
HAL Id: hal-03321494
https://imt-atlantique.hal.science/hal-03321494v1

Submitted on 17 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Shuffled Decoding of Serial Concatenated Convolutional
Codes

Aomar Bourenane, Matthieu Arzel, Frédéric Guilloud, Alain Thomas

To cite this version:
Aomar Bourenane, Matthieu Arzel, Frédéric Guilloud, Alain Thomas. Shuffled Decoding of Serial
Concatenated Convolutional Codes. ISTC 2021: 11th International Symposium on Topics in Coding,
Aug 2021, Montreal, Canada. �10.1109/ISTC49272.2021.9594068�. �hal-03321494�

https://imt-atlantique.hal.science/hal-03321494v1
https://hal.archives-ouvertes.fr

Shuffled Decoding of Serial Concatenated
Convolutional Codes

Aomar Bourenane
Space and Communication Lab

Safran Data Systems
Les Ulis, France

aomar.bourenane@safrangroup.com

Matthieu Arzel, Frédéric Guilloud
IMT Atlantique

Lab-STICC, UMR CNRS 6285
F-29238 Brest, France

firstname.lastname@imt-atlantique.fr

Alain Thomas
Space and Communication Lab

Safran Data Systems
Les Ulis, France

alain-dominique.thomas@safrangroup.com

Abstract—Shuffled decoding enables to accelerate the extrinsic
information exchange during iterative decoding of concatenated
codes. It has already been applied to parallel convolutional codes
or low-density parity-check codes. In this article, we propose
to apply shuffled decoding to serial concatenation convolutional
codes. We take advantage of their systematic encoding to
propose an efficient shuffled decoding scheme. Compared to
a standard iterative decoding scheme, the convergence of our
shuffled implementation is obtained within fewer iterations, each
one requiring also less time to be completed. This convergence
acceleration yields doubling the throughput. We finally show that
doubling the throughput comes at a lower cost than doubling
the hardware resources, making this shuffled scheme efficient in
term of implementation. For instance, the memory usage is 29%
more efficient thanks to our proposal than a baseline scheme,
which significantly reduces the power consumption of hardware
decoders.

Index Terms—Serial Concatenated Convolutional Codes
(SCCC), iterative decoding, shuffled decoding, parallel imple-
mentations.

I. INTRODUCTION

Serial Concatenated Convolutional Codes (SCCC) [1] has
been proposed by S.Benedetto and G. Montorsi as an alterna-
tive scheme to the Parallel Concatenated Convolutional Codes
(PCCC) [2] known as turbo-codes. Their error correcting
performance is comparable to their parallel counterpart and
to LDPC codes [3]–[5], while exhibiting a better error floor
performance. Moreover, the low complexity of SCCC encoders
make them suitable for on-board satellite implementations
[6] [7]. SCCC encoding consists in the serial concatenation
of two convolutional encoders linked by an interleaver, the
first one corresponding to the outer code and the second one
to the inner code [1]. Thus the iterative decoding scheme
consists in decoding successively the inner and the outer
codewords using Soft-Input Soft-Output (SISO) algorithms
and exchanging extrinsic information with each other.

In the literature, several works have been carried out in order
to achieve high throughput turbo-code decoders using different
parallelism techniques. Most of the contributions concern PC-
CCs [8] and few are dedicated to SCCCs decoders even though
their efficient implementation is an issue for satellite telemetry
systems [9]. In [10], a parallel SCCC-decoder architecture with
16 concurrent SISO decoders was proposed based on sliding

windows parallelism technique [11]. In [12], the hardware
implementation of a high throughput Max-Log-Map SCCC
turbo-decoder for an optical channel was proposed. Parallelism
was introduced both in the state metrics computation within
the SISO decoders and by using sliding windows. In these
previous contributions, the parallelism introduced in SCCC
decoders was intended to speed up the metric calculations
but not the extrinsic information exchange which is crucial
to further increase the decoder throughput.

In [13], the authors present a parallel Turbo Product Code
(TPC) decoding approach to increase the throughput while
keeping the same error performance level. This approach has
been generalized on LDPCs and PCCCs under the name
of Shuffled decoding technique in [14]. Shuffled decoding
consists in accelerating the extrinsic information exchanges
between concurrent decoders operating on the same codeword.
More precisely, the aim is to exchange the extrinsic informa-
tion as soon as it is produced and not once the component code
decoding is over. The idea is to speed up the convergence
of the iterative decoding, and hence the throughput of the
decoder. However, care has to be taken to design the decoder
since increasing the pace of extrinsic information exchange
might also decrease the error rate performance. In [15], the
authors presents a parallel decoding design for a PCCC
decoder based on the work presented in [13]. In [16], the
authors explore and analyze parallelism techniques in parallel
turbo decoding, including the shuffled decoding technique.

To the best of our knowledge, shuffled decoding for SCCC
has never been addressed in the literature. In this paper, we
propose a novel SCCC-based shuffled decoding scheme that
increases the processing throughput while improving hardware
efficiency.

The rest of the paper is organized as follows. In Section II,
we introduce the notations used throughout the paper and we
describe the encoding and decoding schemes of SCCC. In
Section III, we propose an efficient shuffled implementation
for systematic SCCC. In Section IV, the performance of
the proposed scheme is addressed and compared to that of
a baseline implementation. Conclusions and perspectives are
discussed in Section V.

II. MODEL AND NOTATIONS

For the sake of simplicity, throughout the paper we shall
refer to the communication channel shown in Fig.1 consisting
of a systematic SCCC encoder, a binary input memoryless
additive white Gaussian noise (Bi-AWGN) channel and an
SCCC decoder.

The SCCC code consists of an outer convolutional recursive
systematic code (RSC) �> with rate '> = 1

2 , an interleaver Π
and an inner RSC �8 with rate '8 = 1

2 . In order to simplify
the notations and without loss of generality, we assume that
both component codes have the same constraint length .
The superscripts 8 and > refer to the inner and outer codes
respectively. Let D: represent the : th information bit at the
input of the SCCC encoder, for : ∈ [1 . . #], and encoded
first by the outer encoder. Let 2>

;
for ; ∈ [0 . . 2#] represent

the outer coded bits which are interleaved into bits E; and
input into the inner encoder. Let also 28< for < ∈ [0 . . 4#]
represent the inner coded bits which are modulated and sent
over a Bi-AWGN channel. Finally let H< represent the channel
output which is proportional to log-likelihood ratios (LLRs) of
28< and let D̂: represent the estimated information bit. As the
outer (resp. inner) encoder is assumed to be systematic, its
output 2>

;
(resp. 28<) is alternatively equal to the systematic

bit D: (resp. E;) and the redundant bit A>
:

(resp. A 8
;
).

The SCCC decoder is depicted in Fig. 2. It consists of
two serially concatenated SISO decoders denoted outer SISO
and inner SISO, an interleaver and a deinterleaver. The trellis
length of the outer (resp. inner) code is # (resp. 2#) sections.
LLRs can be considered as information regarding the decision
to make when estimating a bit. Hereafter, information regard-
ing a bit 1 will be denoted ! (1) and decomposed according
to: ! (1) = !2 (1) + !0 (1) + !4 (1), where !2 denotes the
channel information, !0 denotes the a priori information and
!4 denotes the extrinsic information. The inner SISO is fed
by the channel LLRs !2 (28<). Since the inner encoder is
systematic, they correspond alternatively to the inner code
systematic bits !2 (E;) and to the inner code redundant bits
!2 (A 8;). The inner SISO is also fed by a priori information
about the inner code systematic bits, coming from the outer
SISO. Only information related to the systematic bits ! (E;) is
output to feed through the de-interleaver the outer SISO since
they correspond to the coded bits of the outer code. The outer
SISO computes information on both the systematic bits ! (D:)
and the redundant bits ! (A>

:
) to feed back extrinsic information

to the inner SISO. ! (D:) is used at the end of the iterative
decoding to estimate the transmitted bits. As illustrated in
Fig. 2 by the blue dashed wires, we emphasize that part of
the channel information, !2 (E;), is input to both the inner and
the outer decoders, since the inner code is systematic.

III. SHUFFLED SCCC DECODER IMPLEMENTATION

A. Baseline decoder

A standard implementation for SCCC decoding is illustrated
in Fig. 3. In this implementation, the hardware resources are
shared between the inner and the outer decoders: a single

SISO component is instantiated, as well as a single memory
for the state metrics and a single memory for the extrinsic
information. These resources are used alternatively to process
the inner and the outer decoding, one trellis section being
processed every clock cycle. The control unit schedules the
computing and drives the memory access depending on the
component code being decoded. These resources have thus to
be sized to support the greedier case.

As computational resources are concerned, the outer SISO
has to calculate 2 pieces of extrinsic information per trellis
section: one related to systematic bits ! (D) and one related to
redundant bits ! (A>). On the other hand, the inner SISO has
to calculate only one extrinsic information which is related to
systematic bits ! (E): it means that only half of the resources
are then required to calculate the extrinsic information related
to the inner decoder.

As memory resources are concerned, since the trellis length
of the inner code is twice the one of the outer code (the
code rate '> is set to 1/2), so has to be the (U, V) State
Metrics memory of the inner decoder compared to the one of
the outer decoder. Therefore, in this baseline decoder, half of
this memory is not used during the outer decoder processing.

B. Asymmetrical Shuffled Decoding (ASD)

The idea of a shuffled implementation is to speed up the
extrinsic information exchange, if possible as soon as it is cal-
culated. In the baseline decoder, extrinsic information is used
in one component code decoder after it has been calculated
for all the bits involved in the other code component decoder.
In the proposed shuffled implementation, both component
code decoders will proceed simultaneously, using the extrinsic
information produced in parallel by each decoder as soon as
it is output. Hence, two SISO decoders have to be instantiated
as illustrated in Fig. 4.

The serial concatenation induces that the component de-
coders do not have the same trellis length to decode (hence
the Asymmetrical term in ASD): considering an outer code
rate '> = 1/2, the trellis length of the inner code is twice the
outer one’s. So processing the component codes does not last
the same duration. Let) denote the amount of time required
to perform a complete inner code decoding. Then, the outer
code is decoded within an amount of time equal to)/2 since
the trellis length is halved.

As illustrated in Fig. 5, we propose to take advantage
of the trellis length ratio to run the outer decoder twice
while running a single inner decoder. Note that a replica
butterfly scheme [17] is implemented to increase the extrinsic
information exchange speed and the decoding throughput (as
in [8], [18]). In fact, during the second execution of the outer
decoder, it generates new extrinsic information !4 (2>) that
allows to update up to 50% of the inner decoder a priori
information !0 (E) which can be used in the same iteration.
Also, new inner extrinsic information !4 (E) will provide a
more reliable a priori information !0 (2>) to be used by the
outer decoder in its second execution. Hence, a complete
iteration of the proposed ASD requires an amount of time

Outer
encoder �>

Π

D: 2>
;

E; 28<Inner
encoder �8

Bi-AWGN Decoder
H< D̂:

Encoder

2# 2# 4# 4#

Fig. 1. SCCC encoder and transmission over a binary input AWGN (Bi-AWGN) channel model.

! (E)

! (A 8)

!2 (28)

!0 (A 8)

Inner SISO
! (E)

Π

! (2>)

!0 (E)

!2 (E)
!2 (A 8)

! (D) D̂

Π−1

Π−1

!4 (E) !0 (2>)

!2 (2>)

!0 (E)

! (D)

! (A>)!0 (A>)

Outer SISO

!0 (D)

D
E

M
U

X

M
U

X

MUX

!4 (2>)

!2 (2>)

Fig. 2. Considered SCCC iterative decoder, where information (LLR) related to the channel observation is coloured in blue.

BCJR SISO

E
xt

ri
ns

icW U

V

State metrics

(U, V)

(U, V) 5 DCDA4 (U, V)?0BC

Extrinsic
memory

memory

!2

!0

!4

C
on

tr
ol

un
it

ca
lc

ul
at

or

Fig. 3. Baseline decoding scheme: Inner or outer decoder according to the
context.

) , when the baseline implementation with a SISO butterfly
scheduling runs a complete iteration within an amount of time
equal to 3)/2:) for the inner code and)/2 for the outer one.

C. Hardware Resources

The decoding of the inner and outer codes will be performed
using the Max-log-MAP algorithm [19] so as to reduce the
computational complexity. To simplify the resource estimation
both in terms of memory and of computing units, we assume
hereafter that the LLRs and the forward-backward metrics
(U, V) are quantized with the same bit-width. The hardware
and time resources required by the baseline and proposed ASD
schemes are compared in Table I and are detailed hereafter.

1) Memory Requirements: The amount of memory required
to save each state metric is given by the number of states per
trellis section, i.e. 2 −1, times the number of sections plus one,
that is 2# + 1 for the inner code and # + 1 for the outer code.
So the number of memory words to store the state metrics
of an ASD is given by 2 ×

(
2 −1 (2# + 1) + 2 −1 (# + 1)

)
=

2 (3# + 2). For the baseline scheme, the largest trellis is the
inner one and requires 2 (2# +1) memory words to be saved.

The amount of memory required to save the extrinsic
information in the inner decoder is given by the number of

Inner SISO

In
ne

r-
ex

tr
in

si
c

W U

V

State metrics

(U, V)8==4A

(U, V) 5 DCDA4−8==4A (U, V)?0BC−8==4A

Extrinsic memory

Outer SISO

O
ut

er
-e

xt
ri

ns
ic

W U

V

State metrics

(U, V)>DC4A

(U, V)?0BC−>DC4A (U, V) 5 DCDA4−>DC4A

memory

memory

!2 (28)

!2 (2>)

!0 (E)

!0 (2>)

!4 (E)

!4 (2>) C
on

tr
ol

un
it

Extrinsic memory

Fig. 4. Proposed ASD scheme.

systematic bits which is 2# . In the outer decoder, it is given by
the total number of bits since the extrinsic information of both
the systematic and the redundant bits have to be saved, that is
2# . Note that the extrinsic information memory requirements
are duplicated for the ASD scheme to enable the memory to be
simultaneously accessed by the inner and the outer decoders
as shown in Fig.4. In the baseline case, only one extrinsic
memory of 2# words is required.

2) Computing Resources: We consider here the amount of
resources required to perform the calculation of metrics (U, V)
and the extrinsic information in a single trellis section.

The calculation of the state metrics in a trellis section of

2#

Trellis section

Time

U

V

Forward recursion +

Backward recursion +

extrinsic information

extrinsic information

(a)

(b)

))
2

U

V

U

V

0

Trellis section

)
2) Time

#

0

Fig. 5. BCJR computation with replica butterfly scheme : (a) inner decoder
scheduling, (b) outer decoder scheduling.

2 −1 states is made possible by the use of 2 −1 Add-Compare-
Select (ACS) units for U or V state metrics, that is 2 ACS,
both for the inner or the outer decoders since we assume the
same constraint length for the two component codes.

The extrinsic information requires first to add the two state
metrics to the branch metrics, which requires 2 ADD (Addition
operator) per branch, and so 2 × 2 = 2 +1 ADD per trellis
section. Then, in the case of the inner decoder (extrinsic
information on the systematic bits), the maximum sum over
the branches associated to a systematic bit equal to 0 and also
over the branches associated to a systematic bit equal to 1
has to be selected. Finding the maximum over 2 /2 values
requires 2 −1 − 1 Compare-and-Select (CS) units, hence a
total of 2 − 2 CS. Finally the subtraction between the two
previous maximums and subtracting the a priori information
and the channel information from the result (cost of 3 ADD)
will provide the extrinsic information for the systematic bit on
the considered trellis section of the inner decoder. To sum up,
the inner trellis calculation requires 2 ACS, 2 +1 + 3 ADD
and 2 − 2 CS. Grouping the CS and ADD operator into a
single ACS operator results finally in a total of 2 +1 − 2 ACS
and 2 + 5 ADD. As for the outer decoder, the calculation is
the same, except that 2 extrinsic information values have to
be calculated for each trellis section: one for the systematic
bit and one for the redundant bit. Hence the number of oper-
ations dedicated to the inner extrinsic information is doubled,
yielding a total of 2 +2× (2 −2)ACS and 2× (2 +5)ADD.
Finally the overall complexity of the proposed ASD scheme
is obtained by adding the complexity of the inner and outer
decoders, resulting in 5 × 2 − 6 ACS and 3 × 2 + 15 ADD,
whereas for the baseline scheme, the complexity is the one of
the outer decoder (3 × 2 − 4 ACS and 2 +1 + 10 ADD).

IV. PERFORMANCE COMPARISON

In Fig. 6 both schemes are compared in term of the Bit Error
Rate (BER) as a function of signal-to-noise ratio for several
number of iterations. The component code is the one described
in [20] where = 3 (4-state trellis) and # = 4320. It is also
illustrated in Fig. 7 as a function of the number of iterations
for several signal-to-noise ratios. It can be noticed that the

TABLE I
HARDWARE AND TIME CONSUMPTION OF THE BASELINE DECODING

SCHEME VS THE ASD SCHEME

Criteria Baseline scheme Proposed ASD scheme
SISO processing time 3) /2)

Memory words 2 (2# +1)+2# 2 (3# + 2) + 4#
ACS 3 × 2 − 4 5 × 2 − 6
ADD 2 +1 + 10 3 × 2 + 15

0.5 0.65 0.8 0.95 1.1 1.25 1.4

Eb/N
0
 (dB)

10
-5

10
-4

10
-3

10
-2

10
-1

B
E

R

 iteration #1

 #2

 #3

 #4

 #5
 #6

 #7

 #8

 #2

 #3

 #4
 #5

 #6
 10

-5Baseline decoding scheme

ASD scheme

Fig. 6. BER performance comparison as a function of �1/#0.

proposed ASD scheme converges in less iterations than the
baseline scheme. For instance, a BER of 10−5 is reached at
�1/#0 � 1.41dB in 8 iterations with the baseline scheme and
in only 6 iterations with the proposed ASD scheme. Taking
also into account that one iteration of the proposed ASD
scheme lasts an amount of time) whereas one iteration of the
baseline lasts 3)/2, the total decoding time of each scheme
is given by)ASD = 6 ×) for the proposed ASD scheme and
)BD = 8 × 3)/2 = 12) for the baseline decoding scheme.
So, the ASD scheme offers a throughput twice that of the
baseline decoding scheme. This faster convergence and higher
throughput is obtained at the cost of more hardware resources
than implemented for the baseline scheme as summed up in
Table II with = 3 and # = 4320. So the question is to state
if this increase in resources is worth the gain in throughput. To
this aim, we suggest to calculate the processing efficiency �

of the proposed architecture when compared to the baseline.
For each type of resource, � is defined as the ratio between
the processing cost (amount of resources times the amount
of time they are used) of decoding one codeword with the
baseline decoding scheme and that with the ASD scheme:

� =
)BD × 'BD

)ASD × 'ASD
(1)

where 'ASD (resp. 'BD) is the amount of hardware resources
of the ASD scheme (resp. of the baseline decoding scheme),
that is the number of memory words, the number of ADD
or the number of ACS used. According to Equation (1) and
Table II, the efficiency of the ASD scheme is

2 3 4 5 6 7 8 9 10
iteration

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

B
E

R

 0.513 dB

 0.613 dB

 0.713 dB

 0.813 dB

 0.913 dB

 1.013 dB
 Eb/N

0
=1.013 dB

 0.613 dB

 0.713 dB

 0.813 dB

 0.913 dB

 10
-5

Baseline decoding scheme

ASD scheme

 0.013 dB

Fig. 7. BER performance comparison as a function of the number of
iterations.

TABLE II
NUMERICAL VALUES CONSIDERED FOR THE ASD SCHEME COMPARISON

Criteria Baseline Proposed
scheme ASD scheme

BER at 10−5 1.41 dB 1.41 dB
Number of iterations 8 6

SISO processing time
3)
2

)

memory words 77768 120976
ACS 20 34
ADD 26 39

• 129% in term of memory resources,
• 118% in term of ACS units,
• 133% in term of remaining ADD units.

In other words, when compared to the baseline scheme for a
targeted throughput, the proposed ASD scheme offers consid-
erable savings in terms of memory and computing resources.

V. CONCLUSION

In this paper, we have proposed a shuffled scheduling of
serial concatenated convolutional codes called Asymmetrical
Shuffled Decoding (ASD). Shuffled scheduling makes ex-
change of extrinsic information faster and our results show
a significant reduction in the number of iterations required
to achieve a given bit error rate. Moreover, the shuffled
scheduling enables a parallel implementation of the inner and
outer convolutional code decoders. As a consequence, one
iteration of our proposed ASD scheme is faster than one of
a conventional iterative decoding scheme. We show that the
overall throughput is doubled in our ASD implementation at
a lower cost than doubling the hardware resources, making
ASD efficient in term of implementation. For instance, the
memory usage is 29% more efficient thanks to our proposal
than the baseline scheme, which significantly reduces the
energy consumption of hardware decoders. The generalization
of ASD scheme to any code rates will be considered in a future
work.

REFERENCES

[1] S. Benedetto and G. Montorsi, “Serial concatenation of block and
convolutional codes,” Electronics Letters, vol. 32, no. 10, pp. 887–888,
1996.

[2] C. Berrou and A. Glavieux, “Near optimum error correcting coding and
decoding: turbo-codes,” IEEE Transactions on Communications, vol. 44,
no. 10, pp. 1261–1271, 1996.

[3] R. Gallager, “Low-density parity-check codes,” IRE Transactions on
Information Theory, vol. 8, no. 1, pp. 21–28, 1962.

[4] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Serial concate-
nation of interleaved codes: performance analysis, design, and iterative
decoding,” IEEE Transactions on Information Theory, vol. 44, no. 3,
pp. 909–926, 1998.

[5] A. Graell I Amat, G. Montorsi, and F. Vatta, “Design and performance
analysis of a new class of rate compatible serially concatenated
convolutional codes,” IEEE Transactions on Communications,
vol. 57, no. 8, pp. 2280–2289, Aug. 2009. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-00498307

[6] S. Benedetto, R. Garello, G. Montorsi, C. Berrou, C. Douillard, D. Gi-
ancristofaro, A. Ginesi, L. Giugno, and M. Luise, “Mhoms: high-speed
acm modem for satellite applications,” IEEE Wireless Communications,
vol. 12, no. 2, pp. 66–77, 2005.

[7] B. BOOK Recommended Standard CCSDS 131.2-B-1, “Flexible
advanced coding and modulation scheme for high rate
telemetry applications,” March 2012. [Online]. Available:
https://public.ccsds.org/Pubs/131x2b1e1.pdf

[8] S. Weithoffer, C. Abdel Nour, N. Wehn, C. Douillard, and C. Berrou,
“25 Years of Turbo Codes: From Mb/s to beyond 100 Gb/s,” in
10th International Symposium on Turbo Codes & Iterative Information
Processing (ISTC 2018), Hong Kong, Hong Kong SAR China,
Dec. 2018. [Online]. Available: https://hal-imt-atlantique.archives-
ouvertes.fr/hal-01869012

[9] M. Bertolucci, F. Falaschi, R. Cassettari, D. Davalle, and L. Fanucci,
“A comprehensive trade-off analysis on the ccsds 131.2-b-1 extended
modcod (sccc-x) implementation,” in 2020 23rd Euromicro Conference
on Digital System Design (DSD), 2020, pp. 126–132.

[10] M. Martina, A. Molino, F. Vacca, G. Masera, and G. Montorsi, “High
throughput implementation of an adaptive serial concatenation turbo
decoder,” Journal of Communications Software and Systems, vol. 2,
no. 3, pp. 252–261, 2006.

[11] C. Schurgers, F. Catthoor, and M. Engels, “Memory optimization of
map turbo decoder algorithms,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 9, no. 2, pp. 305–312, 2001.

[12] R. Shoup, “Hardware implementation of a high-throughput 64-ppm
serial concatenated turbo decoder,” vol. 6311, 08 2006, pp. 63 110S–
63 110S.

[13] C. Argon and S. W. McLaughlin, “A parallel decoder for low latency
decoding of turbo product codes,” IEEE Communications Letters, vol. 6,
no. 2, pp. 70–72, 2002.

[14] Juntan Zhang and M. P. C. Fossorier, “Shuffled iterative decoding,” IEEE
Transactions on Communications, vol. 53, no. 2, pp. 209–213, 2005.

[15] Y. Lu and E. Lu, “A parallel decoder design for low latency turbo de-
coding,” in Second International Conference on Innovative Computing,
Informatio and Control (ICICIC 2007), 2007, pp. 386–386.

[16] O. Muller, A. Baghdadi, and M. Jezequel, “Exploring parallel processing
levels for convolutional turbo decoding,” in 2006 2nd International
Conference on Information Communication Technologies, vol. 2, 2006,
pp. 2353–2358.

[17] Juntan Zhang, Yige Wang, M. Fossorier, and J. S. Yedidia, “Replica
shuffled iterative decoding,” in Proceedings. International Symposium
on Information Theory, 2005. ISIT 2005., 2005, pp. 454–458.

[18] S. Weithoffer, F. Pohl, and N. Wehn, “On the applicability of trellis
compression to turbo-code decoder hardware architectures,” in 2016
9th International Symposium on Turbo Codes and Iterative Information
Processing (ISTC), 2016, pp. 61–65.

[19] P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal
and sub-optimal map decoding algorithms operating in the log domain,”
in Proceedings IEEE International Conference on Communications
ICC’95, vol. 2. IEEE, 1995, pp. 1009–1013.

[20] S. Benedetto, R. Garello, G. Montorsi, C. Berrou, C. Douillard, D. Gi-
ancristofaro, A. Ginesi, L. Giugno, and M. Luise, “Mhoms: high-speed
acm modem for satellite applications,” IEEE Wireless Communications,
vol. 12, no. 2, pp. 66–77, 2005.

