N
N

N

HAL

open science

A Backpropagation Approach for Distributed Resource
Allocation

Alexandre Reiffers-Masson, Nahum Shimkin, Daniel Sadoc Menasche, Eitan
Altman

» To cite this version:

Alexandre Reiffers-Masson, Nahum Shimkin, Daniel Sadoc Menasche, Eitan Altman. A Backpropa-
gation Approach for Distributed Resource Allocation. 2021. hal-03295994

HAL Id: hal-03295994
https://imt-atlantique.hal.science/hal-03295994v1

Preprint submitted on 22 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://imt-atlantique.hal.science/hal-03295994v1
https://hal.archives-ouvertes.fr

A Backpropagation Approach for Distributed
Resource Allocation

ALEXANDRE REIFFERS-MASSON, NAHUM SHIMKIN, DANIEL SADOC MENASCHE
AND EITAN ALTMAN

Network resource allocation through Network Utility Maximization (NUM) is one of the fundamental problems
in the realm of networked systems. In the NUM framework, the network comprises a set of nodes each of which
is associated with a utility function, and the goal is to distribute resources across nodes so as to maximize the
sum of the nodes utilities. In this paper, we propose a novel backpropagation approach for distributed resource
allocation. The internal flow of resources among nodes is governed by the network dynamics, assumed to
be captured through a directed acyclic graph (DAG). Control is exercised as an external injection of limited
resources at some nodes, where the goal is to determine the optimal amount of resources to be injected at
nodes, under the NUM framework. To that aim, we present a novel forward-backward algorithm, inspired by
neural network training, wherein flows of resources are transferred during the forward step, and gradients
are backpropagated at the backward step. Based on such gradients, the controls are adjusted, considering
two variations of the algorithm under synchronous and asynchronous settings. The proposed algorithms
are distributed, in the sense that information in transferred only between neighboring nodes in the network.
In addition, they are suitable for continued operation, so that the optimum resource allocation is tracked as
conditions gradually change. We formally establish convergence of the proposed algorithms, and numerically
compare the speed of convergence under the asynchronous setting against its synchronous counterpart.
Together, our results advance the state-of-the-art in the realm of NUM under nonlinear constraints, indicating
how to leverage a backpropagation approach for that matter.

ACM Reference format:

Alexandre Reiffers-Masson, Nahum Shimkin, Daniel Sadoc Menasche and Eitan Altman. 2016. A Backpropa-
gation Approach for Distributed

Resource Allocation. 1, 1, Article 1 (January 2016), 12 pages.

DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Network resource allocation is one of the fundamental problems in the realm of networked systems.
In essence, the problem consists in determining how to distribute limited resources across nodes
in a network, so as to maximize a given utility function. In particular, under the Network Utility
Maximization (NUM) framework [9, 15], each node is associated to a utility, and the goal is to
maximize the sum of utilities. The generality of the framework allows it to capture a broad range
of scenarios, ranging from physical networks, such as supply-chains, up to virtual networks, such
as virtual markets.

In this paper, we propose a novel backpropagation approach for distributed resource allocation.
The internal flow of resources among nodes is governed by network dynamics, assumed to be
captured through a directed acyclic graph (DAG). Control is exercised as an external injection of

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2016 ACM. XXXX-XX/2016/1-ART1 $15.00

DOI: 10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:2 Alexandre Reiffers-Masson, Nahum Shimkin, Daniel Sadoc Menasche and Eitan Altman

limited resources at some nodes. The goal is to determine the optimal amount of resources to be
injected at each node.

The total flow of resources received by a node yields a corresponding utility. Similarly, the external
injection of resources at any node yields a cost. Utilities (resp. costs) are assumed to be concave
(resp. convex) increasing, and are allowed to be nonlinear. The function which dictates the amount
of flow received by a node that is forwarded to its neighbors, referred to as the interaction function,
is also assumed to be concave and increasing, and possibly nonlinear. Each node is associated to its
own interaction function. As flow dynamics are constrained by nonlinear interaction functions,
the NUM problems considered in this work are subject to nonlinear constraints.

We pose the following questions:

e How to allocate limited resources to networked nodes so as to solve a NUM problem under
nonlinear constraints?
e How do synchronous solutions compare against their asynchronous counterparts?

For the optimal resource allocation, we design a novel forward-backward algorithm, inspired
by neural network training, wherein flows of resources are transferred during the forward step,
and gradients are backpropagated at the backward step. Based on such gradients, the controls
are adjusted. We consider two variations of the algorithm under synchronous and asynchronous
settings. Backpropagation is one of the pillars of artificial intelligence, and one of our insights
consists in leveraging backpropagation for resource allocation purposes, showing its applicability
in addressing NUM problems.

The proposed algorithms are distributed, in the sense that nodes only need to exchange local
information with their neighbors. In addition, our algorithms are suitable for continued operation.
Indeed, they allow for the optimum resource allocation to be tracked as conditions gradually change.

We formally establish convergence of the proposed algorithms, and numerically compare the
speed of convergence of the asynchronous setting against its synchronous counterpart. Together,
our results advance the state-of-the-art in the realm of NUM under nonlinear constraints, indicating
how to leverage a backpropagation approach for that matter.

Summary of contributions. The main contributions of this paper are given below:

¢ Nonlinear resource allocation problem formulation: We formulate a NUM resource
allocation problem under nonlinear constraints. The problem consists of maximizing the
sum of utilities of nodes in a network where the utilities are a function of the received
flows. We assume that the flow constraints are concave but possibly nonlinear, and show
the convergence of the proposed backpropagation approach towards a NUM solution.

e Design of efficient algorithms: We provide two efficient algorithms which converge to
the solution of the first-order optimality conditions of our optimization problem. The first
algorithm is based on the observation that the first-order condition can be solved using
a forward-backward approach. The second algorithm is an extension of the first one, by
allowing asynchronous communications. Finally, as mentioned above, both algorithms
are distributed in the sense that nodes only need to exchange local information with their
neighbors. We illustrate the performance of our algorithms through a numerical study.

Outline. In the following section we report related work. Then, we introduce the proposed
model (Section 3), followed by synchronous and asynchronous solutions in Section 4. Numerical
evaluation is reported in Section 5 and Section 6 concludes.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

A Backpropagation Approach for Distributed
Resource Allocation 1:3

2 RELATED WORK

Next, we report related work on main themes of the paper, namely classical and state-of-the-art
network optimization methods (Sections 2.1 and 2.2) and strategies to handle nonlinear constraints
under NUM (Section 2.3).

2.1 Primal-dual and saddle point algorithms

Our optimization problem belongs to the class of nonlinear network optimization problems [4].
Most of the recent research on the design of efficient algorithms for convex objective functions
accounts for linear flow constraints. Next, we briefly overview some of those related efforts.

A variety of approaches have been considered under linear flow constraints, including distributed
interior point methods [8] or distributed primal-dual algorithms [10, 17]. To the best of our
knowledge, one of the first works to design a distributed algorithm for NUM with convex flow
constraints is [11]. The authors use Lagrange multipliers and propose a distributed price allocation
algorithm which converges to the optimal solution of the network problem. Nonetheless, the flow
constraints in [11] are different from ours, motivating a new solution. Indeed, the specifics of our
constraints allow us to design novel synchronous and asynchronous algorithms.

Similarly, in [2, 3] the authors also suggest a decentralized asynchronous iterative algorithm
to solve a NUM instance with nonlinear stochastic constraints. The authors leverage a Lagrange
relaxation of the problem to derive an asynchronous saddle point iterative algorithm, which
converges to the optimal solution. The algorithms proposed in the sequel also belong to the class of
saddle point iterative algorithm. Nonetheless, the considered constraints do not provide an explicit
characterization of the interaction between the actions of the different agents. Therefore, in our
setting the computation of the gradients motivates the proposed backpropagation approach.

2.2 The push-pull method for network optimization and distributed learning

A push-pull gradient method has been recently considered to solve the optimal flow allocation
problem in a distributed fashion [12, 18]. Under the push-pull method, each node keeps in memory
the current estimate of its optimal decision variable as well as an estimate of the gradient of
the agents objective function. Then, each agent transfers information about the gradients to its
neighbors, i.e., such information is pushed downstream, whereas information about decisions is
pulled from the neighbors, i.e., it is pulled upstream.

Push-pull methods have been considered for distributed machine learning applications [18],
with the goal of collectively learning average values of elements distributed across the network,
through consensus. In this work we are also inspired by push-pull gradient methods, but consider
a different goal, namely solving a resource allocation problem in a distributed setup. Indeed, we
leverage the intuitive resemblance between push—pull gradient methods and backpropagation to
propose a novel resource allocation mechanism, accounting for nonlinear constraints.

2.3 Handling chance-constraints and general nonlinear constraints under NUM

Chance-constraints are another sort of nonlinear constraints that have also been accounted for
by the NUM framework [14]. Consider, for instance, chance-constraints indicating that the tail
probability of the delay distribution should be bounded by a given threshold. Under chance-
constraints, the feasible set may be non-convex, motivating the restriction to a convex subset where
a near-optimal solution exists [14]. The use of surrogate linear constraints have been considered
for that matter, leveraging the Markov [16], Chebyshev or Bernstein approximations [19].
Distributed algorithms for convex optimization problems with nonlinear convex constraints
have also been considered in [13]. One of the steps in the algorithm proposed in [13] consists of

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:4 Alexandre Reiffers-Masson, Nahum Shimkin, Daniel Sadoc Menasche and Eitan Altman

Table 1. Table of notation

variable ‘ description
X current allocation of (external and internal) resources to node i
u; amount of external resource allocated to node i

(x; — u; is the amount of internal resources allocated to node i)
y; = fi(x;) | amount of resources from node i redistributed to its neighbors
Wij fraction of resources from node i shared with node j (flow from i to j)

a projection step. Such a step is non-trivial in the resource allocation problem considered in this
work. Therefore, we leverage the specifics of our optimization problem which allow us to design
alternative simpler algorithms.

3 MODEL AND OPTIMALITY CONDITIONS

Next, we introduce the proposed model (Section 3.1) followed by an analysis of its optimality
conditions (Section 3.2) and an illustrative example (Section 3.3).

3.1 Model

We consider a set of I nodes, also referred to as agents, 7 := {1,...,I}. Agents are connected
through a directed acyclic graph (DAG), where relationships are described by an adjacency matrix
W. The ij-entry of W, denoted by w;; € [0, 1], measures the fraction of resources/flow an agent i is
sharing with j.

Nodes are divided into internal and leaf nodes. For any node i we have w;; = 0. In addition,

(1)

I o .

Z 1, ifiis an internal node,

wji = .
4 Y 0, otherwise.

=

Let x; € R, be the amount of resources received by agent i and let y; € R, be the amount
of resources agent i is redistributing to its neighbors. An agent can receive resources from its
neighbors and from an external source. Let u; € R, denote the amount of external resources
received by agent i. For each agent i, x; and y; are related as follows:

I
X;i =Uu; + Z Wjilj, Yi = fz (), (2)
j=1

where f;(+) is a continuous increasing concave differential function. Function f; is referred to as the
interaction function, and captures the amount of resources agent i is redistributing to its neighbors.
Note that y; and x; are concave in u := [uy, ..., us] as long as for every i, f; is concave increasing.
Our goal is to design a distributed algorithm which finds the optimal amount of external resources
u which maximizes a given utility function U(x) := Zle Ui(x;) minus a cost C(u) := Zle Ci(uy)
associated to the allocation of those resources. For every i € 7, we assume that U;(-) and —C;(-) are
continuous concave and differentiable functions.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

A Backpropagation Approach for Distributed
Resource Allocation 1:5

In summary, our algorithm should converge to a local optimum of the following optimization
problem:

1 1
Ui(xi) = » Ci(u;) == U(x) - C(u),
Jmax Z (1) Z i(w;) = U(x) = C(u)

subject to x solution of: (3)

I
X; = U; +Zf} (Xj) Wji, Vi e {1,...,[},
=1

where u and u are the lower and upper bounds on the amount of external resources that can be
allocated to a node.

3.2 Optimality conditions

Next, we express the Lagrangian of our optimization problem and the corresponding Karush Kuhn
Tucker (KKT) conditions (see [6]). The Lagrangian is given by

1 1 I 1
L d) = Y Uil = Y Clug) + Y Ai [+ D fiG)ws =i,)
i=1 i=1 i=1 j=1

where A = [A;]1<i<s are the Lagrange multipliers. Note that we do not take into account the
boundary constraints [u,%]! in the Lagrangian. Instead, we incorporate them directly in the
gradient ascent update, to be described in the sequel.

Differentiating the above equation with respect to x; we obtain the corresponding first order
condition,

I
0= U/(xr) = Ai + £ (i) D wij, (5)
=1
where f(x;) is the derivative of f; with respect to x;. Differentiating £(x, u, 1) with respect to u;
we obtain

0= —Cl'(u,) + A;. (6)
If (u*, x*) is a strict local maximizer of (3) and if f;(-) is concave and increasing, U;(-) is concave and
Ci(-) is convex for every i € {1,...,I}, then (u*,x*, 1¥) is a solution of the above local optimality

conditions (equations (5)-(6)).

3.3 Network models in Economy: network shocks versus network control

Next, we illustrate the applicability of the proposed framework in the realm of a virtual market.
To that aim, we consider the general framework introduced in [1] to analyze the role of network
interactions in the macroeconomic performance of a given Economy. Consider an Economy
comprised of I agents, where x; € R is the state of agent i € {1,--- ,I}. The joint state of all agents
is denoted by x = [x;]1<i<s. In [1] the authors seek for a solution of the following fixed point

problem
1
Xi Zf(z Winj-f-ui) (7)
j=1

forall i € {1,...,I}, where the interaction function f is a continuous and increasing function.
The weights w;; capture the intensity of the interaction between i and j, with w;; € [0,1] and
2j wij = 1. Finally, the utility function in [1] is assumed to be of the form U(x) = g(Z{:1 h(x;)),
and is referred to as the macro state of the Economy.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:6 Alexandre Reiffers-Masson, Nahum Shimkin, Daniel Sadoc Menasche and Eitan Altman
Gok) (B, Ve Na)

N

Ai=U (xi) + f (xi) 211':1 wijdj

= u + YL Fe)wig
wi = ul + 9 =~ Cilup) = O R

~

(), Vi € No() 7 filx k)
Fig. 1. Block diagram of the synchronous resource allocation distributed algorithm, at the level of node i. Up-

stream neighbors (N, (7)) transfer flows at the forward step, and downstream neighbors (N_(i)) backpropagate
gradients at the backward step. The current time slot, k, is included in all messages.

Clearly, the above economic model is a special instance of the problem formulation considered in
our work. Nonetheless, in [1] the term u; is assumed to be an agent-level shock, capturing stochastic
disturbances to an agent state. The authors assume that these external shocks are independently
and identically distributed. In what follows, in contrast, we consider a controllable external input
of resources, that is our main object of study.

4 DISTRIBUTED ALGORITHMS

In this section, we design two algorithms and prove their convergence towards an optimal solution
of the optimization problem introduced in the previous section. Both algorithms rely on distributed
computation of the Lagrange multipliers, following a gradient ascent approach inspired by the
concept of backpropagation. The first algorithm is synchronous, and the second extends it by
introducing multiple timescales that allow nodes to perform asynchronous computation.

4.1 Distributed gradient algorithm for convex flow constraints

For every node i € I, we define the sets of upstream and downstream neighbors, N, (i) = {j €
I | wj >0}and N_(i) = {j € T | wi; > 0}, respectively. The main idea behind the algorithm
design consists in leveraging the fact that to compute A} (resp. x;) node i only needs to retrieve
/1;, Vj € N_(i) (resp. fj(xj), Vj € N,(i)). This idea is similar in spirit to backpropagation in neural
networks, where gradients are computed one layer at a time, iterating backward from the last layer.
The latter corresponds to leaf nodes in our networks, i.e., nodes i such that N_(i) = 0. Indeed, the
proposed algorithm extends backpropagation to a DAG topology, generalizing the typical multilayer
topology considered for machine learning applications. The proposed algorithm is described below:

Backpropagation Algorithm for Distributed Resource Allocation
Initialization: Set the step-size 7 € (0, 1) and initialize u;(0) = u? for all i € 1.
Updates: At each iterationk = 1,2, .. .:
(1) Forward step: computation of x;(k). Each node i € I computes x; through the following
update rule:
xi(k) = ui(k) + Z fitxi(k)wji. (8)

JEN:(i)

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

A Backpropagation Approach for Distributed
Resource Allocation 1:7

(2) Backward step: computation of A;(k). Each node i € {1, ...,I} computes A;(k) by using
x;(k) and the following update rule:

Ai(k) = Uj (xi(k)) + f} (xi(k)) Z wijAj(k).

JEN-(i)
(3) Gradient ascent step. Each node i € 7 computes u;(k + 1) as follows:

ui(k +1) = |ui(k) + n(=Ci(u;(k)) + Ai(k))] . ©)

where [-]Z is the projection operator, [x]g := min{max{x, u}, u}.

It follows from (5)-(6) that the proposed algorithm converges to a local optimum.

Note that the above algorithm is distributed in the sense that a node only needs to receive
information from its direct neighbors N_(i) and N, (i) to update x;, A; and u;. Moreover, the
algorithm can be implemented in an event driven framework. However, its main drawback concerns
the speed of convergence, which depends on the computation power of the slowest nodes. A node
i has to wait all nodes j € N, (i) to compute x;(k). Similarly a node i has to wait all nodes j € N_(i)
to compute A;(k). Such observation motivates an asynchronous solution as described in the sequel.

4.2 Distributed asynchronous version

Next, we design an asynchronous algorithm for the considered NUM problem. To that aim, we
introduce three time scales. Let Y C {1,...,I} be the random subset of activated nodes at time k.
Let v(i, k) be the number of updates at node i by time k. Then, v(i, k) := Zﬁ,zo I{i € Yy}, where
I{c} is an indicator variable, which equals 1 if condition c is satisfied, and 0 otherwise. The three
step-sizes {a(k)}, {b(k)}, {b(k)} € (0, 1) corresponding to three time scales are such that:

(1) Xy_yak) = X, b(k) = 2L, c(k) = oo,
(2) Xy, a?(k) + b(k) + (k) < oo,

3) limg_e % =0 and limg_ e % = 0.

It what follows, we describe the update at a given node i.

Distributed Asynchronous Gradient Algorithm (Local iteration of node i)
Initialization: Set x;(0) = x?, 2;(0) = A% and u;(0) = u).

(1) Pull step: If node i € Yy, node i

e requests the outputs from its neighbors N, (i) and N_(i),
e receives fj(xj(k — 7;;(k))) from all j € N, (i), and A;(k — 7;;(k)) from all i € N_(i).

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:8 Alexandre Reiffers-Masson, Nahum Shimkin, Daniel Sadoc Menasche and Eitan Altman

(2) Update step: Node i performs the following updates:

xi(k +1) =x;(k) + a(v(i, K))I{i € Yi} | wi(k) + Z filxj(k = zij(R)wji — xi(k) |, (10)
JEN:(D)

Ai(k +1) =A;(k) + b(v(i, k)i € Yi} [U/ (xi(k)) — Ai(k) + £} (xi(k)) Z wihj(k — 7i5(k)) |
JEN_(i)
(11)

ui(k + 1) =|ui(k) + c(v(i, k))I{i € Y} (Ai(k) = Cl(ui(k))) r. (12)

u

The proposed distributed asynchronous algorithm is a three time scale stochastic approximation.
(1) Fast Time Scale: given by (10), it eventually converges to (2). The elements updated through
slower time scales, given by (11) and (12), are taken as static under this standpoint;
(2) Middle Time Scale: given by (11), it tracks the Lagrange multiplier A; for all i € 7, and
eventually converges to (5). It relies on a solution of (10) for a fixed u;
(3) Slow Time Scale: the gradient ascent given by (9) to track (6) is performed on the slow time
scale, relying on estimates of A; for alli € 7.

4.3 Convergence analysis of the asynchronous algorithm: the ODE approach

Next, we establish the convergence of the asynchronous algorithm towards a local maximum. To
that aim, we rely on the ordinary differential equation (ODE) approach. We begin by establishing
the ODEs corresponding to the stochastic approximation. Then, we show that the ODEs converge
to a solution satisfying the KKT conditions presented in Section 3.2. Finally, we indicate that mild
assumptions required for the stochastic approximation to track the ODEs, established in [5], are
satisfied, which concludes the argument.

4.3.1 Establishing the ODEs. We consider the following singularly perturbed ordinary differential
equations,

)'ci = u;+ Z Wjif}'(x]') - Xi, (13)
JENL(i)
L= a|lUG)-di+fla) D wyk), (14)
JEN-(i)
;= e(Ci(u) — A —vi(w)), (15)
Vie{l,...,I},with0<e¢ | 0,0<e |0, i—f 1 0 and where v(u) = [v;(u)];<;<s is the minimum

adjustment needed to keep u in [u, u]’, noting that (15) is a projected dynamical system (see Chapter
4 in [7]).

Next, we establish convergence of the above ODEs under the fast, medium and slow time scales,
respectively.

4.3.2 Convergence of ODEs. The fast timescale updates correspond to the following ODEs,

X; =u; + Z wj,-fj(xj)—x,-, Zi =0, u; =0, Vl€{1,,I} (16)
JENL(D)

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

A Backpropagation Approach for Distributed
Resource Allocation 1:9

As we consider a DAG topology, for any given u the solution of (16) has a unique globally stable
equilibrium, denoted by x}(u), which is the solution of:

0=u + Z wji f((W) = x} (w), Vie I
JENL (D)
Updates at the middle time scale correspond to the following ODEs,

0 = u+ Z wji f5(x (w)) = x} (u), (17)
JENL (D)
L= Ul) - A+ fG@) > wihy, (18)
JeN_(i)
ui = 0, (19)
Vi € {1,...,I}. The convergence of (18) also follows from the assumption that the considered

network has a DAG topology, and the fact that x;(¢) has already converged to x; (u), for any given
u. Then, A;(t) converges to A;(x;(u)), which is a solution of

0= U/(x} (W) = A + f{(x] (W) Y wiidy(x) ().
JEN-(i)
The convergence of the slow time scale follows from the fact that £(x*(u), u, A(x*(u)))) is a
Lyapunov function corresponding to the gradient ascent (15).

4.3.3 Stochastic approximation tracks ODEs. Next, we indicate the mild assumptions over Y, and
7;(-) that ensure that if the above ODEs converge to a globally stable point then the corresponding
stochastic approximation scheme also converges to the same point. The assumptions can be found
in Chapter 7 of [5], and are summarized as follows.

Assumption over {Y,}. Assume that {Y}} is an irreducible Markov chain, independent of {x(k)};"_,
{A) s {u(k)} - Such assumption implies that lim inf @ > 0, which in turn means that all

n—+oo

nodes perform iterations comparably often.

Assumption over {7;;(k)}: The simplest assumption is to assume that the delays are bounded
(ie. 7;5(k) € [0,7] for i, j). A more general one is to assume that T”T(k) — 0 a.s. Vi, j. Alternative
assumptions are presented in p.84 of [5].

In the following section, we numerically illustrate the convergence of the asynchronous algorithm

under the above assumptions.

5 NUMERICAL EVALUATION

In this section, we numerically evaluate the efficiency of the two proposed algorithms. Our goals are
to 1) evaluate the convergence speed of the algorithms and, in particular, 2) contrast the synchronous
and asynchronous solutions. To that aim, we consider a toy example which is admittedly simple
but already serves to illustrate the above points.

We illustrate the application of our two algorithms under the network depicted in Figure 2(a).
Motivated by proportional fairness, we let U;(x;) = a; log(x; + 1), with ; ~ Unif(0.5, 10) for every
i € . We consider quadratic costs, C;(u;) = %ulz and square-root transfer functions f;(x) = Vfx,
foreveryie 1.

Under the asynchronous algorithm, Y; € {1,...,I} comprises 4 nodes selected uniformly at
random among the 12 nodes. Except for the first 10 iterations, §;;(n) is sampled uniformly at
random from the set {n— 10, ..., n} for every i # j. We also let = 0.1, a(k) = 0.1/(| k/100 + 1])*/3,

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:10 Alexandre Reiffers-Masson, Nahum Shimkin, Daniel Sadoc Menasche and Eitan Altman

® ® ® @ e

1.2

¢ o ® . 1NN

0.8

y Asynch. Schem 5 2 Asynch. Scheme
@ @ @ @ ~ Synch. Scheme ~ Synch. Scheme

0.4

10° 10 10° 10 10° 10*

10° 10
Iterations Iterations

(a) Network DAG (b) Node 2 (c) Node 11

Fig. 2. Network topology and amount of external resources sent to nodes 2 and 11.

Table 2. Final outputs: amount of external resource sent to each node after 10,000 iterations

Node Id Initial Value Final Value

Synchronous Asynchronous
1 0.1434797 3.763868 3.792356
2 0.3456672 2.521142 2.516035
3 0.9293197 2.107925 2.097251
4 0.7872189 2.717501 2.723434
5 0.6156241 2.738282 2.768356
6 0.9371252 1.602584 1.611982
7 0.8965552 2.383430 2.393628
8 0.4284343 1.358760 1.329985
9 0.3854771 0.9696633 0.9795704
10 0.3968619 1.5792735 1.5888138
11 0.5107909 1.1303434 1.1327786
12 0.7000209 1.1976334 1.2010990

b(k) = 0.1/(Lk/100+1]) and c(k) = 0.1/(| k/100+ 1] log(| k/100+1])+1). To simplify presentation,
we assume that the clocks of all node are in sync, i.e., v(i, k) = v(j, k). Table 2 indicates that both
algorithms converge to the same solution, whereas Figure 2 suggests that convergence occurs at
different speeds. The synchronous algorithm converges in 100 iterations, whereas the asynchronous
algorithm does so after 2,000 iterations. The outputs of the two algorithms are nearly the same
after 10,000 iterations.

Note that although in this simple example the convergence of the synchronous algorithm occurs
first, the computational cost per iteration of the synchronous algorithm is at least twice of its
asynchronous counterpart. Indeed, less than half of the nodes are performing computation at each
iteration of the asynchronous algorithm. In addition, as pointed in Section 4 the asynchronous
algorithm is particularly suited for scenarios in which certain nodes may fail or linger inactive for
a while. In those cases, the asynchronous algorithm will still allow other nodes to continuously
evolve, whereas the synchronous algorithm convergence is utterly bounded by the speed of the
slowest node.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

A Backpropagation Approach for Distributed
Resource Allocation 1:11

6 CONCLUSION

Inspired by backpropagation for neural network training, we have designed and analyzed a back-
propagation approach for resource allocation under the NUM framework. In the proposed synchro-
nous algorithm, gradients are computed at leaves and backpropagated upstream. Then, we have
extended the idea to an asynchronous setting, also establishing convergence properties. The two
algorithms are distributed and suitable for continued operation. In this short paper, we focused
on a DAG topology, but the asynchronous algorithm naturally extends to general topologies. In
particular, as long as (2) is a contraction map, the asynchronous algorithm will converge to local
optima of (3).

Our work is a first step in the use of backpropagation for resource allocation purposes, and opens
up a number of different avenues for future research. Among those, we envision a formal analysis
of the convergence rate of the algorithms, including conditions under which the asynchronous
algorithm is faster than its synchronous counterpart, e.g., when accounting for node failures and
repair times. We also envision extensions to account for Byzantine nodes that do not follow the
proposed algorithms. Then, a key challenge consists in determining to what extent an adapted
version of the algorithms can remain robust against such misbehaving nodes.

REFERENCES

[1] D. Acemoglu, A. Ozdaglar, and A. Tahbaz-Salehi. Networks, shocks, and systemic risk. Technical report, National
Bureau of Economic Research, 2015.

[2] A.S.Bedi, A. Koppel, and K. Rajawat. Asynchronous decentralized stochastic optimization in heterogeneous networks.
arXiv preprint arXiv:1707.05816, 2017.

[3] A.S.Bedi, A. Koppel, and K. Rajawat. Asynchronous saddle point method: Interference management through pricing.

In 2018 IEEE Conference on Decision and Control (CDC), pages 3229-3235. IEEE, 2018.

D. P. Bertsekas. Network optimization: continuous and discrete models. Athena Scientific Belmont, 1998.

V. S. Borkar. Stochastic approximation: a dynamical systems viewpoint, volume 48. Springer, 2009.

S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press, 2004.

H. Kushner and G. G. Yin. Stochastic approximation and recursive algorithms and applications, volume 35. Springer

Science & Business Media, 2003.

[8] C.Li, X. Yu, T. Huang, and X. He. Distributed optimal consensus over resource allocation network and its application
to dynamical economic dispatch. IEEE transactions on neural networks and learning systems, 29(6):2407-2418, 2017.

[9] M.]J. Neely. Stochastic network optimization with application to communication and queueing systems. Synthesis
Lectures on Communication Networks, 3(1):1-211, 2010.

[10] A.Ozdaglar and R. Srikant. Incentives and pricing in communication networks. Algorithmic Game Theory, 647:571-591,
2007.

[11] P. Parag, S. Sah, S. Shakkottai, and J.-F. Chamberland. Value-aware resource allocation for service guarantees in
networks. IEEE Journal on Selected Areas in Communications, 29(5):960-968, 2011.

[12] S. Pu, W. Shi, J. Xu, and A. Nedic. Push-pull gradient methods for distributed optimization in networks. IEEE
Transactions on Automatic Control, 2020.

[13] S.M. Shah and V. S. Borkar. Distributed stochastic approximation with local projections. SIAM Journal on Optimization,
28(4):3375-3401, 2018.

[14] T. Shu, M. Liu, Z. Li, and Q. Wu. Interference pair-based distributed spectrum allocation in wireless mesh networks
with frequency-agile radios. In 2011 8th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc
Communications and Networks, pages 233-241. IEEE, 2011.

[15] E. Stai and S. Papavassiliou. User optimal throughput-delay trade-off in multihop networks under num framework.
IEEE Communications Letters, 18(11):1999-2002, 2014.

[16] T. K. Vu, M. Bennis, M. Debbah, and M. Latva-Aho. Joint path selection and rate allocation framework for 5g
self-backhauled mm-wave networks. IEEE Transactions on Wireless Communications, 18(4):2431-2445, 2019.

[17] E. Wei, A. Ozdaglar, and A. Jadbabaie. A distributed newton method for network utility maximization—part ii:
Convergence. IEEE Transactions on Automatic Control, 58(9):2176-2188, 2013.

[18] B. Ying, K. Yuan, and A. H. Sayed. Supervised learning under distributed features. IEEE Transactions on Signal
Processing, 67(4):977-992, 2018.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:12 Alexandre Reiffers-Masson, Nahum Shimkin, Daniel Sadoc Menasche and Eitan Altman

[19] J. Zhang, D. Zheng, and M. Chiang. The impact of stochastic noisy feedback on distributed network utility maximization.
IEEE Transactions on Information Theory, 54(2):645-665, 2008.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

	Abstract
	1 Introduction
	2 Related work
	2.1 Primal-dual and saddle point algorithms
	2.2 The push-pull method for network optimization and distributed learning
	2.3 Handling chance-constraints and general nonlinear constraints under NUM

	3 Model and optimality conditions
	3.1 Model
	3.2 Optimality conditions
	3.3 Network models in Economy: network shocks versus network control

	4 Distributed Algorithms
	4.1 Distributed gradient algorithm for convex flow constraints
	4.2 Distributed asynchronous version
	4.3 Convergence analysis of the asynchronous algorithm: the ODE approach

	5 Numerical evaluation
	6 Conclusion
	References

