
Low Complexity Non-binary Turbo Decoding based
on the Local-SOVA Algorithm

Hugo Le Blevec, Rami Klaimi, Stefan Weithoffer, Charbel Abdel Nour, Amer Baghdadi
Email: firstname.lastname@imt-atlantique.fr

IMT Atlantique, Lab-STICC, UMR CNRS 6285, F-29238 Brest, France

Abstract—Non-binary Turbo codes have been shown to out-
perform their binary counterparts in terms of error correcting
performance yet the decoding complexity of the commonly used
Min-Log-MAP algorithm prohibits efficient hardware implemen-
tations. In this work, we apply for the first time the recently
proposed Local SOVA algorithm for decoding non-binary Turbo
codes. Moreover, we propose a low complexity variant dedicated
to the direct association with high order constellations denoted
by the nearest neighbor Local SOVA. It considers only a limited
amount of nearest competing constellation symbols for the soft
output computation. Simulation results show that this approach
allows a complexity reduction of up to 52% in terms of add-
compare-select operations while maintaining the same error cor-
recting performance compared to the Min-Log-MAP algorithm.
It can even reach up to 80% if high code rates or frame error
rates higher than 10−4 are targeted. The achieved complexity
reduction represents a significant step forward towards hardware
implementation.

Keywords—Non-binary Turbo codes, low complexity decoding,
Local SOVA

I. INTRODUCTION

Since their invention, binary turbo codes [1] and iterative
decoding have found their way into a wide range of com-
munication standards like the third and fourth generations
(3G, 4G) of mobile communications. Furthermore, they have
participated to the rediscovery of low density parity check
(LDPC) codes [2]. Benefiting from a direct mapping to high
order constellation symbols [3], the non-binary (NB) variants
for both code classes defined over Galois Fields GF(q) have
been shown to outperform their binary counterparts. However,
the corresponding high decoding complexity imposes limits
on the Galois Field order q and on the achievable frame
sizes in practice [4], [5]. For non-binary low density parity
check (NB-LDPC) codes, these complexity issues have been
addressed in a number of works [6], [7] paving the way
for hardware implementations. On the other hand, the strong
focus on the Min-Log-MAP (MLM) algorithm, which has long
been the standard decoding algorithm for binary Turbo codes,
has carried over to a large extent to NB Turbo decoding.
In [8], complexity reduced MLM decoding was proposed for
NB Turbo decoding, inspired by the bubble check algorithm
(BC) [7]. To calculate the state metric recursion and the
extrinsic information, this algorithm resorts to a subset of the
nm < q highly reliable transitions in the code trellis. These
nm transitions are processed using a 2D-bubble sorter for the
add compare select (ACS) operations. A complexity reduction
ranging from 50% to 75% in terms of ACS operations was

achieved at the cost of < 0.3dB in terms of frame error rate
(FER) compared to the MLM.

Recently, the Local-SOVA (LSOVA) algorithm was pro-
posed as a reduced-complexity alternative to the MLM for
binary Turbo codes [9]. Based on a path-centric view on the
code trellis, LSOVA was shown to achieve a computational
complexity reduction of up to 37% compared to the MLM
with a penalty of less than 0.1dB in terms of FER for radix-8
decoding. Practical implementation in 22nm technology [10]
exceeded computational complexity predictions to achieve
around 45% of reduction.

In this work, we apply for the first time the LSOVA
algorithm to the decoding of NB-Turbo codes and propose
additional complexity reductions dedicated to the NB case. We
achieve a reduction of up to 80% compared to the MLM in
terms of ACS operations, getting us one step forward towards
efficient hardware implementations for NB Turbo decoding.

The remainder of this paper is structured as follows: Section
II gives the necessary background on NB-Turbo decoding and
Section III formulates the LSOVA for the decoding of NB-
Turbo codes (NB-TC). The proposed method to reduce the
complexity of the LSOVA is presented in Section IV, while
its corresponding complexity is addressed in Section V. To
assess the impact of the simplifications on the error correcting
performance, simulation results for different code rates are
shown in Section VI. Comparisons with state-of-the-art are
performed in Section VII. Section VIII concludes the paper.

II. NON-BINARY TURBO DECODING

1) Non-Binary Turbo Codes – Structure and Constituent
Codes: In the following, we consider a NB-TC consisting
of two concatenated recursive systematic convolutional codes
over GF(q). These latter follow the structure illustrated in
Fig. 1-a. Composed of one memory element, it provides an
excellent tradeoff between complexity and error correcting
performance [8]. The code coefficients a1, a2 and a3 respect
a1 6= 0 and a2+a3 6= 0 leading to a fully connected trellis [4].
In other words, the q2 transitions in the trellis are labeled
by the q2 possible combinations of systematic s and parity p
symbols as shown in Fig. 1-b.

2) Min-Log-MAP decoding of NB convolutional codes:
Standard component decoding algorithm for binary Turbo
codes is the MLM algorithm [11] and its symbol based variant
is considered here as reference [12]. For a clear link to related
work, we will adopt in the following the notation from [9].



+

+ a3

a2

a1

D

s

p

0

1

2

3

0

1

2

3

0/0

1/2

2/3

3/1

3/2

2/0

1/1

0/3

1/3

0/1

3/0

2/2

2/1

3/3

0/2

1/0(a) (b)

Figure 1: (a) Structure of the NB recursive convolutional
component code considered in this work. (b) Trellis of a NB
recursive convolutional code over GF(4).

The symbol-based MLM algorithm provides for each sym-
bol d = i, with i ∈ {0, ..., q−1} and trellis step k, an estimate
on the a Posteriori Logarithmic Probability (ALP) Li

k:

Li
k = min

(s,s′)|dk=i
(Ak(s) + Γk(s′, s) +Bk+1(s′)) (1)

In Eq. (1), (s, s′) refers to the transition from state s to state s′

and Γk(s, s′) to the associated branch in trellis step k. Ak(s)
and Bk+1(s′) are the forward- and backward state metrics for
states s, s′ ∈ {0, ..., q − 1} and are calculated recursively by

Ak(s) = min
(s,s′)

(Ak−1(s′) + Γk−1(s, s′)) (2)

Bk(s′) = min
(s,s′)

(Bk+1(s) + Γk(s, s′)) (3)

The complexity of computing Eqs. (1), (2) and (3) is dictated
by the galois field order q, since for the fully connected trellis
q2 terms (for the q2 transitions (s, s′)) have to be compared.

III. THE LOCAL SOVA ALGORITHM FOR NB DECODING

The LSOVA algorithm was proposed in [9] and has since
been demonstrated to allow reduced complexity hardware
implementation [10]. In contrast to the MLM, which operates
on branches (s, s′) in the trellis, the LSOVA operates on Paths
along r trellis steps k, k + 1, ..., k + (r − 1) for a radix order
of R = 2r. A path P is defined as

P = {M, u, L} ∈ R× {0, q − 1}r × {R+}r (4)

where M is the path metric computed through M = Ak(s) +
Γk(s, s′) + Bk+(r−1)(s

′), u is the hard decision estimate
corresponding to the set of symbols di along the r trellis
steps of the path, and L corresponds to the set of associated
reliability values. Fig. 2 illustrates the path definition for two

Figure 2: Two radix-4 paths in the trellis of Fig. 1 (b).

radix-4 paths in the trellis of Fig. 1 (b). In the following, we

assume r = 1, so that a path corresponds to a single branch
in the trellis. Based on the path definition from Eq. (4), the
LSOVA requires a Merge operation to consolidate two paths
Pa = {Ma, u

a, La} and Pb = {Mb, u
b, Lb} into one path

Pc = {Mc, u
c, Lc}. Therefore, it has three functions to update

M,u and L:

Mc = f0(Ma,Mb) = min(Ma,Mb) (5)

uc = f1(ua, ub) =

{
ua , if f0(Ma,Mb) = Ma

ub , if f0(Ma,Mb) = Mb

(6)

Lc =
{
Lc|Lc = f2(La, Lb)

}
. (7)

Where f2 corresponds to the Hagenauer rule (HR) [13] or the
Battail rule (BR) [14], [15]:

Lc = f2(La, Lb) (8)

=

{
min (Lp′ ,∆p,p′) , if ua 6= ub (HR)
min (Lp′ ,∆p,p′ + Lp) , if ua = ub (BR).

BR is used in the case of identical symbols ua = ub, whereas
for the case of differing symbols ua 6= ub, HR is used. In Eq.
(8), p′ = argmina,b(Ma,Mb), p = argmaxa,b(Ma,Mb) and
∆p,p′ = Mp −Mp′ .

When merging all paths at a trellis stage k into Pc, this latter
can be considered as the Maximum Likelihood (ML) path for
the symbol. It was proven in [9] that the merge operation is
associative and commutative, which allows for an arbitrary
ordering of the necessary merge operations. On the one hand,
applying an ordering that merges paths labeled by the same
information symbols dk leads to the MLM [9]. On the other
hand, applying a two-phase ordering where, in a first phase (in
[10] called ACS phase), paths with identical ending state s are
merged allows to avoid BR updates entirely for radix-2 (i.e.
r = 1) decoding, since branches leading to the same state are
always labeled by different symbols. In a second phase (SOU
phase) the resulting winning paths are then merged together,
minimizing the overall amount of needed BR updates.

IV. THE NEAREST-NEIGHBORS APPROACH

In the following, we assume the GF(q) symbols to be
mapped to constellation symbols directly as in [4]. In the
constellation diagram (see example for GF(64) in Fig. 3),
the minimum distance d0 between two points in the con-
stellation is well defined as d0 = (2/Ēs)

2 where Ēs is the
average energy per symbol. Over an Additive White Gaussian
Noise (AWGN) channel, from the Union Bound (UB) [1],
the probability of error decays exponentially with the coding
gain jointly composed of the code rate and the accumulated
Euclidean distance along the diverging-converging (DC) trellis
sequences [16]. Therefore, the constellation points located
close to the received symbol have an exponentially larger
likelihood of being the transmitted symbol compared to the
far ones. Consequently, for a considered symbol s we propose
to consider only a subset of paths within a radius Rs that en-
compasses a certain number of neighboring candidate symbols
for which the update rules of Eq. (8) are applied. These paths



are used for the update of the L-values using the distance
between constellation symbols as a preliminary information
about their reliabilities:

Rs = s · d0, 1 ≤ s ≤ log2(q). (9)

Li is updated if the symbol i verifies D(u, i) ≤ Rs where u
is the symbol carried by the path with the highest metric M
and D is the Euclidean distance. By applying this method, the
number of operations required during each merge is limited.
Hence, considering the total amount of performed merges, this
method can considerably reduce the overall complexity of the
decoding. Note that for a certain radius Rs, the number of
points considered will differ with the position of the symbol
in the constellation: symbols located close to the edges will
contain less points within Rs than points in the middle.
Therefore, the achievable complexity reduction is expected to
vary depending on the input frame. We refer to the proposed
approach as nearest neighbor approach (NN-LSOVA) and will
illustrate it with the following example.

48 49 53 52 36 37 33 32

50 51 55 54 38 39 35 34

58 59 63 62 46 47 43 42

56 57 61 60 44 45 41 40

24 25 29 28 12 13 9 8

26 27 31 30 14 15 11 10

18 19 23 22 6 7 3 2

16 17 21 20 4 5 1 0Q

I

R3
12

R2
12

R1
12

d0

Figure 3: 64-QAM with some Rs configurations.

Consider the case where q = 64 and let P1 and P2 be two
paths such that P1 = {M1, u1, L1} and P2 = {M2, u2, L2}
where L1 = {L0

1, L
1
1, ..., L

63
1 } and L2 = {L0

2, L
1
2, ..., L

63
2 }.

Let’s assume that u1 = 12 6= u2, M1 ≥ M2 and the
considered radius is R1 = d0 = 1. When merging the two
paths with the LSOVA algorithm, the update rule is applied to
all the L-values, resulting in 64 update operations. However,
the NN-LSOVA will only apply the update rule on the L-
values corresponding to symbols in the considered radius.
Here symbols 12, 13, 14, 28 and 44 are to be updated,
which means only computing f2(L12

1 , L
12
2 ), f2(L13

1 , L
13
2 ),

f2(L14
1 , L

14
2 ), f2(L28

1 , L
28
2 ) and f2(L44

1 , L
44
2 ). For all the other

symbols, the values carried by the winning path P1 will be
kept, lowering the amount of update operations to only five.

The NN-LSOVA offers then a new trade-off between com-
plexity and performance that we will discuss hereafter.

V. COMPLEXITY OF THE NN-LSOVA

In the following, we call layer a set of 2-by-2 merge
operations executed in parallel. The merging of paths in the
SOU phase is carried out in the LSOVA algorithm following

a binary 2-by-2 tree expressed as a sequence of layers. We
denote by Nl,q the amount of 2 by 2 merge operations to be
performed in a layer l. This number depends on the number
of symbols q and the index of the layer l and can be computed
as Nl,q = q

2l
. For a non-binary code over GF(q), there

are log2 (q) layers: the first one having q paths, the second
q
2 , the third q

4 until choosing the winning path. Further, we
evaluate the amount of L-value update operations for layer l
considering neighbours within Rl

s, by λl,q,s. This latter varies
with the constellation order and the position of the symbol
carried by the path. To illustrate this, refer again to Fig. 3
with Rs = 1 · d0. If the winning path carries a symbol at
the center of the constellation, a total of 5 L-values will have
to be updated. However, if the carried symbol is located at
the corner of the constellation, only 3 updates will have to be
performed. Note that the L-value of the symbol carried by the
winning path also needs to be updated. Having a varying level
of complexity reduction depending on the location within the
merge tree merge operations on one side and on the location
of the symbol carried by the winning path on the other, we
provide bounds on the the complexity analysis. They depend
on the value of Rl

s (a design choice) and the 2 extreme possible
position values of the winning path within the constellation as
shown for the case of q = 64 in Tab. I.

Table I: Boundary values of λq,s for different Rs with q = 64.

Rs 1 2 3 4 5 6
Max λq,s 5 13 29 47 63 64
Min λq,s 3 6 11 17 26 35

We can then bound the complexity in terms of number of
updates for the decoding of one symbol as:

Ctot =

log2(q)∑
l=1

Nl,qλl,q,s =

log2(q)∑
l=1

q
λl,q,s

2l
(10)

Reducing the radius size Rl
s has a noticeable impact on the

error correcting performance of the decoder. Therefore, we
evaluate a number of benchmark configurations in the next
section before comparing the complexity of the proposed
algorithm with state of the art in Section VII.

VI. SIMULATION RESULTS

We consider NB-TCs over GF(64) mapped to a 64-QAM
constellation, designed from rate-1/2 NB-CCs as in Fig. 1-
(a). The coefficients a1, a2 and a3 were chosen to achieve
the highest minimum cumulated Euclidean distance, and are
equal to 31, 5 and 18, respectively. To construct the finite field,
we used the following primitive polynomial: PGF(64)(D) =
1 + D2 + D3 + D5 + D6. The Turbo code interleaver uses
an Almost Regular Permutation (ARP) designed for the frame
size of Ks = 160 GF(64) symbols (960 bits) following [17]–
[19]. To assess the proposed NN-LSOVA algorithm, several
low-complexity configurations were evaluated (see Table II).
These configurations use different radii for different LSOVA
layers l, leading to a layer-dependent complexity.



C1

C2

C4

C5

BCnm=13

BCnm=5

C3

C6

C4

BCnm=13

BCnm=5

C7

C8

C9

C10

C11

Figure 4: FER curves after 8 decoding iterations of: (a) Full LSOVA, C3 and C6 (b) Full LSOVA, C1, C2, C4, C5 and BC
with nm = 13 and nm = 5 (c) Full LSOVA, C4, C7-C11, and BC with nm = 13 and nm = 5. Rate: (a) 1/3, (b) 1/3, (c) 4/5.

1) Simulation results for rate 1/3: Fig. 4 (a) compares the
FER performance at the output of a decoder with full LSOVA
(≡ full MLM) on one side and NN-LSOVA using a uniform
radius of 3 and 5 across all merge layers (configurations
C3, C6 in Table II) on the other. Clearly, the uniform reduction
of Rl

s leads to an undesired error floor at a FER of about
3 · 10−4 for C6 while the decoder fails completely for C3.
Recall that the merge operations are performed in a binary
tree, which suggests that the impact of a reduced radius varies
in between layers. Therefore, Fig. 4 (b) compares NN-LSOVA
configurations with non-uniform reductions in Rl

s. Overall an
improvement of the FER performance can be observed when
moving from a uniform reduction of Rl

s to a non-uniform
reduction. Performing the last two merge layers with a radius
of R6

s = 6 leads to a better performance, even when reducing
the radius more in the first layers (C1 vs. C2). Comparing C2,
C4 and C5 reveals that the NN-LSOVA is more sensitive to
a reduction of Rs in the first layer than in the middle layers.
C4 shows the best performance.

2) Simulation results for rate 4/5: As mentioned in sec-
tion IV, the probability of error decreases exponentially with
the coding gain. For a similar target error rate to rate 1/3, the
rate 4/5 suffers from a lower coding gain mainly due to the
considerable decrease in the minimum cumulated Euclidean
distance due to puncturing. Hence a larger operating SNR is
required or equivalently, only a lower AWGN variance can
be supported. This is expected to reduce the entailed penalty
from considering smaller Rl

s values. Simulation results shown
in Fig. 4 (c) confirm this expectation. Not only does C4 yield
Full-LSOVA performance, but a further reduction as for C8 is
possible without FER loss. However, results for C7, C9, C10

and C11 demonstrate that a radius reduction down to 1 even
for the middle layers is to be avoided.

VII. COMPLEXITY COMPARISON

With the performance obtained in the previous section in
mind, we provide here a complexity analysis for the simulated
configurations based on Table I and Eq. (10). The complexity

reduction of the NN-LSOVA decoding in comparison with the
full LSOVA decoding (i.e. with full radius Rl

s for each layer)
is illustrated in Table II, for the best and worst case scenarios,
i.e. when λl,q,s is at its minimum or maximum value.

The viability of using NN-LSOVA is confirmed by a com-
plexity reduction of up to 52% in terms of number of updates
for the worst case scenario for the C4 configuration with FER
performance competitive to Full-LSOVA/MLM for rate 1/3
and 4/5 and up to almost 90% for configuration C8 for rate 4/5.
However, in order to allow a fair comparison with the MLM
algorithm, we need to express the complexity in terms of ACS
(Add Compare Select) operations. Note, that the NN-LSOVA
only affects the complexity for the extrinsic computation. Each
L-value update in the SOU of the LSOVA/NN-LSOVA is
done using Eq. (8), requiring at most one ACS operation.
Every merge therefore needs λl,q,s ACS operations plus one
comparison between the path metrics to find the winning path,
which will be counted as half an ACS operation. For the
decoding of one frame, we get:

ACSLSOVA = nenc ·Ks · nit ·
log2(q)∑
l=1

q

2l

(
λl,q,s +

1

2

)
(11)

where nenc is the number of component encoders in the NB-
TC structure, Ks is the number of GF(q) symbols in the frame

Table II: Selected NN-LSOVA configurations, number of up-
dates and complexity comparison for best-/worst case.

Configuration Updates Compl. Updates Compl.
(R1

sR
2
sR

3
sR

4
sR

5
sR

6
s) (bc) red. (bc) (wc) red. (wc)

C1 = (3,4,4,5,5,6) 951 76.41% 2498 38.05%
C2 = (2,3,4,5,6,6) 713 82.32% 1700 57.84%
C3 = (2,2,2,2,2,2) 378 90.63% 819 79.69%
C4 = (3,3,3,3,6,6) 765 81.03% 1932 52.08%
C5 = (2,3,3,6,6,6) 701 82.61% 1560 61.31%
C6 = (5,5,5,5,5,5) 1638 59.38% 3969 1.56%
C7 = (3,1,1,6,6,6) 669 83.41% 1496 62.90%
C8 = (2,2,2,2,4,6) 429 89.36% 938 76.74%
C9 = (2,1,2,2,4,6) 381 90.55% 810 79.91%
C10 = (2,2,1,2,4,6) 405 89.96% 874 78.32%
C11 = (2,2,2,1,4,6) 417 89.66% 906 77.53%



and nit is the number of performed decoding iterations. As a
point of comparison, we take the BC-based method from [8]
for its different approach for complexity reduction in decoding
NB-TCs. Its complexity for the extrinsic computation is:

ACSBC = nenc ·Ks · nit · 2nm · q (12)

Where nm is a parameter of the algorithm that denotes the
size of the used sorted tables. The number of ACS operations
in the extrinsic computation of the MLM is computed by

ACSMLM = nenc ·Ks · nit · q2 (13)

Based on Eqs. (11), (12) and (13), Table III compares the
complexity in terms of performed ACS operations for the
extrinsic computation. A value of nm = 25 is assumed for
the BC, which results in a FER performance close to MLM.
Furthermore, nenc = 2, Ks = 160 and nit = 8.

Table III: No. of ACS operations for MLM, BC and NN-
LSOVA and complexity reduction compared to MLM.

Alg. Num. of ACS Op. Compl. red. [%]
MLM 10,485,760 0
BC [8] 8,192,000 21.24

NN-LSOVA Config. worst best worst best
C1 6,475,520 2,515,200 38.24 76.01
C2 4,432,640 1,905,920 57.73 81.82
C3 2,177,280 1,048,320 79.23 90.00
C4 5,026,560 2,039,040 52.06 80.55
C5 4,074,240 1,875,200 61.15 82.12
C6 10,241,280 4,273,920 2.33 59.2
C7 3,910,400 1,793,280 62.71 82.90
C8 2,466,560 1,163,520 76.48 88.90
C9 2,154,240 1,056,000 79.46 89.93
C10 2,318,080 1,117,440 77.89 89.34
C11 2,400,000 1,148,160 77.53 89.66

With the proposed NN-LSOVA, we achieve between around
40% and 80% of complexity reduction in comparison to the
MLM (worst case, not considering C6 which has insufficient
FER performance), which corresponds to an additional com-
plexity reduction of between around 17% and 58% compared
to the BC. In particular, a complexity reduction of at least
52.06% is achieved for configuration C4, which is competitive
in terms of FER performance compared to the MLM and the
BC for the two considered rates of 1/3 and 4/5. To obtain the
same low complexity with the BC, we would need to have
nm = 13 for the worst case, and nm = 5 for the best case,
significantly penalizing the FER performance (see Fig. 4)

VIII. CONCLUSION

In this work, we applied for the first time the LSOVA
algorithm to the decoding of NB-Turbo Codes. Moreover for
a direct mapping between the GF(q) code and constellation
symbols, we proposed a new reduced complexity decoding
algorithm. Denoted by NN-LSOVA, it achieves a complex-
ity reduction by up to 52% in terms of performed ACS
operations compared to the MLM while maintaining similar
FER performance. It can even reach up to almost 80% for
applications targeting only high code rates or FER larger than
10−4. Furthermore for the same target performance, it was

shown to outperform the prior art solution based on the BC
by up to more than 30%. These results show the NN-LSOVA
algorithm to be a promising path towards efficient hardware
implementations for NB Turbo decoding, and future works
will consider combining the BC for state metric computation
with the NN-LSOVA for the soft output.

ACKNOWLEDGMENT
This work was partially funded by the French National

Research Agency projects QCSP (ANR-19-CE25-0013-01)
and TurboLEAP (ANR-20-CE25-0007).

REFERENCES

[1] C. Berrou, A. Glavieux, and P. Thitimajshima. Near Shannon limit error-
correcting coding and decoding: Turbo-codes. In IEEE Intern. Conf. on
Commun. (ICC), volume 2, pages 1064–1070, Geneva, Switzerland, May
1993.

[2] D. J. C. MacKay and R. M. Neal. Near Shannon limit performance of
low density parity check codes. Electron. Lett., 33(6):457–458, 1997.

[3] G. Liva, E. Paolini, B. Matuz, S. Scalise, and M. Chiani. Short turbo
codes over high order fields. IEEE Trans. on Commun., 61(6):2201–
2211, 2013.

[4] R. Klaimi, C. Abdel Nour, C. Douillard, and J. Farah. Design of Low-
Complexity Convolutional Codes over GF(q). In IEEE Global Commun.
Conf. (GLOBECOM), Abu Dhabi, United Arab Emirates, Dec 2018.

[5] M. C. Davey and D. MacKay. Low-density parity check codes over
GF(q). IEEE Commun. Lett., 2(6):165–167, 1998.

[6] L. Barnault and D. Declercq. Fast decoding algorithm for LDPC over
GF(2q). In IEEE Inf. Theory Workshop, pages 70–73, 2003.

[7] E. Boutillon and L. Conde-Canencia. Bubble check: a simplified
algorithm for elementary check node processing in extended min-sum
non-binary LDPC decoders. Electron. Lett., 46(9):633–634, 2010.

[8] R. Klaimi, C. A. Nour, C. Douillard, and J. Farah. Low-complexity
decoders for non-binary turbo codes. In 10th Intern. Symp. on Turbo
Codes Iter. Inf. Proc. (ISTC), pages 1–5, Hong Kong, China, Dec. 2018.

[9] V. H. S. Le, C. Abdel Nour, E. Boutillon, and C. Douillard. Revisiting
the Max-Log-Map Algorithm With SOVA Update Rules: New Simpli-
fications for High-Radix SISO Decoders. IEEE Trans. on Commun.,
68(4):1991–2004, 2020.

[10] S. Weithoffer, R. Klaimi, C. Abdel Nour, N. Wehn, and C. Douillard.
Low-complexity Computational Units for the Local-SOVA Decoding
Algorithm. In IEEE 31st Intern. Symp. on Personal, Indoor and Mobile
Radio Commun. (PIMRC), London, UK, Sept. 2020.

[11] P. Robertson, E. Villebrun, and P. Hoeher. A Comparison of Optimal and
Sub-Optimal MAP decoding Algorithms Operating in the Log-Domain.
In IEEE Intern. Conf. on Commun. (ICC), pages 1009–1013, Seattle,
Washington, USA, June 1995.

[12] J. Berkmann. On turbo decoding of nonbinary codes. IEEE Commun.
Lett., 2(4):94–96, 1998.

[13] J. Hagenauer and P. Hoeher. A Viterbi algorithm with soft-decision
outputs and its applications. In IEEE Global Telecommun. Conf. and
Exhibition, pages 1680–1686 vol.3, Dallas, TX, USA, Nov 1989.

[14] G. Battail. Pondération des symboles décodés par l’algorithme de
Viterbi. In Annales des telecom., volume 42, pages 31–38. Springer,
1987.

[15] Lang Lin and R. S. Cheng. Improvements in SOVA-based decoding for
turbo codes. In IEEE Intern. Conf. on Commun. (ICC), volume 3, pages
1473–1478 vol.3, June 1997.

[16] R. Klaimi, C. Abdel Nour, C. Douillard, and J. Farah. Union bound eval-
uation for non-binary turbo coded modulations. IEEE Communications
Letters, 24(6):1178 – 1182, 2020.

[17] R. Garzón-Bohórquez, C. Abdel Nour, and C. Douillard. Improving
turbo codes for 5G with parity puncture-constrained interleavers. In 9th
Intern. Symp. on Turbo Codes Iter. Inf. (ISTC), pages 151–155, Brest,
France, Sep. 2016.

[18] R. Garzón Bohórquez, C. Abdel Nour, and C. Douillard. Protograph-
based interleavers for punctured turbo codes. IEEE Trans. Commun.,
66(5):1833–1844, May 2018.

[19] R. Garzón Bohórquez, R. Klaimi, C. A. Abdel Nour, and C. Douillard.
Mitigating correlation problems in turbo decoders. In 10th Intern. Symp.
on Turbo Codes Iter. Inf. (ISTC), Hong Kong, China, December 2018.


