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I. INTRODUCTION

Since their invention, binary turbo codes [START_REF] Berrou | Near Shannon limit errorcorrecting coding and decoding: Turbo-codes[END_REF] and iterative decoding have found their way into a wide range of communication standards like the third and fourth generations (3G, 4G) of mobile communications. Furthermore, they have participated to the rediscovery of low density parity check (LDPC) codes [START_REF] Mackay | Near Shannon limit performance of low density parity check codes[END_REF]. Benefiting from a direct mapping to high order constellation symbols [START_REF] Liva | Short turbo codes over high order fields[END_REF], the non-binary (NB) variants for both code classes defined over Galois Fields GF(q) have been shown to outperform their binary counterparts. However, the corresponding high decoding complexity imposes limits on the Galois Field order q and on the achievable frame sizes in practice [START_REF] Klaimi | Design of Low-Complexity Convolutional Codes over GF(q)[END_REF], [START_REF] Davey | Low-density parity check codes over GF(q)[END_REF]. For non-binary low density parity check (NB-LDPC) codes, these complexity issues have been addressed in a number of works [START_REF] Barnault | Fast decoding algorithm for LDPC over GF(2 q )[END_REF], [START_REF] Boutillon | Bubble check: a simplified algorithm for elementary check node processing in extended min-sum non-binary LDPC decoders[END_REF] paving the way for hardware implementations. On the other hand, the strong focus on the Min-Log-MAP (MLM) algorithm, which has long been the standard decoding algorithm for binary Turbo codes, has carried over to a large extent to NB Turbo decoding. In [START_REF] Klaimi | Low-complexity decoders for non-binary turbo codes[END_REF], complexity reduced MLM decoding was proposed for NB Turbo decoding, inspired by the bubble check algorithm (BC) [START_REF] Boutillon | Bubble check: a simplified algorithm for elementary check node processing in extended min-sum non-binary LDPC decoders[END_REF]. To calculate the state metric recursion and the extrinsic information, this algorithm resorts to a subset of the n m < q highly reliable transitions in the code trellis. These n m transitions are processed using a 2D-bubble sorter for the add compare select (ACS) operations. A complexity reduction ranging from 50% to 75% in terms of ACS operations was achieved at the cost of < 0.3dB in terms of frame error rate (FER) compared to the MLM.

Recently, the Local-SOVA (LSOVA) algorithm was proposed as a reduced-complexity alternative to the MLM for binary Turbo codes [START_REF] Le | Revisiting the Max-Log-Map Algorithm With SOVA Update Rules: New Simplifications for High-Radix SISO Decoders[END_REF]. Based on a path-centric view on the code trellis, LSOVA was shown to achieve a computational complexity reduction of up to 37% compared to the MLM with a penalty of less than 0.1dB in terms of FER for radix-8 decoding. Practical implementation in 22nm technology [START_REF] Weithoffer | Low-complexity Computational Units for the Local-SOVA Decoding Algorithm[END_REF] exceeded computational complexity predictions to achieve around 45% of reduction.

In this work, we apply for the first time the LSOVA algorithm to the decoding of NB-Turbo codes and propose additional complexity reductions dedicated to the NB case. We achieve a reduction of up to 80% compared to the MLM in terms of ACS operations, getting us one step forward towards efficient hardware implementations for NB Turbo decoding.

The remainder of this paper is structured as follows: Section II gives the necessary background on NB-Turbo decoding and Section III formulates the LSOVA for the decoding of NB-Turbo codes (NB-TC). The proposed method to reduce the complexity of the LSOVA is presented in Section IV, while its corresponding complexity is addressed in Section V. To assess the impact of the simplifications on the error correcting performance, simulation results for different code rates are shown in Section VI. Comparisons with state-of-the-art are performed in Section VII. Section VIII concludes the paper.

II. NON-BINARY TURBO DECODING

1) Non-Binary Turbo Codes -Structure and Constituent Codes: In the following, we consider a NB-TC consisting of two concatenated recursive systematic convolutional codes over GF(q). These latter follow the structure illustrated in Fig. 1-a. Composed of one memory element, it provides an excellent tradeoff between complexity and error correcting performance [START_REF] Klaimi | Low-complexity decoders for non-binary turbo codes[END_REF]. The code coefficients a 1 , a 2 and a 3 respect a 1 = 0 and a 2 +a 3 = 0 leading to a fully connected trellis [START_REF] Klaimi | Design of Low-Complexity Convolutional Codes over GF(q)[END_REF]. In other words, the q 2 transitions in the trellis are labeled by the q 2 possible combinations of systematic s and parity p symbols as shown in Fig. 1-b.

2) Min-Log-MAP decoding of NB convolutional codes: Standard component decoding algorithm for binary Turbo codes is the MLM algorithm [START_REF] Robertson | A Comparison of Optimal and Sub-Optimal MAP decoding Algorithms Operating in the Log-Domain[END_REF] and its symbol based variant is considered here as reference [START_REF] Berkmann | On turbo decoding of nonbinary codes[END_REF]. For a clear link to related work, we will adopt in the following the notation from [START_REF] Le | Revisiting the Max-Log-Map Algorithm With SOVA Update Rules: New Simplifications for High-Radix SISO Decoders[END_REF]. The symbol-based MLM algorithm provides for each symbol d = i, with i ∈ {0, ..., q -1} and trellis step k, an estimate on the a Posteriori Logarithmic Probability (ALP) L i k :

L i k = min (s,s )|d k =i (A k (s) + Γ k (s , s) + B k+1 (s )) (1) 
In Eq. ( 1), (s, s ) refers to the transition from state s to state s and Γ k (s, s ) to the associated branch in trellis step k. A k (s) and B k+1 (s ) are the forwardand backward state metrics for states s, s ∈ {0, ..., q -1} and are calculated recursively by

A k (s) = min (s,s ) (A k-1 (s ) + Γ k-1 (s, s )) (2) 
B k (s ) = min (s,s ) (B k+1 (s) + Γ k (s, s )) (3) 
The complexity of computing Eqs. ( 1), ( 2) and ( 3) is dictated by the galois field order q, since for the fully connected trellis q 2 terms (for the q 2 transitions (s, s )) have to be compared.

III. THE LOCAL SOVA ALGORITHM FOR NB DECODING

The LSOVA algorithm was proposed in [START_REF] Le | Revisiting the Max-Log-Map Algorithm With SOVA Update Rules: New Simplifications for High-Radix SISO Decoders[END_REF] and has since been demonstrated to allow reduced complexity hardware implementation [START_REF] Weithoffer | Low-complexity Computational Units for the Local-SOVA Decoding Algorithm[END_REF]. In contrast to the MLM, which operates on branches (s, s ) in the trellis, the LSOVA operates on Paths along r trellis steps k, k + 1, ..., k + (r -1) for a radix order of R = 2 r . A path P is defined as

P = {M, u, L} ∈ R × {0, q -1} r × {R + } r ( 4 
)
where M is the path metric computed through radix-4 paths in the trellis of Fig. 1 (b). In the following, we assume r = 1, so that a path corresponds to a single branch in the trellis. Based on the path definition from Eq. ( 4), the LSOVA requires a Merge operation to consolidate two paths

M = A k (s) + Γ k (s, s ) + B k+(r-1) (s ),
P a = {M a , u a , L a } and P b = {M b , u b , L b } into one path P c = {M c , u c , L c }.
Therefore, it has three functions to update M, u and L:

M c = f 0 (M a , M b ) = min(M a , M b ) (5) 
u c = f 1 (u a , u b ) = u a , if f 0 (M a , M b ) = M a u b , if f 0 (M a , M b ) = M b (6) 
L c = L c |L c = f 2 (L a , L b ) . (7) 
Where f 2 corresponds to the Hagenauer rule (HR) [START_REF] Hagenauer | A Viterbi algorithm with soft-decision outputs and its applications[END_REF] or the Battail rule (BR) [START_REF] Battail | Pondération des symboles décodés par l'algorithme de Viterbi[END_REF], [START_REF] Lin | Improvements in SOVA-based decoding for turbo codes[END_REF]:

L c = f 2 (L a , L b ) (8) = min (L p , ∆ p,p ) , if u a = u b (HR) min (L p , ∆ p,p + L p ) , if u a = u b (BR).
BR is used in the case of identical symbols u a = u b , whereas for the case of differing symbols u a = u b , HR is used. In Eq. ( 8),

p = argmin a,b (M a , M b ), p = argmax a,b (M a , M b ) and ∆ p,p = M p -M p .
When merging all paths at a trellis stage k into P c , this latter can be considered as the Maximum Likelihood (ML) path for the symbol. It was proven in [START_REF] Le | Revisiting the Max-Log-Map Algorithm With SOVA Update Rules: New Simplifications for High-Radix SISO Decoders[END_REF] that the merge operation is associative and commutative, which allows for an arbitrary ordering of the necessary merge operations. On the one hand, applying an ordering that merges paths labeled by the same information symbols d k leads to the MLM [START_REF] Le | Revisiting the Max-Log-Map Algorithm With SOVA Update Rules: New Simplifications for High-Radix SISO Decoders[END_REF]. On the other hand, applying a two-phase ordering where, in a first phase (in [START_REF] Weithoffer | Low-complexity Computational Units for the Local-SOVA Decoding Algorithm[END_REF] called ACS phase), paths with identical ending state s are merged allows to avoid BR updates entirely for radix-2 (i.e. r = 1) decoding, since branches leading to the same state are always labeled by different symbols. In a second phase (SOU phase) the resulting winning paths are then merged together, minimizing the overall amount of needed BR updates.

IV. THE NEAREST-NEIGHBORS APPROACH

In the following, we assume the GF(q) symbols to be mapped to constellation symbols directly as in [START_REF] Klaimi | Design of Low-Complexity Convolutional Codes over GF(q)[END_REF]. In the constellation diagram (see example for GF(64) in Fig. 3), the minimum distance d 0 between two points in the constellation is well defined as d 0 = (2/ Ēs ) 2 where Ēs is the average energy per symbol. Over an Additive White Gaussian Noise (AWGN) channel, from the Union Bound (UB) [START_REF] Berrou | Near Shannon limit errorcorrecting coding and decoding: Turbo-codes[END_REF], the probability of error decays exponentially with the coding gain jointly composed of the code rate and the accumulated Euclidean distance along the diverging-converging (DC) trellis sequences [START_REF] Klaimi | Union bound evaluation for non-binary turbo coded modulations[END_REF]. Therefore, the constellation points located close to the received symbol have an exponentially larger likelihood of being the transmitted symbol compared to the far ones. Consequently, for a considered symbol s we propose to consider only a subset of paths within a radius R s that encompasses a certain number of neighboring candidate symbols for which the update rules of Eq. ( 8) are applied. These paths are used for the update of the L-values using the distance between constellation symbols as a preliminary information about their reliabilities:

R s = s • d 0 , 1 ≤ s ≤ log 2 (q). ( 9 
)
L i is updated if the symbol i verifies D(u, i) ≤ R s where u is the symbol carried by the path with the highest metric M and D is the Euclidean distance. By applying this method, the number of operations required during each merge is limited. Hence, considering the total amount of performed merges, this method can considerably reduce the overall complexity of the decoding. Note that for a certain radius R s , the number of points considered will differ with the position of the symbol in the constellation: symbols located close to the edges will contain less points within R s than points in the middle. Therefore, the achievable complexity reduction is expected to vary depending on the input frame. We refer to the proposed approach as nearest neighbor approach (NN-LSOVA) and will illustrate it with the following example. 
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Figure 3: 64-QAM with some R s configurations.

Consider the case where q = 64 and let P 1 and P 2 be two paths such that

P 1 = {M 1 , u 1 , L 1 } and P 2 = {M 2 , u 2 , L 2 } where L 1 = {L 0 1 , L 1 1 , ..., L 63 1 } and L 2 = {L 0 2 , L 1 2 , ..., L 63 2 }. Let's assume that u 1 = 12 = u 2 , M 1 ≥ M 2 and the considered radius is R 1 = d 0 = 1.
When merging the two paths with the LSOVA algorithm, the update rule is applied to all the L-values, resulting in 64 update operations. However, the NN-LSOVA will only apply the update rule on the Lvalues corresponding to symbols in the considered radius. Here symbols 12, 13, 14, 28 and 44 are to be updated, which means only computing

f 2 (L 12 1 , L 12 2 ), f 2 (L 13 1 , L 13 2 ), f 2 (L 14 1 , L 14 2 ), f 2 (L 28 1 , L 28 
2 ) and f 2 (L 44 1 , L 44 2 ). For all the other symbols, the values carried by the winning path P 1 will be kept, lowering the amount of update operations to only five.

The NN-LSOVA offers then a new trade-off between complexity and performance that we will discuss hereafter.

V. COMPLEXITY OF THE NN-LSOVA

In the following, we call layer a set of 2-by-2 merge operations executed in parallel. The merging of paths in the SOU phase is carried out in the LSOVA algorithm following a binary 2-by-2 tree expressed as a sequence of layers. We denote by N l,q the amount of 2 by 2 merge operations to be performed in a layer l. This number depends on the number of symbols q and the index of the layer l and can be computed as N l,q = q 2 l . For a non-binary code over GF(q), there are log 2 (q) layers: the first one having q paths, the second q 2 , the third q 4 until choosing the winning path. Further, we evaluate the amount of L-value update operations for layer l considering neighbours within R l s , by λ l,q,s . This latter varies with the constellation order and the position of the symbol carried by the path. To illustrate this, refer again to Fig. 3 with R s = 1 • d 0 . If the winning path carries a symbol at the center of the constellation, a total of 5 L-values will have to be updated. However, if the carried symbol is located at the corner of the constellation, only 3 updates will have to be performed. Note that the L-value of the symbol carried by the winning path also needs to be updated. Having a varying level of complexity reduction depending on the location within the merge tree merge operations on one side and on the location of the symbol carried by the winning path on the other, we provide bounds on the the complexity analysis. They depend on the value of R l s (a design choice) and the 2 extreme possible position values of the winning path within the constellation as shown for the case of q = 64 in Tab. I.

Table I: Boundary values of λ q,s for different R s with q = 64. We can then bound the complexity in terms of number of updates for the decoding of one symbol as:

C tot = log 2 (q) l=1 N l,q λ l,q,s = log 2 (q) l=1 q λ l,q,s 2 l ( 10 
)
Reducing the radius size R l s has a noticeable impact on the error correcting performance of the decoder. Therefore, we evaluate a number of benchmark configurations in the next section before comparing the complexity of the proposed algorithm with state of the art in Section VII.

VI. SIMULATION RESULTS

We consider NB-TCs over GF(64) mapped to a 64-QAM constellation, designed from rate-1/2 NB-CCs as in Fig. 1-(a). The coefficients a 1 , a 2 and a 3 were chosen to achieve the highest minimum cumulated Euclidean distance, and are equal to 31, 5 and 18, respectively. To construct the finite field, we used the following primitive polynomial: P GF(64) (D) = 1 + D 2 + D 3 + D 5 + D 6 . The Turbo code interleaver uses an Almost Regular Permutation (ARP) designed for the frame size of K s = 160 GF(64) symbols (960 bits) following [START_REF] Garzón-Bohórquez | Improving turbo codes for 5G with parity puncture-constrained interleavers[END_REF]- [START_REF] Garzón Bohórquez | Mitigating correlation problems in turbo decoders[END_REF]. To assess the proposed NN-LSOVA algorithm, several low-complexity configurations were evaluated (see Table II). These configurations use different radii for different LSOVA layers l, leading to a layer-dependent complexity. 1) Simulation results for rate 1/3: Fig. 4 (a) compares the FER performance at the output of a decoder with full LSOVA (≡ full MLM) on one side and NN-LSOVA using a uniform radius of 3 and 5 across all merge layers (configurations C 3 , C 6 in Table II) on the other. Clearly, the uniform reduction of R l s leads to an undesired error floor at a FER of about 3 • 10 -4 for C 6 while the decoder fails completely for C 3 . Recall that the merge operations are performed in a binary tree, which suggests that the impact of a reduced radius varies in between layers. Therefore, Fig. 4 (b) compares NN-LSOVA configurations with non-uniform reductions in R l s . Overall an improvement of the FER performance can be observed when moving from a uniform reduction of R l s to a non-uniform reduction. Performing the last two merge layers with a radius of R 6 s = 6 leads to a better performance, even when reducing the radius more in the first layers (C 1 vs. C 2 ). Comparing C 2 , C 4 and C 5 reveals that the NN-LSOVA is more sensitive to a reduction of R s in the first layer than in the middle layers. C 4 shows the best performance.

C 1 C 2 C 4 C 5 BC n m =13 BC n m =5 C 3 C 6 C 4 BC n m =13 BC n m =5 C 7 C 8 C 9 C 10 C 11
2) Simulation results for rate 4/5: As mentioned in section IV, the probability of error decreases exponentially with the coding gain. For a similar target error rate to rate 1/3, the rate 4/5 suffers from a lower coding gain mainly due to the considerable decrease in the minimum cumulated Euclidean distance due to puncturing. Hence a larger operating SNR is required or equivalently, only a lower AWGN variance can be supported. This is expected to reduce the entailed penalty from considering smaller R l s values. Simulation results shown in Fig. 4 (c) confirm this expectation. Not only does C 4 yield Full-LSOVA performance, but a further reduction as for C 8 is possible without FER loss. However, results for C 7 , C 9 , C 10 and C 11 demonstrate that a radius reduction down to 1 even for the middle layers is to be avoided.

VII. COMPLEXITY COMPARISON

With the performance obtained in the previous section in mind, we provide here a complexity analysis for the simulated configurations based on Table I and Eq. [START_REF] Weithoffer | Low-complexity Computational Units for the Local-SOVA Decoding Algorithm[END_REF]. The complexity reduction of the NN-LSOVA decoding in comparison with the full LSOVA decoding (i.e. with full radius R l s for each layer) is illustrated in Table II, for the best and worst case scenarios, i.e. when λ l,q,s is at its minimum or maximum value.

The viability of using NN-LSOVA is confirmed by a complexity reduction of up to 52% in terms of number of updates for the worst case scenario for the C 4 configuration with FER performance competitive to Full-LSOVA/MLM for rate 1/3 and 4/5 and up to almost 90% for configuration C 8 for rate 4/5. However, in order to allow a fair comparison with the MLM algorithm, we need to express the complexity in terms of ACS (Add Compare Select) operations. Note, that the NN-LSOVA only affects the complexity for the extrinsic computation. Each L-value update in the SOU of the LSOVA/NN-LSOVA is done using Eq. ( 8), requiring at most one ACS operation. Every merge therefore needs λ l,q,s ACS operations plus one comparison between the path metrics to find the winning path, which will be counted as half an ACS operation. For the decoding of one frame, we get:

ACS LSOVA = n enc • K s • n it • log 2 (q) l=1 q 2 l λ l,q,s + 1 2 (11) 
where n enc is the number of component encoders in the NB-TC structure, K s is the number of GF(q) symbols in the frame and n it is the number of performed decoding iterations. As a point of comparison, we take the BC-based method from [START_REF] Klaimi | Low-complexity decoders for non-binary turbo codes[END_REF] for its different approach for complexity reduction in decoding NB-TCs. Its complexity for the extrinsic computation is:

ACS BC = n enc • K s • n it • 2n m • q (12)
Where n m is a parameter of the algorithm that denotes the size of the used sorted tables. The number of ACS operations in the extrinsic computation of the MLM is computed by

ACS MLM = n enc • K s • n it • q 2 (13) 
Based on Eqs. ( 11), ( 12) and ( 13), Table III With the proposed NN-LSOVA, we achieve between around 40% and 80% of complexity reduction in comparison to the MLM (worst case, not considering C 6 which has insufficient FER performance), which corresponds to an additional complexity reduction of between around 17% and 58% compared to the BC. In particular, a complexity reduction of at least 52.06% is achieved for configuration C 4 , which is competitive in terms of FER performance compared to the MLM and the BC for the two considered rates of 1/3 and 4/5. To obtain the same low complexity with the BC, we would need to have n m = 13 for the worst case, and n m = 5 for the best case, significantly penalizing the FER performance (see Fig. 4)

VIII. CONCLUSION

In this work, we applied for the first time the LSOVA algorithm to the decoding of NB-Turbo Codes. Moreover for a direct mapping between the GF(q) code and constellation symbols, we proposed a new reduced complexity decoding algorithm. Denoted by NN-LSOVA, it achieves a complexity reduction by up to 52% in terms of performed ACS operations compared to the MLM while maintaining similar FER performance. It can even reach up to almost 80% for applications targeting only high code rates or FER larger than 10 -4 . Furthermore for the same target performance, it was shown to outperform the prior art solution based on the BC by up to more than 30%. These results show the NN-LSOVA algorithm to be a promising path towards efficient hardware implementations for NB Turbo decoding, and future works will consider combining the BC for state metric computation with the NN-LSOVA for the soft output.

Figure 1 :

 1 Figure 1: (a) Structure of the NB recursive convolutional component code considered in this work. (b) Trellis of a NB recursive convolutional code over GF(4).

Figure 2 :

 2 Figure 2: Two radix-4 paths in the trellis of Fig. 1 (b).

Figure 4 :

 4 Figure 4: FER curves after 8 decoding iterations of: (a) Full LSOVA, C 3 and C 6 (b) Full LSOVA, C 1 , C 2 , C 4 , C 5 and BC with n m = 13 and n m = 5 (c) Full LSOVA, C 4 , C 7 -C 11 , and BC with n m = 13 and n m = 5. Rate: (a) 1/3, (b) 1/3, (c) 4/5.

Table II :

 II Selected NN-LSOVA configurations, number of updates and complexity comparison for best-/worst case.

	Configuration	Updates	Compl.	Updates	Compl.
	(R 1 s R 2 s R 3 s R 4 s R 5 s R 6 s )	(bc)	red. (bc)	(wc)	red. (wc)
	C1 = (3,4,4,5,5,6)	951	76.41%	2498	38.05%
	C2 = (2,3,4,5,6,6)	713	82.32%	1700	57.84%
	C3 = (2,2,2,2,2,2)	378	90.63%	819	79.69%
	C4 = (3,3,3,3,6,6)	765	81.03%	1932	52.08%
	C5 = (2,3,3,6,6,6)	701	82.61%	1560	61.31%
	C6 = (5,5,5,5,5,5)	1638	59.38%	3969	1.56%
	C7 = (3,1,1,6,6,6)	669	83.41%	1496	62.90%
	C8 = (2,2,2,2,4,6)	429	89.36%	938	76.74%
	C9 = (2,1,2,2,4,6)	381	90.55%	810	79.91%
	C10 = (2,2,1,2,4,6)	405	89.96%	874	78.32%
	C11 = (2,2,2,1,4,6)	417	89.66%	906	77.53%

Table III :

 III compares the complexity in terms of performed ACS operations for the extrinsic computation. A value of n m = 25 is assumed for the BC, which results in a FER performance close to MLM. Furthermore, n enc = 2, K s = 160 and n it = 8. No. of ACS operations for MLM, BC and NN-LSOVA and complexity reduction compared to MLM.

	Alg.	Num. of ACS Op.	Compl. red. [%]
	MLM	10,485,760	0	
	BC [8]	8,192,000	21.24
	NN-LSOVA Config.	worst	best	worst	best
	C1	6,475,520	2,515,200	38.24	76.01
	C2	4,432,640	1,905,920	57.73	81.82
	C3	2,177,280	1,048,320	79.23	90.00
	C4	5,026,560	2,039,040	52.06	80.55
	C5	4,074,240	1,875,200	61.15	82.12
	C6	10,241,280	4,273,920	2.33	59.2
	C7	3,910,400	1,793,280	62.71	82.90
	C8	2,466,560	1,163,520	76.48	88.90
	C9	2,154,240	1,056,000	79.46	89.93
	C10	2,318,080	1,117,440	77.89	89.34
	C11	2,400,000	1,148,160	77.53	89.66
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