi) +
1

2
f ′′ (µi) ρ

2
i

γ2
i =

1

2
g′′(µi)ρ

2
i − f(µi)f

′′(µi)ρ
2
i

γi,i′ = f ′(µi)f
′(µi′)ρi,i′

where f(u) = 1
1+exp(−x) , and g = f2.

This theorem can be adapted to any other twice-
differentiable activation functions (tanh, softplus, etc.), by
replacing the functions f , g, and their derivatives, according
to the newly considered activation function.

To summarize, the four theorems given in this section
provide recursive expressions of the first and second-order
moments of random vectors X(t) and Z(t) at successive
layers t. In addition, the MSE at each layer can be estimated
as the average of the variance terms ρ2

j and γ2
i . In the

simulation section, we show from numerical simulations that
these estimates provide good approximations of the successive
MSE. At the end, the analysis we have developed allows us
to investigate the effect of noisy conductance values onto the
final NN output Z(T ), depending on various parameters such
as the crossbar size, the conductance noise variance, etc..

IV. POWER OPTIMIZATION OF MEMRISTOR-BASED DNNS

Having characterized the final MSE as a function of system
parameters and chosen operating points, in this section we
address the trade-off between the power consumption and the
robustness to noise of memristor crossbars. We first evaluate
the power consumption of a memristor crossbar, and then
optimize this power consumption for a given target MSE
at the network output. Here, we only evaluate the memory
power consumption, and therefore do not take into account the
non-linear activation parts, which may be realized in CMOS
or similar technologies. As in Section III, we consider the
viewpoint of one layer, and drop the index t in the notation.

A. Power consumption of a memristor crossbar

We assume that the variance σ2 of conductance values G(+)
ij

and G
(−)
ij is fixed by internal properties of the memristors

[13], [14]. Therefore, in order to make the computation
more robust to noise, we consider coefficients cj such that
target conductance values are now given by g̃

(+)
i,j = cjg

(+)
i,j ,

g̃
(−)
i,j = cjg

(−)
i,j , and g̃0 = cjg0. This does not change the

computation operation (3), since the coefficient cj appears as
a factor in both parts of the ratio for Zj . The corresponding
random variables G̃(+)

i,j and G̃(−)
i,j then have means cjg

(+)
i,j and

cjg
(−)
i,j , respectively, and both have variance σ2. Note that it

is physically possible for each component Zj to have its own
parameter cj , which in turn leads to many degrees of freedom
in the optimization.

Then, for the positive part of the computation, the power
P

(+)
i,j consumed by the memristor at position (i, j) is a random

variable which can be expressed as P (+)
i,j = G̃

(+)
i,j U

2
i,j , where

Ui,j is the voltage across memristor at position (i, j). We can
note that

Ui,j = (Xi − Z(+)
j ) =

(
Xi −

∑N
i′=1 G̃

(+)
i′,jXi′

G̃0 +
∑N

i′=1 G̃
(+)
i′,j

)
. (11)



Since Pi,j is a random variable, we are interested in its
expectation E[P

(+)
i,j ], which can be rewriten as

E[P
(+)
i,j ] = E

[
G̃

(+)
i,j

Ṽ
(+)
i,j

∆̃
(+)
j

]
(12)

where Ṽ
(+)
i,j =

∑N
i′=1 G̃

(+)
i′,j (Xi − Xi′), and ∆̃

(+)
j = G̃0 +∑N

i′=1 G̃
(+)
i′,j . The following theorem gives the second-order

Taylor expansion of E[P
(+)
i,j ].

Theorem 5. For all (i, j) ∈ J1, NK2, the second-order Taylor
expansion of E[P

(+)
i,j ] is given by

E[P
(+)
i,j ] =

E[G̃
(+)
ij ]E[V

(+)
i,j

2
]

E[∆
(+)
j ]2

−
4E[V

(+)
i,j ]E[G̃

(+)
i,j ]C[V

(+)
i,j ,∆

(+)
j ]

E[∆
(+)
j ]3

−
2E[V

(+)
i,j ]2C[G̃

(+)
i,j ,∆

(+)
j ]

E[∆
(+)
j ]3

+
3E[G̃

(+)
ij ]E[V

(+)
i,j ]2V[∆

(+)
j ]

E[∆
(+)
j ]4

where E[G̃
(+)
ij ] = cjg

(+)
i,j , C(G̃

(+)
i,j ,∆

(+)
j ) = σ2, V(∆

(+)
j ) =

N
(+)
j σ2, and

E[V
(+)
i,j ] = cj

N∑
i′=1

g
(+)

i′,j (νi − νi′)

E[∆
(+)
j ] = cj

(
g0 +

N∑
i′=1

g
(+)

i′,j

)

C[V
(+)
i,j ,∆

(+)
j ] = σ2

N∑
i′=1

p
(+)
i,j (νi − νi′)

V[V
(+)
i,j ] =

∑
(i′,k) i′ 6=i,k 6=i,k 6=′i

c2jg
(+)

i′,j g
(+)
k,j (γ2

i − γi,i′ − γi,k + γi′,k)

+

N∑
i′=1

p
(+)
i,j

(
(σ2 + c2jg

(+)

i′,j

2
)(γ2

i + γ2
i′ − 2γi,i′) + 2σ2(νi − νi′)

2
)
.

Finally, for one crossbar, we express the expected total
power as E[P ] =

∑
i,j

(
E[P

(+)
i,j ] + E[P

(−)
i,j ]

)
, where E[P

(−)
i,j ]

is also obtained from Theorem 5 by replacing “+” by “−” in
the various expressions. The average total power can then be
evaluated for the full DNN architecture, by summing over all
T crossbars.

B. Power optimization

In this subsection, we use ρ̃j to denote the variance of com-
ponent Zj , calculated given that the conductance values were
multiplied by cj . In addition, we can show that ρ̃j = ρ2

j/c
2
j ,

where ρ2
j was given in Theorem 3. Then, at each layer of

the network, both the average power E[P ] and the variances
ρ̃2
j depend on the parameters cj . In this section, we propose

to optimize these parameters so as to minimize E[P ] under
a certain performance constraint expressed onto the targeted
variance of each component Zj of Z(t). We treat layers one
after the other, assuming that previous layers from 1 to (t−1)
were already optimized when considering layer t. Therefore,
we define the following optimization problem for layer t:

min
cj

∑
i,j

(
E[P

(+)
i,j ] + E[P

(−)
i,j ]

)
s.t. ∀j, ρ̃2

j ≤ ρ, cj ≥ 0 (13)

where ρ is a constraint on the maximum variance on each
component Zj at the output of the linear part. We further
constrain that cj ≥ 0 in order to get positive conductance
values. Then, the Lagrangian of the constrained optimization
problem (13) is given by

L =
∑
i,j

(
E[P

(+)
i,j ] + E[P

(−)
i,j ]

)
+
∑
j

αj(ρ̃
2
j −ρ)−βjcj (14)

and can be rewritten as

L =

N∑
j=1

(
F1,jcj +

F2,j

cj
+ αj

(
ρ2
j

c2j
− ρ

)
− βjcj

)
(15)

where the terms F1,j and F2,j can be identified from the
expressions of E[Pi,j ] given in Theorem 5, and we show that
F1,j ≥ 0 and F2,j ≤ 0. The Lagrangian is separable with
respect to j, and its derivative with respect to cj is

∂L
∂cj

= F1,j −
F2,j

c2j
− 2αj

ρ2
j

c3j
− βj . (16)

We now apply the KKT conditions in order to solve the
optimization problem. The constraint cj ≥ 0 is necessarily
inactive (cj > 0, βj = 0) since cj = 0 does not allow us to
satisfy ρ̃2

j ≤ ρ. In addition, considering an inactive constraint
ρ̃j < ρ with αj = 0 does not lead to a solution for cj .
Therefore, the constraint ρ̃j ≤ ρ is active, which leads to

cj =
√
ρ2
j/ρ. (17)

Finally, by calculating αj from the condition ∂L
∂cj

= 0, the
second-order derivative of the Lagrangian is given by

∂2L
∂c2j

=
1

c2j

(
3F1,jcj −

F2,j

cj

)
> 0, (18)

which allows us to conclude that (17) provides a strict global
minimum. Therefore, the values of cj in (17) allow us to min-
imize the power consumption of a crossbar, while satisfying
the variance conditions ρ̃2

j ≤ ρ.

V. SIMULATION RESULTS

In this part, we first evaluate the accuracy of the proposed
theoretical analysis. We consider a Neural Network structure
with 7 layers, with the following number of neurons per layer:
(100, 100, 200, 150, 120, 80, 10), and with sigmoid activation
functions. We generate the weight matrices W(t) at random
and uniformly between 0 and 10, and then convert them into
conductance values g

(t,+)
i,j and g

(t,−)
i,j , with g0 = 10. We

also generate input vectors x at random, with components
distributed uniformly between −5 and 5. In Figure 1, we
compare the variance measured from Monte-Carlo simulations
and evaluated with the theoretical analysis of Section III, with
respect to the noise variance σ2, after one layer and after
the seven layers. After one layer, we observe that the theo-
retical variance value accurately predicts the MSE measured
from Monte Carlo simulations: the two curves are visually
indistinguishable. In addition, as expected, the MSE increases
with σ2. Then, after seven layers, we also observe that the



10
- 5

10
- 4

10
- 3

10
- 2

10
- 1

10
- 12.5

10
- 10.0

10
- 7.5

10
- 5.0

10
- 2.5

sigma

M
S

E

1 layer (sim)
1 layer (th)
7 layers (sim)
7 layer (th)

Fig. 1. Comparison between MSE measured from Monte Carlo simulations
and evaluated with the theoretical analysis developed therein. The red and
blue curve (one layer) are superimposed.

10
- 4.0

10
- 3.5

10
- 3.0

10
- 2.5

10
- 2.0

10
- 1.5

0

100

200

300

400

Target Variance

To
ta

l P
ow

er

MNist (non-Opt)
MNist (Opt)
IRIS (non-Opt)
IRIS (Opt)

Fig. 2. Optimized and non-optimized total power calculated over the T layers,
for two NNs. The non-optimized case does not necessarily achieve the final
target variance.

theoretical variance values are close to the MSE measured
from simulations, although there is a small gap which is
probably due to error accumulation over the successive layers.
Finally, we note that after one layer, the MSE is higher or
very close to the corresponding noise variance σ2. On the
opposite, after seven layers, the MSE is actually smaller than
the noise variance value σ2 on memristors. This shows that
memristor crossbar computation can be inherently robust to
noise on conductance values.

We then evaluate the power optimization method proposed
in Section IV. To do so, we consider two standard datasets
that are IRIS [15] and MNIST [16]. For IRIS (input length
4), we consider a NN with 2 layers and respectively 50 and
10 neurons on each layer, and for MNIST (input length 784),
we consider a NN with 3 layers, and respectively 200, 50,
10, neurons on each layer. Both networks integrate sigmoid
activation functions, and were trained over 2/3 of the dataset,
with 100 epochs and learning rate η = 0.1. For both networks,
we set σ = 10−2, and we optimize the parameters cj with
the method of Section IV, for various target variance values
ρ. The results are shown in Figure 2, where we also display
the total power in the non-optimized case (this non-optimized

total power is for comparison and does not necessarily allow
to achieve the corresponding value of ρ). We observe a clear
power gain after optimization, which is due to the fact that the
optimized values cj allow to exactly reach the target variance
ρ. In addition, as expected, the total power decreases as ρ
increases, and the NN for MNIST requires more power than
the NN for IRIS.

VI. CONCLUSION

In this paper, we considered a DNN implementation from
noisy memristor crossbars, and we developed a theoretical
analysis to predict the effect of noise onto the final inference
computation performance. We further proposed a method to
optimize the memristor crossbars power consumption, and
demonstrated significant power gains compared to the non-
optimized case. Future works will include the study of other
neural network architectures such as convolutional neural
networks and recurrent neural networks.

REFERENCES

[1] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The
missing memristor found,” nature, vol. 453, no. 7191, p. 80, 2008.

[2] C. Yakopcic, M. Z. Alom, and T. M. Taha, “Memristor crossbar deep
network implementation based on a convolutional neural network,” in
IJCNN, Jul. 2016, pp. 963–970.

[3] S. Liu, Y. Wang, M. Fardad, and P. K. Varshney, “A memristor-based
optimization framework for artificial intelligence applications,” IEEE
Circuits and Systems Magazine, vol. 18, no. 1, pp. 29–44, 2018.

[4] C. Li, Z. Wang, M. Rao, D. Belkin, W. Song, H. Jiang, P. Yan, Y. Li,
P. Lin, M. Hu, N. Ge, J. P. Strachan, M. Barnell, Q. Wu, R. S. Williams,
J. J. Yang, and Q. Xia, “Long short-term memory networks in memristor
crossbar arrays,” Nature Machine Intelligence, vol. 1, pp. 49–57, 2019.

[5] J. Kendall, R. Pantone, K. Manickavasagam, Y. Bengio, and B. Scellier,
“Training end-to-end analog neural networks with equilibrium propaga-
tion,” arXiv:2006.01981 [cs.NE]., Jun. 2020.

[6] A. Karbasi, A. H. Salavati, A. Shokrollahi, and L. R. Varshney, “Noise
facilitation in associative memories of exponential capacity,” Neural
Computation, vol. 26, no. 11, pp. 2493–2526, Nov. 2014.

[7] S. Kim, P. Howe, T. Moreau, A. Alaghi, L. Ceze, and V. S. Sathe,
“Energy-efficient neural network acceleration in the presence of bit-
level memory errors,” IEEE Trans. on Circuits and Systems I: Regular
Papers, pp. 1–14, 2018.

[8] G. B. Hacene, F. Leduc-Primeau, A. B. Soussia, V. Gripon, and
F. Gagnon, “Training modern deep neural networks for memory-fault
robustness,” in ISCAS, 2019.

[9] A. Chatterjee and L. R. Varshney, “Energy-reliability limits in nanoscale
feedforward neural networks and formulas,” IEEE Journal on Selected
Areas in Information Theory, vol. 1, no. 1, pp. 250–266, May 2020.

[10] E. Dupraz and L. R. Varshney, “Noisy in-memory recursive computation
with memristor crossbars,” in Proceedings of the 2020 IEEE Interna-
tional Symposium on Information Theory (ISIT), Jun. 2020, pp. 804–809.

[11] K. K. Likharev and D. B. Strukov, “CMOL: Devices, circuits, and
architectures,” in Introducing Molecular Electronics, ser. Lecture Notes
in Physics, G. Cuniberti, K. Richter, and G. Fagas, Eds. Berlin:
Springer, 2006, vol. 680, pp. 447–477.

[12] H. Seltman, “Approximations for mean and variance of a ratio,” unpub-
lished note, 2012.

[13] J. A. Starzyk and Basawaraj, “Memristor crossbar architecture for syn-
chronous neural networks,” IEEE Transactions on Circuits and Systems
I: Regular Papers, vol. 61, no. 8, pp. 2390–2401, Aug. 2014.

[14] A. James and L. Chua, “Analog neural computing with super-resolution
memristor crossbars,” IEEE Transactions on Circuits and Systems I:
Regular Papers, 2021, to appear.

[15] R. A. Fisher, “The use of multiple measurements in taxonomic prob-
lems,” Annals of Eugenics, vol. 7, no. 2, pp. 179–188, 1936.

[16] Y. LeCun, C. Cortes, and C. J. Burges, “The MNIST
database of handwritten digits,” 1998. [Online]. Available:
http://yann.lecun.com/exdb/mnist/


