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Abstract

The problem of blind joint FIR-MIMO channel and data estimation is addressed

in this paper. Based on a regularized DML (Deterministic Maximum Likeli-

hood) formulation of the problem, a bilinear approach is used in order to esti-

mate jointly the channel impulse responses and the input data. This regular-

ization is introduced as a penalty function added to the classical DML criterion

representing the a priori information about the problem in order to enhance the

accuracy of the estimation. Two types of priors information are considered for

the transmitted data: the finite alphabet simplicity or the sparsity. The sparsity

prior was also considered for channel impulse responses. The key advantage of

the proposed criteria is their convexity when optimized alternatively over the

channel and the input data. The proposed approach allows to improve further

the estimation accuracy of such a blind estimation problem but suffers from a

relatively high computational cost. Hence, a reduced complexity implementa-

tion of the latter has been proposed at the end of the paper, in an adaptive

scheme for high dimensional or streaming data situations.
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1. Introduction

Blind system identification (BSI) problems are receiving considerable inter-

est from both signal processing and communications communities since accurate

channel estimates are likely to become more challenging in future generation

wireless systems. Furthermore, blind techniques are necessary in some com-

munication systems where the synchronization between the receiver and the

transmitter is not possible and training sequences are not exploitable. This

can be due to security problems such is the case in military communication

systems or to the impossibility to influence the input such as the problem of

extracting the fetal electrocardiogram (fECG) or in speech separation. Blind

techniques present a reduced need for overhead information which increases the

bandwidth efficiency. Although, even if some training sequence exists, combin-

ing them with blind techniques, in a semi-blind scheme, often leads to improved

performance [1–8].

Recently, the problem of joint channel estimation and data detection has

been the subject of much research and different solutions have been proposed

depending on the considered application. For instance, in [5] the authors ana-

lyzed the performance of the data-aided channel estimation scheme in a multi-

cell large antenna system and they can effectively suppress the contamination

effect and achieve improved performance in large antenna systems. A solution to

enhance the reliability of a single-input single-output (SISO) underwater acous-

tic communication system was proposed in [9] based on a maximum likelihood

(ML) method for both channel estimation and data detection followed by a data-

projection step. In the case of SISO orthogonal frequency-division multiplexing

(SISO-OFDM) model and under the assumption of sparse channel, a recursive

algorithm was proposed in [6] based on sparse Bayesian learning and Kalman

filtering for the joint channel estimation and data detection. In [7], an itera-

tive frequency-domain joint channel estimation and data detection solution was

proposed for the problem of faster-than-Nyquist signaling in a SISO system. A

Bayes-optimal inference approach based on the bilinear generalized approximate
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message passing (BiG-AMP) algorithm was used in [4] to address the problem of

joint channel and data estimation in a multiple-input multiple-output (MIMO)

system. Recently, a low-complexity semi-blind scheme is proposed in [8] for

joint channel estimation and data detection on sphere manifold MIMO systems

with high-order quadrature amplitude modulation (QAM) signaling. It uses

training symbols with zero-forcing detector to get an initial channel and data

estimation, then, a Riemannian conjugate gradient method is used followed by

another zero-forcing detector. The MIMO-OFDM system is considered in [10],

where the authors proposed an adaptive blind scheme for joint channel and data

estimation based on parallel factor decomposition (PARAFAC).

The joint channel estimation and data detection (data-aided) problem is

generally formulated as a deterministic maximum likelihood (DML) estimation

where the input signals are considered as part of the unknown parameters with

the channel coefficients. The ML methods have the advantage of being efficient

for high signal-to-noise ratio (SNR) [11]. The ML methods usually cannot be

obtained in closed form and require an optimization in the presence of local

minima. In addition, the dimension of the problem increases with the sample

size, which makes this approach not practical for large data size applications.

However, ML approaches can be made very effective by including initialization

procedure such as least squares channel estimate based on training symbols,

the blind channel subspace method or other sub-optimal approaches. As major

contributions to DML methods, we can cite the two-step maximum likelihood

(TSML) [12], the iterative quadratic maximum likelihood (IQML) [13] and its

dual algorithm proposed in [14] which considered single-input multiple-output

(SIMO) finite impulse response (FIR) channels. Another DML method, the

maximum likelihood block algorithm (MLBA), has been proposed in [15] where

for both the channels and the symbols, least squares estimation is performed in

an alternating manner. Following the same formulation, the Maximum Likeli-

hood Adaptive Algorithm (MLAA) is derived in [16] which presents reduced-

complexity in term of computation cost.

Another important feature of the considered DML formulation is the facility
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to introduce any further information about the channel impulse response or the

input signal to the cost function. This priors depends on the considered system

and adding them to the DML formulation as regularization will likely enhance

the estimation accuracy. For instance, most of the digital communications are

based on transmitted signals that belong to a finite-alphabet set. The finite

alphabet property was first considered with DML formulation in [17–19]. Un-

fortunately, the convergence of such methods is often not guaranteed due to the

increased number of the local minima caused by the incorporation of the finite

alphabet property. The solution to such a problem is computationally expen-

sive and can be achieved using the Viterbi-like algorithms. In order to reduce

the computational complexity, Bayesian maximum a posteriori approaches were

proposed such as in [4, 20]. Recently, the simplicity property was considered for

the recovery of finite-alphabet signals as is the case in [21] for large-scale MIMO

systems. The sparsity prior of the transmitted signals was also considered in

different applications such as in [22, 23] for blind source separation when the

sources are known to be sparse or can be sparsely represented. The sparsity of

the channel impulse response can also be used with the DML formulation. In

fact, it seems likely that in case of very long impulse response and sparse channel,

most of the state-of-the-art methods perform poorly. Such sparse channels can

be encountered in many communication applications including High-Definition

television (HDTV) channels and underwater acoustic channels [24].

Paper contributions

In this paper, we aim to estimate blindly both the channel state informa-

tion and the transmitted data in the case of a MIMO FIR channel (convolutive

system). We propose a blind scheme based on a regularized DML formulation

by considering priors on either or both the channel impulse response and the

transmitted data. First, a blind second-order subspace method [25] is used to

estimate the channel followed by a resolving ambiguity step which is necessary in

second-order method. We will use for the ambiguity removal, either the sparsity

assumption in case of sparse channel prior or the independence assumption of
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the transmitted signals in case of non-sparse channel. The key advantage of the

proposed regularized DML formulation is its convexity when optimized alterna-

tively over the channel and the input data. Two regularized quadratic convex

problems will be iteratively optimized to estimate the data in the first one and

the channel in the second. Different priors are considered in our work: the finite

alphabet simplicity, the sparsity of the transmitted data, or the sparsity of the

channels finite responses. The proposed constrained ML-like approach allows to

improve further the estimation accuracy of such a blind estimation problem but

suffers from a relatively high computational cost. Hence, an adaptive version

is also proposed to reduce the numerical complexity and to handle the case of

time varying channel. The specific contributions of this paper include:

• Providing a unified convex regularized DML formulation for different types

of priors: sparsity or simplicity of input signals and sparsity of channel

impulse responses while considering the MIMO convolutive model. To the

best of our knowledge, this is the first work that solves the joint channel

and input data estimation in a fully blind context using simultaneously

channel sparsity and input signal simplicity priors.

• Resolving the ambiguity of blind second-order subspace method in case of

sparse channel impulse responses.

• A reduced complexity implementation of the proposed constrained ML-

like approach, proposed in an adaptive scheme for high dimensional or

streaming data situations.

2. Data model

Our focus is on the MIMO channels case in a blind identification context.

We aim to estimate jointly the channel state information and the transmitted

data using only the observation data and some additional prior information.

Considering a mathematical model where the input and the output are both

discrete but we have access only to the output. The system is driven by Nt input
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sequences s1(t), ..., sNt(t), and yields Nr output sequences x1(t), ...,xNr (t) at

time t. We assume that the discrete channel between the Nt transmit antennas

and the Nr receive antennas are modeled as a Nr ×Nt FIR filter with L as the

upper bound on the orders of these channels i.e. H = [HT (0), ...,HT (L)]T with

H(l) =


h11(l) . . . h1Nt

(l)
...

...

hNr1(l) . . . hNrNt
(l)


The system can be described by:

x(t) =

L∑
k=0

H(k)s(t− k) + n(t) = [H(z)]s(t) + n(t) (1)

where

[H(z)] =

L∑
k=0

H(k)z−k (2)

and n(t) is an additive Nr-dimensional white noise, independent from the sym-

bol sequences with E[n(t)nT (t)] = σ2INr , where σ2 is the unknown noise power.

We denote stacked observations over a window of length N by the vector

xN (t) = [xT (t),xT (t−1), ...,xT (t−N +1)]T . The following linear model holds:

xN (t) = T (H)sN (t) + nN (t) (3)

with sN (t) = [sT (t), sT (t−1), ..., sT (t−N −L)]T and nN (t) = [nT (t), ...,nT (t−

N +1)]T . The (NNr)× ((N +L+1)Nt) block-Toeplitz matrix T (H) associated

with the filter H is given by:

T (H) =


H(0) . . . H(L) 0

. . .
. . .

0 H(0) . . . H(L)

 (4)

From now on, we make the following important assumptions:

• H(z) is irreducible (Rank(H(z)) = Nt; ∀z) and H(L) is of full column

rank

• The channels have a known maximum order L.
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• Number of sensors is strictly greater than the number of sources Nr > Nt

• Large enough observation Window N > (L+ 1)Nt

Under this assumptions, T (H) is a full rank column matrix and the channel

matrix H is identifiable using second order statistics up to a Nt ×Nt constant

full rank matrix [25].

3. Blind deterministic maximum likelihood DML estimation approach

The DML approach assumes no statistical model for the input sequences.

In other words, both the channel matrix H and the input source vectors si(t)

i = 1, ..., Nt are parameters to be estimated. Considering the MIMO FIR model

expressed in above, the DML problem can be stated as: given the observation

xN (t), we want to estimate:{
Ĥ, ŝN (t)

}
= arg max f

(
xN ; H, sN

)
(5)

where f
(
xN ; H, sN

)
is the density function of the observation vectors parame-

terized by both the channel matrix H and the input sources vector sN . In the

case of zero-mean Gaussian noise with covariance σ2I, the above DML estimator

lead to the nonlinear least squares optimization:{
Ĥ, ŝN (t)

}
= arg min
T (H),sN (t)

{∥∥∥xN (t)− T (H)sN (t)
∥∥∥2
2

}
(6)

The above function can also be written as :{
Ĥ, ŝN (t)

}
= arg min
T (H),sN (t)

{∥∥∥xN (t)−F
(
sN (t)

)
h
∥∥∥2
2

}
(7)

where h = vec(H) is the vectorized version of the matrix H. The operator F
(
.
)

transforms a vector sN (t) into an NNr × (L + 1)NtNr matrix, in such a way

that:

F
(
sN (t)

)
h = T (H)sN (t). (8)

Under the considered assumptions, T (H) is a full rank column matrix and

the variables
(
H, sN (t)

)
are identifiable up to a Nt × Nt constant full rank
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matrix [25] which we will denote Q. The identifiability condition for the DML

approach is the same as that for the deterministic second-order subspace meth-

ods. The reason is that, when the noise is Gaussian (assumed true in DML), all

information about the channel in the likelihood function resides in the second-

order moments of the observations. Readers are referred to [25] for a more

detailed discussion about the identifiability of the MIMO FIR channel with the

noise subspace method.

Resolving the ambiguity caused by the matrix Q in second-order based blind

channel estimation of MIMO-FIR channels is equivalent to instantaneous Blind

Source Separation BSS problem [26]. Hence, the indeterminacy can be reduced

to a complex-valued diagonal matrix and a real-valued permutation matrix.

The blind DML criterion as stated in Eq. (6) and Eq. (7) is a complicated and

a non-convex optimization problem when estimating jointly both parameters(
H, sN (t)

)
. However, it is convex for each unknown parameter. Hence, Eq. (6)

and Eq. (7) can be resolved by alternatively optimizing over H and sN (t). This

idea was proposed in many previous papers [13, 15, 16, 20] but only in the SIMO

case.

4. Regularized blind deterministic maximum likelihood DML estima-

tion approach

In the case where the system is not time-varying and if the data sequence

is long enough so that a reliable statistical model can be built, then, a statis-

tical maximum likelihood SML method should be used, since in that case, the

statistical method outperforms the deterministic one in terms of estimation ac-

curacy. However, in a fast fading environment, data related to a given channel

are not numerous which makes a reliable statistical estimation less effective.

In such a situation, the symbols are assumed arbitrary and a DML method is

used instead. The regularized DML approach is a trade-off between DML and

SML approaches, where we take advantage of some prior information about in-

put data or/and transmission channels to enhance the DML results. Next, we
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present different types of priors and how to integer them into the DML criterion.

4.1. Simplicity and the finite alphabet property

The finite alphabet property in digital communication signals was considered

in [17–19] with the DML approach. In this case, an alternating optimization is

used to minimize the criterion given by:

ŝN (t) = arg min
sN (t)∈S

∥∥∥xN (t)− T (H)sN (t)
∥∥∥2
2

(9)

Ĥ = arg min
h

∥∥∥xN (t)−F
(
sN (t)

)
h
∥∥∥2
2

(10)

where sN (t) belongs to a complex-valued finite alphabet S. It can be decom-

posed from its real and imaginary parts as sN (t) = R(sN (t)) + jI(sN (t)) where

(R(sN (t)), I(sN (t))) ∈ ANt(N+L) × ANt(N+L) and A = {α1, ..., αm} is a real-

valued finite alphabet of cardinal m. The optimization in Eq. (10) is a linear-

least squares problem whereas the optimization in Eq. (9) is computationally

expensive and can be achieved by using the Viterbi algorithm. The convergence

of such approaches is not guaranteed due to the numerous local minima induced

by the discrete set constraint. We propose to replace this constraint by the sig-

nal simplicity. Simplicity property was first introduced in [27] where we say that

a signal is simple if most of its elements are equal to the extremes of the finite

alphabet. Recently, the authors in [21] proposed a simplicity-based detector

for finite alphabet source separation in both determined and underdetermined

large-scale MIMO systems. They relaxed the problem of the finite alphabet

constraint as stated in Eq. (9) to convex box constraint depending only on the

constellation extremes {α1, αm} (e.g. {−1,+1} for BPSK and QPSK modula-

tions, or {−3,+3} for 16-QAM modulation). The new optimization problem is

given by:

r̂ = arg min
r

∥∥∥xN (t)− T (H)Bαr
∥∥∥2
2

subject to B1r = 12N , r ≥ 0 (11)

where sN (t) = Bαr. The matrices Bα and B1 are defined by: Bα = I2Nt(N+L)⊗

[α1, αm] and B1 = I2Nt(N+L) ⊗ [1, 1] where (. ⊗ .) stands for the Kronecker
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product. The underlined notation is reserved to the complex-real transformation

where T (H), xN (t) and sN (t) are given by

T (H) =

 R(T (H)) −I(T (H))

I(T (H)) R(T (H))



xN (t) =

 R(xN (t))

I(xN (t))

 sN (t) =

 R(sN (t))

I(sN (t))


In addition to the convexity of this formulation, the computation cost of the

resulting detector does not depend on the constellation size [21]. The simplicity

is used generally in case of modulations where the constellation is shaped as a

square box such in the case of BPSK, QPSK and M-QAM modulations where

M is a square number (e.g., 16-QAM, 64-QAM). Note that the performance of

the simplicity approach depends on the number of the points in the square box

defined by the boundary of the constellation.

4.2. Sparsity of the input signals

The sparsity property of the input signals was introduced earlier as a con-

trast function for blind source separation [22]. In this paper, the sparsity is

introduced as a regularization constraint to Eq. (6) in order to enhance the es-

timation and improve the robustness to outliers. If the sources are sparse, the

regularization can be carried out directly in the time domain by considering the

least absolute shrinkage and selection (LASSO) problem [28] (or basis pursuit

equivalent problem [28]). In this case, an alternating optimization is used to

minimize the criterion given by:

ŝN (t) = arg min
sN (t)

∥∥∥xN (t)− T (H)sN (t)
∥∥∥2
2

+ λs

∥∥∥sN (t)
∥∥∥
1

(12)

Ĥ = arg min
h

∥∥∥xN (t)−F
(
sN (t)

)
h
∥∥∥2
2

(13)

where λs is a weighting parameter that controls the trade-off between approxi-

mation error and sparsity level of the input signals.
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This formulation can also be interpreted as a Maximum a Posteriori (MAP)

approach where the input signals sN are estimated using its conditional proba-

bility distribution as follows:

ŝN =arg max
sN

{
f
(
xNr |sN

)
f
(
sN

)
∫
f
(
xNr
|s′N

)
f
(
s′N

)
ds′N

}
(14)

=arg max
sN

{
f
(
xNr |sN

)
f
(
sN

)}
(15)

Generally speaking, the MAP allows us to exploit prior information about the

desired parameter. Hence, one needs to a priori know the probability distribu-

tion function f(sN ) of the input signals vector. This a priori depends on the

application context and its physical environment. In our case, it is the transmit-

ted vector sparsity that we model by considering the input signals components

i.i.d. as the Generalized Gaussian Distribution (GGD) given by:

f(sN ) =
( p

2βΓ( 1
p )

)−Nt(N+L+1)

exp
(
−
‖sN‖pp
βp

)
(16)

where β > 0 is a scale parameter, 0 < p ≤ 1 and Γ(z) =
∫∞
0
tz−1e−tdt, z > 0

is the Gamma function. Using this pdf, one increases the chances to get signal

coefficients close to zero. Next, we will consider the special case of p = 1 which

is equivalent to the Laplace prior distribution because of the convexity of the

`1-norm.

The problem in Eq. (12) is convex but has no closed-form solution. The Least

Angle Regression (LARS) [29] is a less greedy version of traditional forward

selection methods for model selection problems and solves the LASSO problem

efficiently.

In the case where the input signals are not sparse in the time domain, we

can use sparse representations methods in order to transform the signals into a

dictionary where they are more sparse. For instance, speech signals have a more

sparse representations in the time-frequency domain than in the time domain,

therefore, the Short-time Fourier transform (STFT) transform is used in this

case. If we denote by Φ the considered transformation (dictionary) matrix, then
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the problem in Eq. (12) can be rewritten as:

r̂ = arg min
r

∥∥∥xN (t)− T (H)Φr
∥∥∥2
2

+ λr

∥∥∥r∥∥∥
1

(17)

with sN (t) = Φr.

4.3. Sparsity of the channel impulse response

The sparsity of the channel impulse response was first studied in the case of

SIMO systems, then extended to the MIMO, e.g. [24]. In order to exploit the

sparsity a priori information of the channel impulse response, we introduce an

additional cost function based on the GGD model of channel coefficients in the

same manner as we did previously in case of sparse input signals. Under the

assumption that all the component of H are i.i.d, the GGD model is expressed

in the same way as in Eq. (16). This model enhances the sparsity of the channel

H. Taking the logarithm of the a posteriori estimator leads to the objective

function:

Ĥ = arg min
h

∥∥∥xN (t)−F
(
sN (t)

)
h
∥∥∥2
2

+ λh

∥∥∥h∥∥∥q
q

(18)

where λh is a weighting parameter that controls the trade-off between approx-

imation error and sparsity represented by the `q-norm of the channel impulse

response. This function has a LASSO-like formulation for the case q = 1 and

can be solved using the LARS method.

Actually, representing the sparsity of the source signals or the channel coeffi-

cients with the `1-norm minimization is suitable due to the convexity property.

However, another heuristic penalization function (generally non-convex) was

used in the literature to enhance the sparsity such as the Reweighted-`1 [30] cri-

terion, which generally out performs the `1-based criterion. The cost function,

in this case, is given by:

Ĥ = arg min
∥∥∥xN (t)−F

(
sN (t)

)
h
∥∥∥2
2

+ λh

NrNt(L+1)∑
i=1

log
(
|h(i)|+ ε

)
(19)

where ε > 0 is relatively small positive constant. Both cost functions in Eq. (18)

and Eq. (19) are optimized under the constraint H(1, j) = 1 for j = 1, ..., Nt to

avoid the trivial null solutions.
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4.4. Initialization and resolving ambiguities in subspace-based blind identifica-

tion of MIMO channels

As we stated before, ML methods solutions usually cannot be obtained in

closed-form and require optimization in the presence of local minima. The

dimension of the problem to optimize depends on the sample size which is

problematic in case of large data size applications. As a solution, generally

ML approaches can be very effective if they are initialized by some suboptimal

procedure. In our case, we have chosen the MIMO second-order based subspace

method [25] because of its nice convergence properties.

The choice of the subspace method as an initialization procedure will lead to

another problem in our formulation which concerns the ambiguity of the blind

identification MIMO problem itself. In the MIMO case (Nt > 1), the channel

matrix H is estimated up to a Nt ×Nt full rank matrix Q i.e.

H = ĤSSQ (20)

where ĤSS is the estimated channel with the second order subspace method [25].

Hence, the input signal is also estimated up to full rank matrix Q̃−1 expressed

as:

sN (t) = Q̃−1ŝN (t)SS (21)

where

T (H) = T (ĤSS)Q̃ (22)

and

Q̃ =


Q 0 . . . 0

0 Q . . . 0
...

. . . 0

0 0 . . . Q

 (23)

Hence, we can not start the iterative optimization of Eq. (6) or any other reg-

ularized without resolving this ambiguity. This ambiguity can not be resolved

without using-higher order methods or using additional information about the

system. In a total blind scheme, the best we can aim for, is to estimate the
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channel matrix H up to a scaling and permutation matrices i.e. Ĥ is a solution

if:

Ĥ = HPΛ (24)

where P is a permutation matrix and Λ is a non-singular complex diagonal

matrix.

The authors in [26] show that resolving this ambiguity can be treated as

an instantaneous Blind Source Separation BSS problem and they solve it using

independent component analysis (ICA) under the assumption that transmitted

sequences are statistically independent and non-Gaussian (which is generally

true for communication sources). Hence, the indeterminacy can be reduced to

a complex-valued diagonal scaling matrix and a permutation matrix.

In the case of sparse MIMO channel H, the problem is similar to the sparse

principal subspace estimation problem discussed in our previous work [31]. In

this case, the subspace is represented by the estimation ĤSS and we search for

the rotation matrix Q that leads to the sparse channel H (i.e. H = ĤSSQ).

In a more recent result [32], we have discussed the conditions to have a unique

solution that corresponds to the sparse MIMO channel H. Without going deep

into details, our results stated that if we have high level of sparsity of the

MIMO channel H and a large number of receivers ((L + 1)Nr > CNt log(Nt)

with C is a positive constant related to the sparsity of the channel), then we

can estimate the sparse channel H up to complex diagonal scaling matrix and

permutation matrix. If these conditions are satisfied, we can use iteratively the

second step of the algorithm SS-FAPI [32] (System matrix Sparsity based on

Fast Approximated Power Iterations) in order to estimate the sparse channel

matrix H from the subspace channel method estimation ĤSS. The SS-FAPI

algorithm is an adaptive algorithm based on a two step approach, where the first

one uses the FAPI algorithm [33] for the adaptive extraction of an orthonormal

basis of the principal subspace equivalent to Ĥt
SS (changes over the time t).

Then, an estimation of the desired sparse weight matrix Ht is done in the

second step using the natural gradient scheme. Taking iteratively the second
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Algorithm 1 Regularized blind DML joint estimation

Requires: xN (t), regularization parameters and number of iterations Niter.

Ensures: Ĥ and ŝN (t).

1: Find ĤSS using MIMO subspace method [24]

2: Resolve the ambiguity of the subspace method by using either:{
Sparsity of H with the second step of SS-FAPI.

Independence of the transmitted signals with ICA methods.

3: for k = 1→ Niter do

4: if Signal simplicity prior then

5: Resolve Eq. (11)

6: else if Signal sparsity prior then

7: Resolve Eq. (12) or Eq. (17) depending on the sparse domain

8: end if

9: if Channel sparsity prior then

10: Resolve Eq. (18)

11: else

12: Resolve Eq. (10)

13: end if

14: end for

step of SS-FAPI is equivalent to fixing the Ĥt
SS over t and looking for the best

Q to get the sparset channel matrix H.

Finally, the resulting scaling and permutation indeterminacy is inherent to

the blind identification problem and requires additional information (semi-blind)

in order to be resolved. In our case, we generalize the same assumptions used

in the SIMO case such as having the first row of H equal to ones and sort its

columns depending on their `2-norm. The full regularized blind DML approach

is summarized in Algorithm 1.

Complexity analysis

Note that we consider here the dominant costs and hence, the computational

complexity of the subspace method and the ambiguity resolving step (steps 1-2
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of Algorithm 1) are disregarded. Steps 3-14 of algorithm 1 are based on convex

optimization problems. In order to solve these convex problems, we have used

the CVX MATLAB Toolbox which is based on the interior point method whose

complexity is a function of the length of the unknown vector and the number

of constraints [34]. It is shown in [35] that interior-point methods can solve a

convex optimization problem defined over Rn1 and subject to n2 constraints in

a number of steps or iterations that is almost always in the range between 10

and 100. Each step requires max(n31, n
2
1n2, F ) operations, where F is the cost

of evaluating the first and second derivatives of the objective and constraint

functions. In our case, this is reduced to O(N3) for all the cases depending on

the considered prior in Algorithm 1 (recall that N is bigger than L,Nr and Nt).

This complexity can be reduced further, according to [35], if the problem has

some structure which is the case of sparse matrices T (H) and F
(
sN (t)

)
.

4.5. Adaptive regularized blind DML estimation approach

In real applications, channels are usually time-varying, which means that

we need to develop an adaptive solution where processing is faster compared

to acquisition. We provide here an adaptive solution based on the proposed

regularized DML approach. First, the subspace MIMO method is used to esti-

mate the channel response of the first observed data block. Then, an iterative

estimation of the transmitted data and the channel response is done using the

appropriate regularized DML approach depending on the considered case (sim-

plicity, signal sparsity, or channel sparsity). The processing is done block by

block. These blocks of size Ñ need to respect identifiability conditions and can

be chosen with some overlapping. To enhance the processing speed, we propose

to use the alternating direction method of multipliers (ADMM) algorithm [36]

for the optimization of the convex regularized objective functions of the DML

approach. The ADMM algorithm can solve convex optimization problems by

breaking them into smaller problems, each of which is then easier to handle,

especially when we use proximal operators. We have chosen to use ADMM al-

gorithm because it is less time-consuming compared to interior point solutions.
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Algorithm 2 Adaptive regularized blind DML joint estimation

Requires: xÑ (t) the tth block of size Ñ , regularization parameters and number

of iterations Niter.

Ensures: Ĥ(t) and ŝÑ (t).

1: if t = 0 then

Find ĤSS(0) using MIMO subspace method [24]

Resolve the ambiguity of the subspace method by using either:{
Sparsity of H with the second step of SS-FAPI.

Independence of the transmitted signals with ICA methods.

2: end if

3: Apply steps 3 → 14 of Algorithm 1 on xÑ (t) while taking as initialization

Ĥ(t− 1) to get Ĥ(t) and ŝÑ (t)

More details about the rate of convergence and how to use ADMM for solving

convex problems such as LASSO can be found in [36]. The proposed adaptive

algorithm is summarized in Algorithm 2 Table.

5. Simulation results

To assess the performance of the proposed solutions, we consider the MIMO

problem with Nt transmitters and Nr receivers and the channels are represented

by a polynomial transfer function of maximum degree L. The channels’ impulse

responses are generated randomly according to a Gaussian distribution for the

non-sparse case. Sparse channels impulse responses are generated according to

the Bernoulli-Gaussian distribution. In our simulation, we have used a sparsity

level of 30%, which means that 30% of vector h entries are non-zero.

The input signals are a random binary sequences and the additive white

Gaussian noise has a variance σ2 chosen according to the target signal to noise

ratio SNR = 10 log(
‖h‖22
σ2 ). The used performance factor is the normalized

mean-square error (NMSE) criterion (generalized from the SIMO case to the

MIMO) which was used in many previous work such as in [24]. In our case,

due to the inherent scaling indeterminacy of the full blind scheme, we have
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normalized the entries of the first row of H to be equal to one. Hence, we can

use directly the standard NMSE (i.e. without scale ambiguity removal) defined

as:

NMSE =
1

K

K∑
k=1

‖ĥk − h‖2

‖h‖2
(25)

where ĥk = vec(Ĥk) is the estimated channel vector corresponding to the kth

Monte-Carlo simulation and K = 100 is the number of Monte-Carlo runs. All

the proposed criteria are convex with respect to the channel or the input data

separately. Hence, for alternative optimization, we have used the Matlab CVX

toolbox [34].

In the first simulation, we consider a real-valued case with a Gaussian noise,

a real non-sparse channel with Nt = 3, Nr = 8 and L = 10. We consider a BPSK

constellation which will be used for the simplicity prior with T = 1000 received

symbols. We have used as performance factors the NMSE of the estimated

channels and the Bit Error Rate (BER) of the estimated input signals. The

proposed regularized DML method which in this case considers the simplicity

prior (BPSK constellation) is compared to the initialization subspace method,

the Least-Squares LS solution (no regularization) and the oracle solution. In

the latter, the exact input signal is used to estimate the channel matrix and

the exact channel matrix is used to estimate the transmitted signal. We have

considered one iteration of Algorithm 1 for the regularized DML (Niter = 1)

and two iterations for the LS solutions.

It is clear in Fig. 1 that using the simplicity prior in the DML formulation

enhances the performance in terms of NMSE and BER. Furthermore, we can

reach the oracle performance for a certain SNR level (above 13dB). Same ob-

servations can be made in Fig. 2 where we have considered QPSK modulation,

circularly symmetric complex Gaussian noise and a complex non-sparse channel

with (Nt = 3, Nr = 8, L = 10) and T = 1000 symbols. However, compared to

the BPSK case, we require a much higher SNR level to see the impact of the

proposed approach.

In both previous simulations, we have considered only one iteration in our
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Figure 1: NMSE in dB and BER performance of the regularized-DML versus SNR for BPSK

modulation and (Nt = 3, Nr = 8, L = 10) and T = 1000.

regularized DML approach. However, we can use multiple iterations to have

better performance. Fig. 3 shows the results of using 1, 2, 5 and 10 iterations of

the DML approach based on the simplicity prior for the case of BPSK constella-

tion, (Nt = 3, Nr = 8, L = 10) and T = 1000 symbols. It is clear that increasing

the number of iterations improves the performance, especially for the first ones.

In terms of NMSE, we can observe that the amount of SNR needed to reach the

oracle performance is going lower with the increase of the iterations number.

In terms of BER, the same can be noted, in addition to outperforming the LS
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Figure 2: NMSE in dB and BER performance of the regularized-DML versus SNR for QPSK

modulation and (Nt = 3, Nr = 8, L = 10) and T = 1000.

oracle performance. In the next simulation, we consider changing the number

of receivers Nr form 3 to 7 while keeping Nt = 2, L = 2 and T = 400 constant.

Figure 4 shows the evolution of the NMSE and BER for different values of SNR

(5, 10 and 15 dB) versus the number of receivers Nr. Increasing the number

of receivers Nr will result in a significant performance gain especially at low

SNR levels. However, if the number of receivers is very large, one has to use a

wider data block (greater T ) to maintain the estimation accuracy of such large

dimensional systems.
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Figure 3: NMSE in dB and BER performance of the regularized-DML with different number

of iterations versus SNR for BPSK modulation and (Nt = 3, Nr = 8, L = 10) and T = 1000.

Now, we consider in addition to the simplicity prior, the sparsity of the chan-

nels impulse responses. We reuse the same parameters of the first simulation

with longer channels L = 20 which have %30 of their elements non-zeros. Fig. 5

shows the influence of combining both the simplicity of the input signals and the

sparsity of the channels (λh = 0.5) on the NMSE and the BER. Adding the spar-

sity prior allows us to reach even better performance in terms of NMSE and BER

in both the oracle case and the full blind case. In order to investigate the effect

of the sparsity level (the ratio between the number of non-zero elements of the
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Figure 4: NMSE in dB and BER performance of the regularized-DML for different SNR values

versus the number of receivers for QPSK modulation and (Nt = 2, L = 2) and T = 400.

channel matrix H over the total number of elements) on the performance of the

proposed solution, we consider the parameters Nr = 5;Nt = 2, L = 2, T = 400,

QPSK modulation and SNR = 12 dB. Figure 6 shows the NMSE and BER ver-

sus the sparsity level ratio changing from 0.1 to 0.9. We have kept the LASSO

parameter fixed at λh = 0.5 for all the sparsity levels which explains that the

performance is better for certain sparsity levels (mainly between 0.3 and 0.6)

and severely deteriorates for other levels. Note that the important choice of

the LASSO parameter λh depends on the sparsity level and the SNR and its
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optimal tuning remains an open problem.
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Figure 5: NMSE in dB and BER performance of the regularized-DML versus SNR for BPSK

modulation and sparse channel with (Nt = 3, Nr = 8, L = 20) and T = 1000.

Most of the works in the literature consider the semi-blind case and the

instantaneous channel model due to its relation with the OFDM formulation.

Even though the contexts are different (i.e. semi-blind instead of blind and

instantaneous channel instead of convolutive channel), we compare our solution

with the recent work proposed in [8] in the particular case of instantaneous (no

memory) channel. We consider a non-sparse channel with Nt = 4, Nr = 10 and

L = 0. We consider a QPSK constellation which will be used for the simplicity
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Figure 6: NMSE in dB and BER performance of the regularized-DML versus sparsity level

ratio for QPSK modulation and sparse channel with (Nt = 2, Nr = 5, L = 2) and T = 400.

prior with T = 250 received symbols. The solution in [8] is semi-blind and

needs some initial training data. Hence, we have chosen, for each user, the

first Nt + 2 = 6 symbols as training sequence. Figure 7 shows that the semi-

blind method labeled as ref. [8] is slightly better than our solution. However,

this small performance difference is admissible since our approach is fully blind

compared to ref. [8]. Next, we consider the sparse channel case with parameters

Nt = 4, Nr = 15, L = 0, T = 250 and QPSK constellation. Figure 8 shows

how the performance of the semi-blind method in ref. [8] deteriorates in the
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case of sparse channel as compared to the proposed one, especially when we are

combining the data simplicity and the channel sparsity priors.
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Figure 7: NMSE in dB BER performance of the regularized-DML versus SNR for QPSK

modulation with (Nt = 4, Nr = 10, L = 0) and T = 250.

In the case of sparse signals, we will use the mean squared error (MSE)

MSE = 1
T E
{
‖sN − ŝN‖22

}
between the original signal and the estimated one as

a performance factor. Fig. 9 shows the improved performance of the proposed

approach in case of sparse a priori on the input signals compared to the least-

squares method with (Nt = 3, Nr = 8, L = 10) and T = 1000.

In the next simulation, in addition to the sparsity of the input signals, we
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Figure 8: NMSE in dB BER performance of the regularized-DML versus SNR for QPSK

modulation and sparse channel with (Nt = 4, Nr = 20, L = 0) and T = 250.

consider longer L = 20 and sparse channels with 30% of non-zeros elements.

Hence, we will use the sparse regularization DML approach on both the channels

and the signals. Fig. 10 illustrates how introducing the double sparsity prior

enhances the performance. The last simulation considers the case of the sparse

signal and the time-varying sparse channel where we introduce a sudden change

to the channel matrix H after 2000 samples. We considerNt = 3, Nr = 5, L = 12

and SNR = 8dB or SNR = 12dB. We propose to use the adaptive regularized

DML approach with blocks of size 200 and 50% overlapping. We compare the
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Figure 9: NMSE in dB and MSE performance of the regularized-DML versus SNR for sparse

signals with (Nt = 3, Nr = 8, L = 10) and T = 1000.

proposed procedure to the oracle cases, where the channel matrix H or the

transmitted data S are known with or without regularization. We compare

also to the case where we use the subspace method as initialization to each

block followed by iterative least-squares without regularization. Fig. 11 confirms

the superiority of the proposed approach and how its performance approaches

the oracle performance for both SNR = 8dB and SNR = 12dB. It shows

also how the sudden change in the channel impacts the performance. One

can reduce the time reaction of the proposed adaptive approach by combining
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the previous channel estimation with a subspace-based new estimation at the

start of each block. This will enhance the tracking capability but increase

the complexity (apply subspace method at each block). The use of ADMM

optimization technique reduce considerably the calculation time compared to

using CVX toolbox. For instance, CVX toolbox-based solution needs on average

10s to solve the problem compared to 0.2s for the ADMM-based solution. One

should keep in mind that the solution proposed by CVX toolbox is based on

interior point methods which should give more precise results (the error is not

important compared to the calculation time difference).

In the previous simulations, we have chosen ad-hoc parameters λs and λh.

This choice has an important influence on the performance of the proposed for-

mulation. Choosing the ”best” LASSO regularization parameter which depends

on the sparsity level and the SNR, is an open problem. Some solutions can be

adopted from the literature such as those presented in [28].

6. Conclusion

In this paper, we have considered the problem of blind identification of

MIMO FIR systems. We have presented a bilinear approach based on the regu-

larized DML formation of the problem. This formulation has the advantage of

alternatively estimate the channel impulse responses and the transmitted data

while adding the a priori information about the problem as a regularization

penalty. Different a priori are considered: the finite alphabet simplicity or the

sparsity of the transmitted data, the sparsity of the channels finite responses. As

an initialization of our blind framework, we have proposed to use the subspace

blind identification method followed by a step to resolve its full rank matrix

ambiguity for both sparse and non-sparse channels. Then, an iterative convex

optimization is applied over the channel and the transmitted data. An adaptive

version is also proposed to handle the case of time varying channel. Simulations

results showed that the proposed method has improved the estimation accuracy

which reaches the same level as the oracle solutions above a certain SNR.
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Figure 10: NMSE in dB and MSE performance of the regularized-DML versus SNR for sparse

signals and sparse channels with (Nt = 3, Nr = 8, L = 20) and T = 1000.
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