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ABSTRACT13

Phenotypic characteristics of a plant specie refer to its physical properties as cataloged by plant biologists
at different research centers around the world. Clustering species based upon their phenotypic character-
istics is used to obtain diverse sets of parents that are useful in their breeding programs. The Hierarchical
Clustering (HC) algorithm is the current standard in clustering of phenotypic data. This algorithm suffers
from low accuracy and high computational complexity issues. To address the accuracy challenge, we
propose the use of Spectral Clustering (SC) algorithm. To make the algorithm computationally cheap,
we propose using sampling, specifically, Pivotal Sampling that is probability based. Since application of
samplings to phenotypic data has not been explored much, for effective comparison, another sampling
technique called Vector Quantization (VQ) is adapted for this data as well. VQ has recently given
promising results for genotypic data.
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The novelty of our SC with Pivotal Sampling algorithm is in constructing the crucial similarity matrix for
the clustering algorithm and defining probabilities for the sampling technique. Although our algorithm can
be applied to any plant species, we test it on the phenotypic data obtained from about 2400 Soybean
species. SC with Pivotal Sampling achieves substantially more accuracy (in terms of Silhouette Values)
than all the other proposed competitive clustering with sampling algorithms (i.e. SC with VQ, HC with
Pivotal Sampling, and HC with VQ). The complexities of our SC with Pivotal Sampling algorithm and
these three variants are almost same because of the involved sampling. In addition to this, SC with
Pivotal Sampling outperforms the standard HC algorithm in both accuracy and computational complexity.
We experimentally show that we are up to 45% more accurate than HC in terms of clustering accuracy.
The computational complexity of our algorithm is more than a magnitude less than that of HC.
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1 INTRODUCTION34

Genetic diversity has been an important foundation of plant breeding from the inception of agriculture35

since it helps develop new plants to meet the growing food demand globally. The breeding process is a36

complex combination of multiple stages (1). The first stage involves discovery of the native characteristics37

where the selection of diverse parent donors is of paramount importance (2). One way plant genetic38

diversity can be studied is by using their phenotypic characteristics (physical characteristics). This kind39

of analysis can be relatively easily done because a sufficiently large amount of data is available from40

different geographical areas. In the phenotypic context, which is our first focus, a few characteristics that41

play an important role are Days to 50% Flowering, Days to Maturity, Plant Height, 100 Seed Weight,42

Seed Yield Per Plant, Number of Branches Per Plant, etc.43

Cluster analysis is an important tool to describe and summarize the variation present between different44

plant species (3). Thus, clustering can be used to obtain diverse parents which, as mentioned above, is of45

utmost importance. It is obvious that after clustering, the species present in the same cluster would have46



similar characteristics, while those present in different clusters would be diverse. Phenotypic data for the47

species of different plants (e.g., Soybean, Wheat, Rice, Maize, etc.) usually have enough variation for48

accurate clustering. However, if this data is obtained for the species of the same plant, then clustering49

becomes challenging due to less variation in the data, which forms our second focus.50

Hierarchical Clustering (HC) is a traditional and standard method that is currently being used by51

plant biologists for grouping of phenotypic data (3; 7; 8). However, this method has a few disadvantages.52

First, it does not provide the level of accuracy required for clustering similar species (9). Second, HC is53

based upon building a hierarchical cluster tree (also called dendrogram), which becomes cumbersome and54

impractical to visualize when the data is too large. The second most common clustering algorithm that is55

being currently used widely is Unweighted Pair Group Method using Arithmetic Mean (UPGMA). This56

algorithm is a variant of HC, and hence, has the same two disadvantages as discussed above.57

To overcome these two disadvantages, in this paper, we propose the use of the Spectral Clustering (SC)58

algorithm. SC is mathematically sound and is known to give one of the most accurate clustering results59

among the existing clustering algorithms (10). For genotypic data, we have recently shown substantial60

accuracy improvements by using SC as well (11). Furthermore, unlike HC, SC does not generate the61

intermediate hierarchical cluster tree. To the best of our knowledge, this algorithm has not been applied to62

phenotypic data in any of the previous works (see the Literature Review section below).63

HC, as well as SC, both are computationally expensive. They require substantial computational64

time when clustering large amounts of data (10; 12). Hence, we use sampling to reduce this complexity.65

Probability-based sampling techniques have recently gained a lot of attention because of their high66

accuracy at reduced cost (13). Among these, Pivotal Sampling is most commonly used, and hence, we67

apply it to phenotypic data (14). Like for SC, using Pivotal Sampling for phenotypic data is also new.68

Recently, Vector Quantization (VQ) has given promising results for genotypic data (11). Hence, here we69

adapt VQ for phenotypic data as well. This also serves as a good standard against which we compare70

Pivotal Sampling.71

To summarize, in this paper, we develop a modified SC with Pivotal Sampling algorithm that is72

especially adapted for phenotypic data. The novelty of our work is in constructing the crucial similarity73

matrix for the clustering algorithm and defining the probabilities for the sampling technique. Although74

our algorithm can be applied to any plant species, we test it on around 2400 Soybean species obtained75

from Indian Institute of Soybean Research, Indore, India (15). In the experiments, we perform four sets of76

comparisons. First, we show that use of Pivotal Sampling does not deteriorate the cluster quality. Second,77

our algorithm outperforms all the proposed competitive clustering algorithms with sampling in terms of78

the accuracy (i.e. modified SC with VQ, HC with Pivotal Sampling, and HC with VQ). The computational79

complexities of all these algorithms are similar because of the involved sampling. Third, our modified SC80

with Pivotal Sampling doubly outperforms HC, which as earlier, is a standard in the plant studies domain.81

In terms of the accuracy, we are up to 45% more accurate. In terms of complexity, our algorithm is more82

than a magnitude cheaper than HC. Fourth and finally, we demonstrate the superiority of our algorithm by83

comparing it with two previous works that are closest to ours.84

The rest of this paper is organized as follows. Section 2 provides a brief summary of the previous85

studies on phenotypic data. The standard algorithms for Pivotal Sampling and SC are discussed in Section86

3. Section 4 describes the crucial adaptations done in Pivotal Sampling and SC for phenotypic data. The87

data description, validation metric, and the experimental set-up are presented in Section 5. Section 6 gives88

the experimental results. Finally, conclusions and future work are provided in Section 7.89

2 LITERATURE REVIEW90

In this section, we present some relevant previous studies on phenotypic data and the novelty of our91

approach. Broadly, these studies can be classified into two categories. The first category consists of the92

works that identify relationships between the different phenotypic characteristics (for example, lower93

plant height may relate to lower plant yield or vice versa). These works are discussed in Section 2.1. The94

second category consists of the studies that identify the species with dissimilar phenotypic characteristics95

for the breeding program. These studies are discussed in Section 2.2. Finally, we present a set of works96

that belong to both the categories in Section 2.3.97
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2.1 First Category Previous Studies98

Immanuel et al. (16) in 2011 measured nine characteristics of 21 Rice species. Grain Yield (GY) was99

kept as the primary characteristic, and its correlations with all others were obtained. It was observed100

that characteristics like Plant Height (PH), Days to 50% Flowering (DF), Number of Tillers per Plant101

(NTP), Filled Grains per Panicle (FGP) and Panicle Length (PL) were positively correlated with GY. The102

remaining characteristics were negatively correlated with GY.103

Divya et al. (17) in 2015 recorded 21 characteristics of two Rice species. The authors investigated the104

association between Infected Leaf Area (ILA), Blast Disease Susceptibility (BDS), Number of Tillers105

per Plant (NTP), Grain Yield (GY) and others. The authors concluded that, for example, (a) ILA had a106

significant positive correlation with leaf’s BDS, (b) NTP exhibited the highest association with GY.107

Gireesh et al. (15) in 2015 analyzed eight characteristics of 3443 Soybean species. The authors108

sampled the species using two methods, and correlations of all the characteristics with each other for109

both the samples were estimated. It was observed that, for example, Days to 50% Flowering (DF) was110

positively correlated with Days to Pod Initiation (DPI) in both the samples, while Number of Pods Per111

Plant (NPPP) showed a negative correlation with Nodes Per Plant (NPP).112

Huang et al. (18) in 2018 studied six characteristics of 206 Soybean species. These characteristics113

were correlated with the three types of leaves; elliptical leaves, lanceolate leaves and round leaves. The114

authors deduced that Soybean plants with lanceolate leaves had maximum average Plant Height (PH),115

Number of Pods per Plant (NPP), Number of Branches per Plant (NBP), and 100-Seed Weight (SW),116

while Soybean plants with other two types of leaves had lower values of these characteristics.117

Carpentieri-Pipolo et al. (19) in 2019 investigated 45 phenotypic characteristics of a Soybean118

specie. The authors then studied the effect of 20 bacteria isolated from roots, leaves, and stems on119

these characteristics (i.e. whether the bacteria had positive or negative activity on (correlation with) the120

45 characteristics). For example, Enterobacter Ludwigii (EL) bacteria, which is isolated from leaves,121

showed a positive correlation with 25 characteristics (e.g., Plant Growth Promotion (PGP)) and a negative122

correlation with remaining 20 characteristics (e.g., Phenylacetic Acid (PAC) assimilation). For better123

exposition, the above five studies are summarized in Table 1.124

Studies Plant # of
Species

Inferred
Relationship

Immanuel et al.
(2011) Rice 21 PH, DF, NTP, FGP, PL =⇒ GY

Divya et al.
(2015) Rice 2 ILA =⇒ BDS

Gireesh et al.
(2015) Soybean 3443 DF =⇒ DPI and NPPP 6=⇒ NPP

Huang et al.
(2018) Soybean 206

Lanceolate leaves =⇒
max avg PH, NPP, NBP and SW

Carpentieri-Pipolo et al.
(2019) Soybean 1 EL =⇒ PGP and EL 6=⇒ PAC

Table 1. Summary of first category previous studies. Here, =⇒ represents positive correlation and
6=⇒ represents negative correlation.

2.2 Second Category Previous Studies125

Sharma et al. (7) in 2014 performed clustering of 24 synthetic Wheat species. Cluster analysis was126

performed using HC, and the species were grouped into three clusters using the polymorphic Inter Simple127

Sequence Repeat (ISSR) markers. The authors argued that species belonging to different clusters were128

diverse in terms of heat tolerance, and could be used to develop better heat tolerant specie.129

Kahraman et al. (8) in 2014 analyzed the field performance of 35 Common Bean species by grouping130

them. The authors used HC, and the species were clustered into three groups based upon the matrix of131

relationship between the species. The species belonging to different clusters were considered diverse, and132

were used to select promising species for breeding.133

Painkra et al. (3) in 2018 performed clustering of 273 Soybean species. Here, the authors used HC,134

and the species were grouped into seven clusters using Pearson Correlation Coefficient. According to135
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the authors, the species belonging to the distant clusters were more diverse such that choosing them136

maximized heterosis1 in cross-breeding.137

Islam et al. (20) in 2020 clustered ten Upland Rice species. Here, HC was used and the species were138

grouped into three clusters using a similarity coefficient between the species. The authors identified the139

two best species that could be used to obtain new species having higher plant yield. As earlier, here also,140

we summarize the above four studies in Table 2 below.141

Studies Plant # of
Species

Clustering
Algorithm

# of
Clusters

Development of
Better Species

Sharma et al.
(2014) Wheat 24 HC 3

Heat
Tolerant

Kahraman et al.
(2014) Common Bean 35 HC 3

Promising Species
for Breeding

Painkra et al.
(2018) Soybean 273 HC 7

Improved
Characteristics

Islam et al.
(2020) Rice 10 HC 3

Higher Plant
Yield

Table 2. Summary of second category previous studies.

2.3 Both Categories Previous Studies142

Fried et al. (21) in 2018 analyzed 11 characteristics of 49 Soybean species. The authors determined143

correlations between the root characteristics and other phenotypic characteristics. For example, Shoot144

Dry Weight (SDW) and Chlorophyll Index (CI) were positively correlated with Total Root Length (TRL)145

and Total Root Surface Area (TRSA), while Plant Height (PH) was negatively correlated with TRSA and146

Average Root Diameter (ARD). In this work, Principal Component Analysis (PCA) biplot was used to147

separate the species into seven clusters. According to the authors, this research was critical for Soybean148

improvement programs since it helped select species with the improved root characteristics.149

Stansluos et al. (22) in 2019 analyzed 22 phenotypic characteristics for 11 Sweet Corn species. For150

example, the authors showed a positive and significant correlation of Yield of Marketable Ear (YME)151

with Ear Diameter (ED) and Number of Marketable Ear (NME), while a negative correlation between152

YME and Thousand Kernel Weight (TKW). Cluster analysis was performed using HC, and the corn153

species were grouped into four clusters using the Ward Linkage. The authors inferred substantial variation154

in morphological and agronomic capabilities of different species. Again, we summarize the above two155

studies in Table 3 below.156

Studies Plant # of
Species

Inferred
Relationship

Clustering
Algorithm

# of
Clusters

Development of
Better Species

Fried et al.
(2018)

Soybean 49
SDW, CI =⇒ TRL, TRSA

PH 6=⇒ TRSA, ARD
PCA 7

Improved Root
Characteristics

Stansluos et al.
(2019)

Sweet
Corn

11
YME =⇒ ED, NME

YME 6=⇒ TKW
HC 4

Better
Morphological

Capabilities

Table 3. Summary of both categories previous studies.

With the focus on the study of genetic diversity using phenotypic data, we have multiple novel157

contributions as below.158

1. We focus on the second category above, and perform grouping of several thousand species as159

compared to a few hundred in the papers cited above. Note that from the first category, Gireesh et160

al. (15) did work with about three thousand species, and we do compare one aspect of our work161

with this previous work (more on this in the point 2a below).162

1Heterosis refers to the phenomenon in which a hybrid plant exhibits superiority over its parents in terms of Plant Yield or any
other characteristic.
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2. Clustering becomes computationally expensive when the size of the data is very large. Hence,163

sampling is required to make the underlying algorithm scalable. Thus, we perform clustering on164

the sampled data rather than the full one, which is not done in any of the papers above. We have165

two more innovations in this aspect as below.166

(a) We use a probability-based sampling technique (Pivotal Sampling as mentioned earlier) that167

is highly accurate, and forms a completely new contribution. We demonstrate the superiority168

of our sampling by comparing it with the one done in Gireesh et al. (15). This comparison169

is discussed towards the end of the Results section. Please note that Gireesh et al. only170

performed sampling and did not cluster their data.171

(b) HC, which is the most common clustering algorithm (and some other sporadically used172

algorithms like k-means and UPGMA), do not provide the level of accuracy needed. Again,173

as earlier, we develop a variant of the SC algorithm, which is considered highly accurate,174

especially for phenotypic data. Use of SC in this context is also completely new. We show175

the dominance of our clustering algorithm over the one proposed in the most recent past work176

by Islam et al. (20) towards the end of the Results section. Again, please note that Islam et al.177

only performed clustering and did not sample their data.178

3 SAMPLING AND CLUSTERING ALGORITHMS179

In this section, we briefly discuss the standard algorithms for Pivotal Sampling and SC in the two180

subsections below.181

3.1 Pivotal Sampling182

This is a well-developed sampling theory that handles complex data with unequal probabilities. The183

method is attractive because it can be easily implemented by a sequential procedure, i.e. by a single184

scan of the data (23). Thus, the complexity of this method is O(n), where n is the population size. It is185

important to emphasize that the method is independent of the density of the data.186

Consider a finite population U of size n with its each unit identified by a label i = 1,2, ...,n. A187

sample S is a subset of U with its size, either being random (N(S)) or fixed (N). Obtaining the inclusion188

probabilities of all the units in the population, denoted by πi with i = 1,2, ...,n, forms an important aspect189

of this unequal probability sampling technique.190

The pivotal method is based on a principle of contests between units (13). At each step of the method,191

two units compete to get selected (or rejected). Consider unit i with probability πi and unit j with192

probability π j, then we have the two cases as below.193

1. Selection step (πi +π j ≥ 1): Here, one of the units is selected, while the other one gets the residual194

probability πi +π j−1 and competes with another unit at the next step. More precisely, if (πi,π j)195

denotes the selection probabilities of the two units, then196

(πi,π j) =

{
(1,πi +π j−1) with probability 1−π j

2−πi−π j

(πi +π j−1,1) with probability 1−πi
2−πi−π j

(1)

2. Rejection step (πi + π j < 1): Here, one of the units is definitely rejected (i.e. not selected in197

the sample), while the other one gets the sum of the inclusion probabilities of both the units and198

competes with another unit at the next step. More precisely,199

(πi,π j) =

{
(0,πi +π j) with probability π j

πi+π j

(πi +π j,0) with probability πi
πi+π j

(2)

This step is repeated for all the units present in the population until we get the sample of size N(S) or200

N. The worst-case occurs when we obtain the last sample (i.e. Nth sample) in the last iteration.201
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3.2 Spectral Clustering202

Clustering is one of the most widely used techniques for exploratory data analysis with applications203

ranging from statistics, computer science, and biology to social sciences and psychology etc. It is used204

to get a first impression of data by trying to identify groups having “similar behavior” among them.205

Compared to the traditional algorithms such as k-means, SC has many fundamental advantages. Results206

obtained by SC are often more accurate than the traditional approaches. It is simple to execute and can207

be efficiently implemented by using the standard linear algebra methods. The algorithm consists of four208

steps as below (10).209

1. The first step in the SC algorithm is the construction of a matrix called the similarity matrix.210

Building this matrix is the most important aspect of this algorithm; better its quality, better the211

clustering accuracy (10). This matrix captures the local neighborhood relationships between the212

data points via similarity graphs and is usually built in three ways. The first such graph is a213

ε-neighborhood graph, where all the vertices whose pairwise distances are smaller than ε are214

connected. The second is a k-nearest neighborhood graph, where the goal is to connect vertex215

vi with vertex v j if v j is among the k-nearest neighbors of vi. The third and the final is the fully216

connected graph, where each vertex is connected with all the other vertices. Similarities are obtained217

only between the connected vertices. Thus, similarity matrices obtained by the first two graphs are218

usually sparse, while the fully connected graph yields a dense matrix.219

Let the n vertices of a similarity graph be represented numerically by vectors a1,a2, ...,an, respec-220

tively. Here, each ai ∈ Rm is a column vector for i = 1, ...,n. Also, let al
i and al

j denote the lth
221

elements of vectors ai and a j, respectively, with l = 1, ...,m. There exist many distance measures to222

build the similarity matrix (24). We describe some common ones below using the above introduced223

terminologies.224

(a) City block distance: (24) It is the special case of the Minkowski distance225

di j = p

√
m

∑
l=1
|al

i−al
j|p (3)

with p = 1.226

(b) Euclidean distance: (24) It is the ordinary straight line distance between two points in the227

Euclidean space. It is again the special case of the Minkowski distance, where the value of p228

is taken as 2. Thus, it is given by229

di j =

√
m

∑
l=1

(al
i−al

j)
2. (4)

(c) Squared Euclidean distance: (24) It is the square of the Euclidean distance, and is given by230

di j =
m

∑
l=1

(al
i−al

j)
2. (5)

(d) Cosine distance: (24) It measures the cosine of the angle between two non-zero vectors, and231

is given by232

di j = 1−
ai ·a j

‖ai‖‖a j‖
, (6)

where, ‖ · ‖ denotes the Euclidean norm of a vector.233

(e) Correlation distance: (25) It captures the correlation between two non-zero vectors, and is234

given by235

di j = 1−
(ai− āi)

t(a j− ā j)√
(ai− āi)t(ai− āi)

√
(a j− ā j)t(a j− ā j)

, (7)

6/20



where, āi and ā j are the means of ai and a j multiplied with a vector of ones, respectively, and236

t signifies the transpose operation.237

(f) Hamming distance: (26) It measures the number of positions at which the corresponding238

values of two vectors are different, and is given by239

di j =
#(al

i 6= al
j)

n
, (8)

(g) Jaccard distance: (27) It again measures the number of positions at which the corresponding240

values of two vectors are different excluding the positions where both the vectors have zero241

values, and is given by242

di j =
#[(al

i 6= al
j)∩ ((al

i 6= 0)∪ (al
j 6= 0))]

#[(al
i 6= 0)∪ (al

j 6= 0)]
. (9)

2. Next, a matrix called the Laplacian matrix is constructed. This matrix is either non-normalized or243

normalized. The non-normalized Laplacian matrix is defined as244

L = D−W, (10)

where W is the similarity matrix and D is a diagonal matrix whose elements are obtained by adding245

together the elements of all the columns for every row of W .246

Normalized Laplacian matrix is again of two types: the symmetric Laplacian (Lsym) and the random247

walk Laplacian (Lrw). Both these matrices are closely related to each other and are defined as248

Lsym = D−1/2LD−1/2 = I−D−1/2WD−1/2. (11)

Lrw = D−1L = I−D−1W. (12)

Henceforth, the non-normalized Laplacian matrix is referred to as the Type-1 Laplacian, Lsym as249

the Type-2 Laplacian, and Lrw as the Type-3 Laplacian. In the literature, it is suggested to use250

the normalized Laplacian matrix instead of the non-normalized one, and specifically the Type-3251

Laplacian (10).252

3. Once we have the Laplacian matrix, we obtain the first k eigenvectors u1, ...,uk of this matrix, where253

k is the number of clusters.254

4. Finally, these eigenvectors are clustered using the k-means clustering algorithm.255

4 IMPLEMENTING PIVOTAL SAMPLING AND MODIFIED SPECTRAL CLUS-256

TERING FOR PHENOTYPIC DATA257

Here, we first present the application of Pivotal Sampling to obtain the samples from phenotypic data.258

Subsequently, we implement our modified SC algorithm on the same data. Consider that the phenotypic259

data of a plant consists of n species with each specie evaluated for m different characteristics/ traits. These260

characteristics may have categorical (non-numerical) or numerical values. Hence, we need to convert261

the categorical values into numerical ones. For this, we use the label encoder method (28). This method262

transforms non-numerical labels into numerical values between 0 and (number of categories) – 1. For263

example, if a characteristic has three possible labels; poor, good, and very good, we use 0, 1, and 2 to264

represent them, respectively.265

As discussed in Section 3.1, Pivotal Sampling requires that the inclusion probabilities (i.e. πi for266

i = 1, ...,n), of all the species in the population U , be computed before a unit is considered for a contest.267
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The set of characteristics associated with a specie can be exploited in computing these probabilities. To268

select a sample of size N, where N� n, we obtain these probabilities as (23)269

πi = N
κi

∑i∈U κi
, (13)

where κi can be a property associated with any one characteristic (or a combination of them) of the ith270

specie. Obtaining πi in such a way also ensures that ∑
n
i=1 πi = N, i.e. we get exactly N selection steps,271

and in-turn, exactly N samples.272

In our implementation, we use the deviation property of the species, which is discussed next. Since273

different characteristics have values in different ranges, we start by normalizing them as below (29; 30).274

(X j)i =
(x j)i−min(x j)

max(x j)−min(x j)
. (14)

Here, (X j)i and (x j)i are the normalized value and the actual value of the jth characteristic for the ith275

specie, respectively with j = 1, ...,m and i = 1, ...,n. Furthermore, max(x j) and min(x j) are the maximum276

and the minimum values of the jth characteristic among all the species. Now, the deviation for the ith277

specie is calculated using the above normalized values as278

devi =
m

∑
j=1

max(X j)− (X j)i. (15)

Here, max(X j) denotes the maximum normalized value of the jth characteristic among all the species.279

Practically, a relatively large value of devi indicates that the ith specie is less important, and hence, its280

probability should be small. Thus, the inclusion probability of a specie is calculated by taking κi =
1

devi
281

in Eq. (13) or282

πi = N
1

devi

∑i∈U
1

devi

. (16)

Thus, if the sum of probabilities of two species under consideration is greater than or equal to 1, we follow283

the selection step as discussed in Section 3.1. On the other hand, we follow rejection step when this sum284

is less than 1. This process is repeated until we obtain N species.285

Next, we discuss the clustering of these N species into k clusters. Similar to the standard SC algorithm286

discussed in Section 3.2, the first step in our modified SC is to obtain the similarity matrix. As mentioned287

earlier, this is the most important aspect of this algorithm since the better the matrix quality, the better288

the clustering accuracy. For this, we consider these N species as the vertices of a graph. Let vector pi289

contain the normalized values of all the characteristics (m) for the ith specie. Thus, we have N such290

vectors corresponding to the N species selected using Pivotal Sampling. That is, pi = [(X1)i, ...,(Xm)i]
T

291

for i = 1, ...,N. In our implementation, we use a fully connected graph to build the similarity matrix, i.e.292

we obtain similarities among all the N species.293

We define the similarity between the vectors p1 and p2 (without loss of generality, representing the294

species 1 and 2, respectively) as the inverse of the distance between these vectors obtained by using the295

distance measures mentioned in Section 3.2. This is intuitive because smaller the distance between any296

two species, larger the similarity between them and vice versa. We denote this distance by dp1 p2 . We297

build this matrix of size N×N by obtaining the similarities among all the N species.298

The next step is to compute the Laplacian matrix, which when obtained from the above-discussed299

similarity matrix, generates poor eigenvalues,2 and in-turn poor corresponding eigenvectors that are300

required for clustering3. Thus, instead of taking only the inverse of dp1 p2 , we also take its exponent, i.e.301

2Zero/ close to zero and distinct eigenvalues are considered to be a good indicator of the connected components in a similarity
matrix. Thus, eigenvalues are considered poor when they are not zero/ not close to zero or indistinct (10).

3For some distance matrices (like Euclidean distance), the eigenvalues don’t even converge.
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we define the similarity between the species 1 and 2 as e−dp1 p2 (31; 32). This, besides fixing the poor302

eigenvalues/ eigenvectors problem, also helps perform better clustering of the given data. Further, we303

follow the remaining steps as discussed in Section 3.2.304

Above, we discussed the clustering of N sampled species into k clusters. However, our goal is to305

cluster all n species and not just N. Hence, there is a need to reverse-map the remaining n−N species to306

these k clusters. For this, we define the notion of average similarity, which between the non-clustered307

specie p̃ and the cluster Cl is given as308

A S (Cl , p̃) =
1

#(Cl)
∑

q∈Cl

e−dp̃q . (17)

Here, #(Cl) denotes the number of species present in Cl and q is a specie originally clustered in Cl309

by our modified SC algorithm with Pivotal Sampling. We obtain the average similarity of p̃ with all the310

k clusters (i.e. with Cl for l = 1, ...,k), and associate it with the cluster with which p̃ has the maximum311

similarity.312

Next, we perform the complexity analysis of our algorithm. Since Pivotal Sampling and SC form the313

bases of our algorithm, we discuss the complexities of these algorithms before ours.314

1. Pivotal Sampling (n: number of species, N: sample size)315

(a) Obtaining Samples: O(n)316

2. SC (n, m: number of characteristics)317

(a) Constructing Similarity Matrix: O(n2m)318

(b) Obtaining Laplacian Matrix: O(n3)319

3. Our Algorithm (n, N, m)320

(a) Obtaining Samples: O(n)321

(b) Constructing Similarity Matrix: O(N2m)322

(c) Obtaining Laplacian Matrix: O(N3)323

(d) Reverse Mapping: O
(
(n−N)N

)
324

Thus, the overall complexity of our algorithm is O(nN +N3 +N2m). Here, we have kept three325

terms because any of these can dominate (here, n� N,m).326

When we compare complexity of our algorithm with that of HC, which is O(n3), it is evident that we are327

more than a magnitude faster than HC. We revisit this complexity analysis after discussing data in the328

next section, which supports our claim further.329

5 METHODOLOGY330

In this section, we first briefly discuss the data used for our experiments. Next, we check the goodness of331

our sampling technique by estimating a measure called the population total. The hypothesis related to this332

is as follows: for a particular sampling technique, if the estimate (or approximation) of the population333

total using the samples is close to the actual population total, then that sampling technique is considered334

good in an absolute sense. Finally, we describe the clustering set-up, where the below are analyzed.335

(a) The Validation Metric. It is hypothesized that a good clustering is one where clusters are compact336

and well-separated.337

(b) The Ideal Number of Clusters. The hypothesis related to this is as follows: given a set of338

eigenvalues of the Laplacian matrix, we can exploit the differences between these eigenvalues to339

obtain the ideal number of clusters.340

(c) The Suitable Distance Measures. For building the similarity matrix and the Laplacian matrix, it341

is hypothesized to chose those matrices that give the best value for the validation metric.342
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5.1 Data Description343

As mentioned in Introduction, our techniques can be applied to any plant data, however, here we344

experiment on phenotypic data of Soybean species. This data is taken from Indian Institute of Soybean345

Research, Indore, India, and consists of 29 different characteristics/ traits for 2376 Soybean species (15).346

Among these, we consider the following eight characteristics that are most important for higher yield:347

Early Plant Vigor (EPV), Plant Height (PH), Number of Primary Branches (NPB), Lodging Score (LS),348

Number of Pods Per Plant (NPPP), 100 Seed Weight (SW), Seed Yield Per Plant (SYPP) and Days to Pod349

Initiation (DPI). Out of these, EPV and LS have categorical values, while the remaining characteristics350

have numerical values. Hence, we convert these two categorical values into numerical ones using the351

label encoder method discussed in the previous section. A snapshot of this phenotypic data for a few352

Soybean species is given in Appendix A. Here, we also perform validation of this data by comparing it353

with a similar dataset.354

Next, we compare the complexities of our algorithm and HC using the selected data; see Table 4. It is355

evident from this table that our algorithm achieves substantial savings.

# of
Species
(n)

# of
Characteristics

(m)

Sample
Size
(N)

Our Algorithm
(nN +N3 +N2m)

HC
(n3)

2376 8 500
(2376×500)+(500)3 +(500)2×8

= 1.28×108 (2376)3 = 1.34×1010

2376 8 300
(2376×300)+(300)3 +(300)2×8

= 2.84×107 (2376)3 = 1.34×1010

Table 4. Computational complexity comparison for the given data.
356

5.2 Sampling Discussion357

To inspect the quality of our sampling techniques, we estimate a measure called the population total,358

which is the addition of values of a particular characteristic for all the n units (species here) present in the359

population U . For example, if “Plant Height (PH)” is the characteristic of interest, then the population360

total is the addition of PH values for all the n species. Mathematically, the exact (or actual) population361

total for a characteristic of interest x j is given as362

Y = ∑
i∈U

(x j)i, (18)

where, as earlier, (x j)i is the value of the jth characteristic for the ith specie and U is the set of all species.363

By the definition of this measure (and also for two more measures listed below in this section), we work364

with original (non-normalized) values of the characteristics rather than normalized ones. Also, based365

upon the same argument, we work with only those characteristics that are originally numerical.366

In this work, we use two different estimators to compute an approximation of the population total367

from the sampled data. Closer the value of an estimator to the actual value, better the sampling. First is368

the Horvitz-Thompson (HT)-estimator (also called π-estimator), which is defined as (33)369

Y
′
HT = Y

′
π = ∑

i∈S

(x j)i

πi
, (19)

where, πi is the inclusion probability of the ith specie as evaluated in Section 4 and S is the set of sampled370

species. Another estimator that we use is the Hájek-estimator. It is usually considered better than the371

HT-estimator and is given as (34)372

Y
′
Há jek = n

∑i∈S
(x j)i

πi

∑i∈S
1
πi

, (20)

here, as earlier, n is the total number of species.373
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The actual population total and the values of the above two estimators for six characteristics (that have374

numerical values) when using Pivotal Sampling and 500 samples are given in Table 5 (see columns 3, 4,375

and 6, respectively). From this table, it is evident that the approximate values of the population total are376

very close to the corresponding actual values. Thus, Pivotal Sampling works well in an absolute sense.377

Here, we also compute the values of the two estimators when using VQ (see columns 5 and 7). We can378

notice from these results that VQ also works reasonably well, but Pivotal Sampling is better.379

Sr. Characteristics Actual Pivotal VQ Pivotal VQ
No. Population Sampling (HT) Sampling (Hájek)

Total (HT) (Hájek)
1 PH 121773.05 122507.84 123407.80 123716.09 113168.90
2 NPB 8576.56 8585.28 9669.29 8669.95 8867.05
3 NPPP 99712.72 100193.53 114465.66 101181.70 104968.67
4 SW 20073.32 19907.10 20966.86 20103.44 19227.28
5 SYPP 10048.04 10137.57 10536.08 10237.55 9661.92
6 DPI 136810 135309.78 149242.17 136644.29 136859.84

Table 5. HT and Hájek estimators values for Pivotal Sampling and VQ as compared to the actual
population total with N = 500 as the sample size.

5.3 Clustering Setup380

Here, first, we describe the criteria used to check the goodness of the generated clusters. There are two381

categories of metrics available for the validation of clustering algorithms. One category includes the382

metrics that require prior knowledge of the cluster labels (35). On the other hand, metrics from the second383

category do not have this requirement (35; 36). In this work, the ideal cluster labels are not available, and384

hence, we use a metric called Silhouette Value (from the second category) for validation of our clustering385

algorithms (36).386

Clustering is considered good if the obtained clusters are compact and well-separated. Silhouette387

Value captures both these aspects well by computing the intra-cluster similarity and the inter-cluster388

similarity. Consider that we have k clusters represented as C1, ...,Ck, and we want to obtain the Silhouette389

Value of the ith data point present in the cluster C1. For this, we compute the average distance between this390

data point and all the other points in the cluster C1. This distance is denoted as a(i). Next, we compute391

the average distance between the ith data point and all the other points in clusters C2, ...,Ck. This distance392

is denoted as b(i). Then, for this point, Silhouette Value is computed as below (36).393

s(i) =
b(i)−a(i)

max{a(i),b(i)}
. (21)

As evident from the above discussion, the intra-cluster similarity is captured by a(i), and the inter-394

cluster similarity is captured by b(i). This value usually lies between minus one to plus one because the395

denominator of Eq. (21) is always greater than its numerator. Silhouette Value for the overall clustering is396

obtained by averaging the Silhouette Values of all the data points. If this value tends towards a positive397

one, then the clustering is considered to be good. On the other hand, if this value tends towards a negative398

one, then the clustering is considered poor.399

Second, we determine the ideal number of clusters by using the eigenvalue gap heuristic (10; 37).400

If λ1,λ2, ...,λn are the eigenvalues of the matrix used for clustering (e.g., the Laplacian matrix), then401

often the initial set of eigenvalues, say k, have a considerable difference between the consecutive ones402

in this set. That is, |λi−λi+1| 6≈ 0 for i = 1, ...,k−1. After the kth eigenvalue, this difference is usually403

approximately zero. According to this heuristic, this k gives a good estimate of the ideal number of404

clusters.405

For this experiment, without loss of generality, we build the similarity matrix using the Euclidean406

distance measure on the above discussed phenotypic data. As mentioned earlier, it is recommended to use407

the Type-3 Laplacian matrix (10). Hence, we use its eigenvalues for estimating k. Figure 1 represents the408

graph of the first fifty smallest eigenvalues (in absolute terms) of this Laplacian matrix. On the x-axis, we409

have the eigenvalue number, and on the y-axis its corresponding value.410
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Figure 1. Fifty Smallest Eigenvalues of the Type-3 Laplacian Matrix Obtained from the Euclidean
Similarity Matrix (for estimating the ideal number of clusters).

From this figure, we can see that there is a considerable difference between the first ten consecutive411

eigenvalues. After the tenth eigenvalue, this difference is very small (tending to zero). Hence, based upon412

the earlier argument and this plot, we take k as ten. To corroborate this choice more, we experiment with413

k as twenty and thirty as well. As expected, and discussed in-detail later in this section, Silhouette Values414

for these numbers of clusters are substantially lower than those for ten clusters.415

Third, and final, we perform experiments to identify the suitable similarity measures to build the416

similarity matrix, and also verify that, as recommended, the Type-3 Laplacian matrix is the best. Table 6417

below gives Silhouette Values of our modified SC for all seven similarity measures and three Laplacians418

when clustering the earlier presented phenotypic data into 10, 20, and 30 clusters.419

Sr. Similarity Number of Type-1 Type-2 Type-3
No. Measure Clusters (k) Laplacian Laplacian Laplacian
1. Euclidean 10 0.0828 -0.0273 0.2422

20 0.0455 -0.1096 0.2069
30 0.0887 -0.1536 0.1783

2. Squared 10 0.0815 -0.0555 0.3836
Euclidean 20 -0.0315 -0.1809 0.2612

30 0.0354 -0.2367 0.1538
3. City-block 10 0.0687 0.2375 0.2647

20 -0.0356 0.1347 0.2082
30 -0.0870 0.0866 0.1887

4. Cosine 10 0.1737 -0.1408 0.0694
20 0.0359 -0.1973 0.0277
30 0.0245 -0.2456 -0.0316

5. Correlation 10 0.1926 -0.1259 0.3426
20 0.0970 -0.2198 0.2313
30 0.2383 -0.2604 0.1556

6. Hamming 10 0.0643 0.0706 0.0775
20 0.0683 0.0311 0.0382
30 0.0715 0.0283 0.0229

7. Jaccard 10 0.0716 0.0303 0.0458
20 0.0446 0.0276 0.0236
30 0.0279 0.0298 0.0318

Table 6. Silhouette Values for modified SC with seven similarity measures and three Laplacian matrices
for k = 10,20, and 30. Silhouette Values in bold represent good clustering.
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From this table, it is evident that Silhouette Values for the Euclidean, Squared Euclidean, City-block420

and Correlation similarity measures and the Type-3 Laplacian matrix are the best. Hence, we use these421

four similarity measures and this Laplacian matrix. Also, as mentioned earlier, Silhouette Values decrease422

for twenty and thirty cluster sizes.423

6 RESULTS AND DISCUSSION424

Using the earlier presented dataset, and sampling-clustering setups, we compare our proposed algorithm425

(i.e. modified Spectral Clustering (SC) with Pivotal Sampling) with the existing variants in four ways.426

Again, as earlier, we use Silhouette Values for comparison. Quantifying statistical difference between427

different Silhouette Values is a hard task. In general, the more closer these values are to one, the better is428

the clustering (see Section 5.3).429

First, we demonstrate that use of sampling with modified SC does not deteriorate the quality of clus-430

tering. Second, we compare our algorithm with modified SC with Vector Quantization (VQ), Hierarchical431

Clustering (HC)4 with Pivotal Sampling and HC with VQ for a sample size of 500. Since the results432

for modified SC with VQ come out to be closest to our algorithm, next, for broader appeal we compare433

these two algorithms for a sample size of 300. Third, we compare our algorithm with the current best434

in literature for this kind of data (i.e. HC without sampling) for both the sample sizes of 500 and 300.435

Fourth and finally, as discussed in the Literature Review section, we compare our sampling with that in436

Gireesh et al. (15) and our clustering with the one in Islam et al. (20).437

Initially, we calculate the loss of accuracy incurred because of Pivotal Sampling in our algorithm.438

This loss for both the sample sizes and cluster size ten is listed in Table 7. Columns 1 and 2 give the439

sample sizes and the similarity measures chosen, respectively. Columns 3 and 4 give the Silhouette Values440

for modified SC without sampling (from Table 6) and our algorithm, respectively. The last column gives441

the percentage loss of accuracy. We can observe from this data that the loss of accuracy for one type of442

similarity measure (Correlation) is almost as low as -2% for both the sample sizes. This is considered443

acceptable because we are still better than the existing best algorithm (HC without sampling; please see444

Table 10 and its accompanying discussion below).445

Sample Similarity modified SC modified SC with Percentage Loss
Size Measure Pivotal Sampling of Accuracy

Euclidean 0.2422 0.2152 -11.15%
N = 500 Squared Euclidean 0.3836 0.3362 -12.36%

City-block 0.2647 0.2369 -10.50%
Correlation 0.3426 0.3367 -1.72%
Euclidean 0.2422 0.2104 -13.13%

N = 300 Squared Euclidean 0.3836 0.3280 -14.49%
City-block 0.2647 0.2392 -9.63%
Correlation 0.3426 0.3368 -1.69%

Table 7. Loss of accuracy because of Pivotal Sampling in modified SC for cluster size ten.

Here, we also perform a statistical test to support the above conjecture that using Pivotal Sampling446

does not substantially deteriorate the accuracy of our modified SC. For this, we use the ANOVA (analysis447

of variance) test (38). This test uses the variance between the different groups and the variance within448

each group to compute a value called the F-value, which is then compared with a standard estimate called449

F-critical. If F-value is less than F-critical, then it is inferred that the means of all the groups are equal.450

The two groups for us refer to the modified SC results (column 3) and the modified SC with Pivotal451

Sampling results (column 4). The F-values here (using the Silhouette Values of the two groups) come452

out to be 0.3432 and 0.4202 for N = 500 and N = 300, respectively. Both these values are less than the453

F-critical value given in the F-distribution table of (39), which is 5.9873. Thus, using the above mentioned454

ANOVA test theory, we infer that that the mean Silhouette Value of modified SC is similar to the mean455

Silhouette Value of modified SC with Pivotal Sampling for both the sample sizes.456

The results for the second set of comparisons are given in Table 8. Columns 2 and 3 give the similarity457

measures and the number of clusters chosen, respectively. Columns 4 and 5 give Silhouette Values of458

4HC also requires building a similarity matrix.
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modified SC with Pivotal Sampling and VQ, respectively, while columns 6 and 7 give Silhouette Values459

of HC with Pivotal Sampling and VQ, respectively.

Sr. Similarity # of modified SC HC
No. Measure Clusters Pivotal VQ Pivotal VQ

(k) Sampling Sampling
1. Euclidean 10 0.2152 0.2061 0.2105 -0.1040

20 0.1905 0.1448 0.2263∗ -0.1620
30 0.1741 0.1021 0.1933∗ -0.2874

2. Squared 10 0.3362 0.2969 0.2634 -0.2096
Euclidean 20 0.2469 0.1522 0.3726∗ -0.5899

30 0.1658 0.0440 0.2933∗ -0.6083
3. City-block 10 0.2369 0.2354 0.1703 -0.2278

20 0.2019 0.1870 0.1879 -0.2398
30 0.1752 0.1524 0.1988∗ -0.2868

4. Correlation 10 0.3367 0.2560 0.2582 -0.0060
20 0.2291 0.0899 0.0867 -0.4120
30 0.1742 -0.0349 0.0998 -0.7018

Table 8. Silhouette Values for modified SC and HC with Pivotal Sampling and VQ for N = 500.
Silhouette Values in bold represent good clustering. Silhouette Values marked with ∗ represent inflated
values.

460

When we compare our algorithm (values in the fourth column, and highlighted in bold) with other461

variants, it is evident that we are clearly better than modified SC with VQ and HC with VQ (values in the462

fifth and the seventh columns); all our values are higher than those from these two algorithms.463

When we compare our algorithm with HC with Pivotal Sampling (values in the sixth column), we464

again perform better for many cases. However, for some cases, our algorithm performs worse than HC465

with Pivotal Sampling (highlighted with a *). Upon further analysis (discussed below), we realize that466

segregation of species by HC with Pivotal Sampling into fewer clusters than practically observed, results467

in these set of Silhouette Values getting wrongly inflated.468

To further assess the quality of the proposed technique, we present the distribution of species into469

different clusters (after reverse-mapping) for HC with Pivotal Sampling and our algorithm. Without loss470

of generality, this comparison is done using the Squared Euclidean similarity measure and cluster size471

thirty. The results for HC with Pivotal Sampling are given in Figure 2 and for our algorithm are given in472

Figure 3. In both the figures, on the x-axis, we have the cluster number and on the y-axis, the number of473

species present in them.474
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Figure 2. Distribution of Species (HC with Pivotal Sampling) for Squared Euclidean similarity measure
and cluster size thirty.
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Figure 3. Distribution of Species (modified SC with Pivotal Sampling) for Squared Euclidean similarity
measure and cluster size thirty.

As evident, Figure 2 depicts a very skewed distribution, i.e. most species are segregated into only a475

few clusters, while the remaining clusters contain only one or two species. At a broader level, this biased476

distribution of species obtained by HC with Pivotal Sampling is correct since all species belong to the477

same plant. On the contrary, the distribution in Figure 3 is fairly equal. That is, our algorithm equally478

distributes all species between the different clusters. At a finer level, this distribution is better since our479

algorithm is able to perform a more detailed clustering, i.e. it splits the bigger clusters into multiple480

smaller ones, which better captures the similarity between species.481

This is also the reason for the inflation of Silhouette Values of HC with Pivotal Sampling in Table 8482

since the intra-cluster similarity for solitary specie is zero leading to its respective Silhouette Value to483

become one (the maximum possible; see Eq. (21)). Thus, our algorithm also outperforms HC with Pivotal484

Sampling, which from Table 8 was not very evident.485

Next, as mentioned earlier, to further demonstrate the applicability of our work, we also present the486

results with a sample size 300. Since modified SC with VQ turns out to be our closest competitor, we487

compare our algorithm with this one only. This comparison is given in Table 9, with its columns mapping488

the respective columns of Table 8. As evident from Table 9, our modified SC with Pivotal Sampling489

substantially outperforms modified SC with VQ (see values in columns 4 and 5).490

Sr. Similarity # of modified SC
No. Measure Clusters Pivotal VQ

(k) Sampling
1. Euclidean 10 0.2104 0.1833

20 0.1968 0.0955
30 0.1743 0.0722

2. Squared 10 0.3280 0.2589
Euclidean 20 0.2424 0.1322

30 0.1613 0.0044
3. City-block 10 0.2392 0.2157

20 0.1990 0.1696
30 0.1752 0.1373

4. Correlation 10 0.3368 0.2229
20 0.2312 0.0336
30 0.1725 -0.0788

Table 9. Silhouette Values for modified SC with Pivotal Sampling and VQ for N = 300.

As earlier, third, we compare the results of our algorithm (modified SC with Pivotal Sampling) with491

the currently popular clustering algorithm in the plant studies domain (i.e. HC without sampling). For this492
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set of experiments, without loss of generality, we use the cluster size of ten. The results of this comparison493

are given in Table 10, where the first four columns are self-explanatory (based upon the data given in494

Tables 8 and 9 earlier). In the last column of this table, we also evaluate the percentage improvement495

in our algorithm over HC. As evident from this table, our algorithm is up to 45% more accurate than496

HC for both the sample sizes. As earlier, our algorithm also has the crucial added benefit of reduced497

computational complexity as compared to HC.498

Sample Similarity modified SC with HC Percentage
Size Measure Pivotal Sampling Improvement

Euclidean 0.2152 0.2173 -0.97%
N = 500 Squared Euclidean 0.3362 0.3257 3.22%

City-block 0.2369 0.2135 10.96%
Correlation 0.3367 0.2307 45.95%
Euclidean 0.2104 0.2173 -3.28%

N = 300 Squared Euclidean 0.3280 0.3257 0.71%
City-block 0.2392 0.2135 12.04%
Correlation 0.3368 0.2307 45.99%

Table 10. Silhouette Values of modified SC with Pivotal Sampling and HC for cluster size ten.

Fourth and finally, as mentioned in the Literature Review section, we also compare our work with two499

previous works that are closest to ours. With the dataset almost the same as used by us, that is, a slightly500

larger phenotypic data for Soybean species, Gireesh et al. (15) performed Principal Component and Power501

Core based samplings to identify relationships between the different phenotypic characteristics (first502

category as in Section 2). We compare our sampling results with the best from (15) in Appendix B, which503

demonstrates the superiority of our sampling method. Islam et al. (20) performed HC on phenotypic data504

for Rice species (second category as in Section 2). In Appendix C, we apply modified SC on this dataset505

to again demonstrate that our clustering technique is better.506

7 CONCLUSIONS AND FUTURE WORK507

We present the modified Spectral Clustering (SC) with Pivotal Sampling algorithm for clustering plant508

species using their phenotypic data. We use SC for its accurate clustering and Pivotal Sampling for its509

effective sample selection that in-turn makes our algorithm scalable for large data. Since building the510

similarity matrix is crucial for the SC algorithm, we exhaustively adapt seven similarity measures to build511

such a matrix. We also present a novel way of assigning probabilities to different species for Pivotal512

Sampling.513

We perform four sets of experiments on about 2400 Soybean species that demonstrate the superiority of514

our algorithm. First, we compare the Silhouette Values of modified SC without and with Pivotal Sampling,515

and show that the difference between these values is not significant. Second, when compared with516

the competitive clustering algorithms with samplings (SC with Vector Quantization (VQ), Hierarchical517

Clustering (HC) with Pivotal Sampling, and HC with VQ), Silhouette Values obtained when using our518

algorithm are higher. Third, our algorithm doubly outperforms the standard HC algorithm in terms of519

clustering accuracy and computational complexity. We are up to 45% more accurate and an order of520

magnitude faster than HC. Fourth and finally, we illustrate the excellence of our algorithm by comparing521

it with two previous works that are closest to ours.522

Since the choice of the similarity matrix has a significant impact on the quality of clusters, in the future,523

we intend to adapt other ways of constructing this matrix such as Pearson χ2, Squared χ2, Bhattacharyya,524

Kullback-Liebler etc. (24). Furthermore, we also plan to observe the performance of Cube Sampling,525

which is another probabilistic sampling technique with data analysis properties complementary to Pivotal526

Sampling (13). Both Pivotal and Cube belong to the balanced sampling category, i.e. they satisfy Y ≈Y
′
HT527

and Y ≈ Y
′
Há jek (recall Eqs. (18), (19), and (20)). Cube Sampling automatically obtains the samples528

(without specifying the sample size), which does not happen in Pivotal. As mentioned earlier, our529

algorithm is developed to work well for phenotypic data of all plant species. This is because different530

species vary only in the number of characteristics and the type of characteristics, both of which do not531
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affect our algorithm. We have preliminarily discussed this aspect for Maize and Rice in Appendix C, with532

extensive experiments for these two plants planned for future.533
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APPENDIX A539

Here, we first present phenotypic data of the Soybean species used for our experiments. Please see Table540

A1 below. Next, we validate this data. For this, we compare our species data with a similar Soybean541

species data from (15) for the common set of phenotypic characteristics; Plant Height (PH), Number542

of Pods Per Plant (NPPP), and Days to Pod Initiation (DPI). This comparison is done using standard543

statistical metrics and is given in Table A2 below.544

From this table, it is evident that the Standard Deviation (SD), Coefficient of Variance (CV), and545

Mean of our data and the data from the previous work are very close (for all three characteristics of PH,546

NPPP, and DPI). The slight variation in the metrics between the two data for all the characteristics is due547

to the difference in the ranges of the respective characteristics (due to the slightly differing selection of548

the species by the two works).549

Species EPV PH NPB LS NPPP SW SYPP DPI
1 Poor 54 6.8 Moderate 59.8 6.5 2.5 65
2 Poor 67 3.4 Severe 33 6.2 3.9 64
3 Good 60.8 4 Moderate 34.6 6.1 3 65
...

...
...

...
...

...
...

...
...

n Very Good 89.6 5 Severe 32.6 7.3 3.4 62

Table A1. Phenotypic data of the Soybean species used for experiments. EPV: Early Plant Vigor, PH:
Plant Height, NPB: Number of Primary Branches, LS: Lodging Score, NPPP: Number of Pods Per Plant,
SW: 100 Seed Weight, SYPP: Seed Yield Per Plant, DPI: Days to Pod Initiation.

Parameter Work PH NPPP DPI
Standard Our Work 16.61 20.16 7.85

Deviation (SD) Previous Work (15) 18.6 24.1 8

Coefficient of Our Work 31.80 47.13 13.62
Variance (CV) Previous Work (15) 30.9 55.2 17.8

Mean Our Work 52.24 42.78 57.60
Previous Work (15) 60.3 43.6 54.7

Range Our Work 13-102 4.33-197.66 24-80
Previous Work (15) 5.4-118.8 1.33-301 30-98

Table A2. Comparison of SD, CV, mean, and range for our phenotypic data and similar previous data.
Here, for comparison purposes, we have to work with original (non-normalized) values of the
characteristics.

APPENDIX B550

Here, we compare our sampling technique with those proposed by Gireesh et al. (15) for a similar dataset.551

As earlier, we do Pivotal Sampling on 2376 Soybean species while Gireesh et al. performed the Principal552
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Component Score (PCS) and the Power Core (PC) samplings on 3443 Soybean species. Since the samples553

obtained by the PC method are better, we compare our results with this sampling only.554

This comparison is done using the statistical metrics of Standard Deviation (SD), Coefficient of555

Variance (CV) and Mean, and is given in Table A3 below. Since the metrics of our sampled data are more556

closer to our respective full data as compared to the metrics of the previous works’ sampled data to its557

respective full data, our sampling is better.558

Parameters Work Population PH NPPP DPI

Our Work Overall 16.61 20.16 7.85
Standard Sampled 17.34 18.90 7.42

Deviation (SD) Previous Work (15) Overall 18.6 24.1 8
Sampled 22.15 45.33 11.73

Our Work Overall 31.80 47.13 13.62
Coefficient of Sampled 31.91 43.97 13.03
Variance (CV) Previous Work (15) Overall 30.9 55.2 17.8

Sampled 39.86 91.06 25.46

Mean
Our Work Overall 52.24 42.78 57.60

Sampled 54.34 42.99 56.94

Previous Work (15) Overall 60.3 43.6 54.7
Sampled 55.57 49.78 56.65

Table A3. Comparison of Pivotal Sampling and Power Core method for three characteristics. Here, for
comparison purposes, we have to work with original (non-normalized) values of the characteristics.

APPENDIX C559

Since in the manuscript, we have demonstrated the usefulness of our algorithm on the species of the560

Soybean plant, here we demonstrate our algorithms’ applicability to the species of the other two plants561

(Maize and Rice). The phenotypic data for the Maize species is given in Table A4, and for the Rice562

species is given in Table A5.563

Species DS PH EH ED EL SW
1 77 75 33 3.2 11.6 2.3
2 98 45 14 2.7 8.1 1.6
3 68 132 80 3.7 16.2 3.6
...

...
...

...
...

...
...

n 70 50 35 3.1 10.6 2.6

Table A4. Phenotypic data of the Maize species (40). DS: Days to Silking, PH: Plant Height, EH: Ear
Height, ED: Ear Diameter, EL: Ear Length, SW: 100 Seed Weight.

Species TN PH PN PL SW BDR
1 6.8 124.2 5.5 25.6 22.1 Resistant
2 6.5 121.6 6.8 24.8 23.1 Moderately Resistant
3 7.2 126.4 4.5 26.1 19.5 Moderately Susceptible
...

...
...

...
...

...
...

n 7.1 131.4 5.1 25.9 18.5 Susceptible

Table A5. Phenotypic data of the Rice species (20; 41). TN: Tiller Number, PH: Plant Height, PN:
Panicle Number, PL: Panicle Length, SW: 100 Seed Weight, BDR: Blast Disease Resistance.

We can observe from Tables A1, A4, and A5 that there is a set of common phenotypic characteristics564

for the three plant species. Also, the values of all the characteristics are either categorical or numerical.565
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As mentioned earlier, the categorical values can be easily converted to numerical ones. Since the input to566

our algorithm is a matrix built using the phenotypic data for given species, it can be applied to any of567

these plants.568

To demonstrate the usefulness of our algorithm to the two new plant species, without loss of generality,569

we perform clustering of Rice species using our modified SC. For this, we use the data from Islam et570

al. (20), where the authors have used HC to cluster ten Rice species into three clusters. Hence, we also571

cluster these ten species into three clusters using our modified SC. In (20), the output is in the form of a572

hierarchical tree, which is non-numerical, and hence, difficult to compare. Thus, we compute Silhouette573

Values for our modified SC and HC. This data for the four similarity measures are given in Table A6. As574

evident from this table, our algorithm substantially outperforms HC.575

Similarity Measure modified SC HC
Euclidean 0.2743 0.0076

Squared Euclidean 0.3276 0.0253
City-block 0.2561 0.0219
Correlation 0.3265 0.0433

Table A6. Silhouette Values of modified SC and HC for three clusters of ten Rice species.
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