
HAL Id: hal-03279583
https://imt-atlantique.hal.science/hal-03279583v1

Submitted on 6 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simplified recursion units for Max-Log-MAP: New
trade-offs through variants of Local-SOVA

Rami Klaimi, Stefan Weithoffer, Charbel Abdel Nour, Catherine Douillard

To cite this version:
Rami Klaimi, Stefan Weithoffer, Charbel Abdel Nour, Catherine Douillard. Simplified recursion units
for Max-Log-MAP: New trade-offs through variants of Local-SOVA. ISTC 2021: 11th International
Symposium on Topics in Coding, Aug 2021, Montreal, Canada. �10.1109/ISTC49272.2021.9594265�.
�hal-03279583�

https://imt-atlantique.hal.science/hal-03279583v1
https://hal.archives-ouvertes.fr

Simplified recursion units for Max-Log-MAP: New
trade-offs through variants of Local-SOVA

Rami Klaimi, Stefan Weithoffer, Charbel Abdel Nour and Catherine Douillard
IMT Atlantique, Lab-STICC, UMR CNRS 6285, F-29238 Brest, France

e-mail: firstname.surname@imt-atlantique.fr

Abstract—The Log-domain BCJR algorithm is broadly used
in iterative decoding processes. However, the serial nature of
the recursive state metric calculations is a limiting factor for
throughput increase. A possible solution resorts to high-radix
decoding, which involves decoding several successive symbols at
once. Despite several studies aiming at reducing its complexity,
high-radix processing remains the most computationally inten-
sive part of the decoder when targeting very high throughput. In
this work, we propose a reformulation specifically targeting the
complexity reduction of the recursive calculation units by either
limiting the required number of operations or by selectively
removing unnecessary ones. We report a complexity reduction
of the add-compare-select units in the order of 50% compared
to the recently proposed local-SOVA algorithm. In addition, our
results show that several performance/complexity trade-offs can
be achieved thanks to the proposed simplified variants. This
represents a promising step forward in order to implement
efficient very high throughput convolutional decoders.

Keywords—Max-Log-MAP decoding, local-SOVA algorithm,
low-complexity decoding, high-throughput turbo decoders.

I. INTRODUCTION

The Bahl, Cocke, Jelinek, and Raviv (BCJR) algorithm [1]
or its variants are widely used to compute the maximum a
posteriori (MAP) estimate of transmitted symbols in iterative
decoders or detectors [2]. Recently, a number of studies
have focused on fully parallel or fully pipelined hardware
implementations of the Max-Log-MAP (MLM) algorithm [3]
to achieve a throughput of tens of Gb/s [4]. The price to
pay to reach such high-throughput levels is a significant
increase in area due to the computational complexity of MLM
decoding [5]. To address this detrimental effect, the local-
SOVA algorithm (LSOVA) was introduced in [6]. It relies on
a new low-complexity soft-output calculation unit (SOU) that
applies a path-based decoding variant of the MLM algorithm.
This algorithm was adapted for a hardware implementation in
[7] and was shown to significantly reduce the hardware com-
plexity compared to a standard MLM decoder. Therefore, the
resulting increased area efficiency enables higher throughput
implementations of turbo decoders.

While [6] and [7] focused on the SOU, this work targets the
serial nature and complexity of the add-compare-select (ACS)
units that calculate the forward and the backward recursions.
In this sense, the results presented in the remainder of this
paper are complementary to [6], [7]. Increasing the radix order
for the ACS units, i.e. processing several trellis sections at
the same time, lowers the latency but is associated with an
increase in area complexity and a long critical path [8], [9].

Hence, reducing the number of ACS units without increas-
ing the complexity of the performed computations remains
an open question. This problem was nevertheless addressed
in [10] in the context of non-binary turbo decoders, where
a modified bubble sorter was shown to reduce significantly
the required number of ACS units. Corresponding results
confirmed that the decoder complexity cannot be lowered
without reducing the complexity of the recursions.

In this paper, we develop two different LSOVA variants
that reduce the complexity of the recursive calculations. While
these simplifications do apply on simple trellis-based decoding
or detection algorithms, in this work we take turbo decoding as
an example to assess the effect of the proposals on the decod-
ing performance. We report significant complexity reductions
in comparison with the LSOVA algorithm in [6], [7]. Proposed
variants enable further reductions in area complexity and in
latency of turbo decoder hardware implementations.

This paper is structured as follows: Section II gives a
background overview of the reference decoding algorithms.
In Section III, we propose two complementary variants of
these algorithms: Section III-A explains how to reduce the
complexity of the recursive calculations while Section III-B
proposes a technique to compute all the soft decisions in a
single step, thus reducing the decoding latency. Performance
comparisons in terms of error correction capability and com-
putational complexity are provided in Section IV. Finally,
Section V concludes the paper.

II. REFERENCE DECODING ALGORITHMS

A. The Max-Log-MAP decoding algorithm

In this section, we briefly recall the equations of the MLM
decoding algorithm [3]. The forward and the backward metrics
U and V for state 9 at trellis step 8 are computed using the
branch metrics W as:

U8 (9) = max
9′∈S 9
(U8−1 (9 ′) + W8−1 (9 ′, 9)) (1)

V8 (9) = max
9′∈S′ 9
(V8+1 (9 ′) + W8 (9 , 9 ′)) (2)

S 9 and S′ 9 are the sets of trellis states at steps 8−1 and 8 +1,
respectively, that are connected to state 9 at trellis step 8.

In addition, the soft output is calculated as a log-likelihood
ratio (LLR) at step or time index 8 :

L8 = max
(9, 9′)∈{0···2a }2 | B (9, 9′)=0

(U8 (9) + V8+1 (9 ′) + W8 (9 , 9 ′))

− max
(9, 9′)∈{0···2a }2 | B (9, 9′)=1

(U8 (9) + V8+1 (9 ′) + W8 (9 , 9 ′))
(3)

where a is the memory of the considered convolutional code
and B(9 , 9 ′) is the systematic bit that connects state 9 at trellis
step 8 to state 9 ′ at trellis step 8 + 1, if the connection exists.
When aiming for high throughput, several trellis sections can
be decoded together. Precisely, a radix-2@ trellis allows the
decoding of @ bits at each decoding step. Equations (1), (2)
and (3) have then to be adapted accordingly. Additionally,
for high-throughput decoding, the data frames are in practice
decomposed into windows of size , , processed in parallel.

B. The local-SOVA decoding algorithm

The LSOVA is a path-based variant of the MLM algorithm
introduced in [6]. It uses the same recursive metrics calcula-
tions (1) and (2) but the LLRs are computed using path-based
local update rules inspired by the SOVA. Conventionally, a
path in a trellis diagram is defined as a sequence of states
and is associated with an input bit sequence and a path
metric. In [6], an alternative definition of a path, with a
more local sense that focuses on a particular trellis section
is adopted. When considering a radix-2@ trellis, for each
trellis section, a path is defined for each state 9 as a 3-
tuple consisting of the path metric " , the @ hard decisions
D 9 = {D 9 ,0, . . . , D 9 ,@−1} labeling this path, and their associated
reliability values ! 9 = {! 9 ,0, . . . , ! 9 ,@−1}. Two paths %0 and
%1 can be merged into path %2 according to the following:

"2 = 50 ("0, "1) = max("0, "1) (4)

D2 (;) = 51 (D0 (;), D1 (;))∀; ∈ [0, @ − 1] (5)

where 51 selects the hard decision of the winning path
resulting from (4). The reliabilities ! are updated following:

!2 (;) = 52 (!0 (;), !1 (;))∀; ∈ [0, @ − 1] (6)

with 52 being the Hagenauer rule (HR) [11] or the Battail
rule (BR) [12] depending on D0 (;) = D1 (;) or D0 (;) ≠ D1 (;).
Let ? = arg max("0, "1), ?′ = arg min("0, "1) and Δ =

!? (;) − !?′ (;):

!2 (;) =
{

min(!? (;) , Δ + !?′ (;)) if D0 (;) = D1 (;) (BR)
min(!? (;) , Δ) if D0 (;) ≠ D1 (;) (HR) (7)

A merge and update tree is traversed to get the final hard
and soft outputs.

III. LOWERING THE COMPLEXITY OF THE FORWARD AND
BACKWARD RECURSIONS

Forward and backward recursions are performed serially for
the , trellis stages within a window. Corresponding computa-
tions require a proportional amount of ACS units, depending
on the radix order @, the number of states 2a and the targeted
frame size . For large , and , this number becomes
prohibitive for fully pipelined/parallel hardware architectures,
motivating the study of alternative algorithms with a reduced
number and/or simplified ACS units. To address this problem,
we propose two low-complexity ACS computation variants.

Fig. 1 shows the conventional computation of the forward
and backward recursions launched simultaneously from the
edges of a size-, window in a radix-4 trellis. The straight

Fig. 1: Windowed MLM decoding in a radix-4 trellis (@ = 2).

lines correspond to the winning transitions in (1) and (2),
while the dotted lines correspond to the losing transitions.
Once both recursions meet in the middle (MIM) of the
window, i. e. when U:+, /2 and V:+, /2 are computed, two
possible strategies can be applied, corresponding to the two
proposed simplified variants. The first strategy applies low-
complexity recursion units beyond : +,/2 to return to the
edges of , (down to : for V and up to : + , for U).
This strategy is denoted by low complexity return (LCR).
The second strategy halts the execution of the recursion units
and applies LSOVA over a unique merge tree to update the
soft output (reliability) values for the ,/2 trellis steps of the
forward and backward recursions jointly. Indeed, the decoding
decision of MLM at : +,/2 is the same regardless from the
path direction (forwards from : to :+,/2 or backwards from
:+, to :+,/2). This second strategy is called modified dual-
sided (MDS) LSOVA. In the remainder of this paper, since the
processing is limited to a window, index : is omitted (: = 1)
for simpler notations.

A. Meet in the middle and low-complexity return
Following Fig. 2, the metric difference between transition

; and the winning transition converging to state 9 at trellis
section 8 is denoted by X;

8
(9) for the forward recursion,

whereas the metric difference between this same transition and
the one that diverges from state 9 is denoted by Δ;

8
(9) for the

backward recursion. For each trellis stage 8 while performing

Fig. 2: X;
8
(9) and Δ;

8
(9) for a radix-4 trellis. Straight and dotted lines

correspond to winning and losing transitions.

the recursive calculations until MIM, we propose to memorize
X;
8
(9) and Δ;

8
(9) instead of the intermediate result of the for-

ward and the backward recursions. Beyond MIM, in contrast

to the MLM algorithm where values of U8 (9) and V8 (9) are
computed accurately and separately for the trellis stages, an
estimate of g8 (9) = U8 (9) + V8 (9) is computed recursively in
our LCR proposal. By considering solely winning transitions
from the forward and backward recursions before MIM, this
proposal largely reduces computational complexity.

Low-complexity backward g8 computation beyond MIM:
Continuing with the same example, let us consider the cal-
culation of g8 (9), 9 ∈ [0, 3] from the four g8+2 (9 ′), 9 ′ ∈ [0, 3]
values beyond MIM. The corresponding four transitions per
state were already considered, with one labeled as winning in
the forward metric calculation of U8+2, before MIM. This is
illustrated in the example of Fig. 3. Now for the same transi-
tions, considering the opposite direction from the viewpoint of
the states at trellis step 8, three labelling configurations can be
observed: denoting by =8 (9) the number of winning transitions
emerging from state 9 at position 8, we have =8 (0) = 0,
=8 (1) = =8 (3) = 1 and =8 (2) = 2.

Fig. 3: Example of winning (bold) and loosing (dotted) transitions
for the backward computation of g8 beyond MIM.

When =8 (9) > 0, g8 (9) can be directly deduced exclusively
from g8+2. When =8 (9) = 0, a readjustment calling upon
memorized X;

8
(9) and Δ;

8
(9) values, representing the difference

between the metrics of currently considered and the winning
transitions, is needed to estimate g8 (9):

g8 (9) =

g8+2 (;1) if =8 (9) = 1
max(g8+2 (;1)) if =8 (9) > 1
max(g8+2 (;2)) − X 98 (;2) if =8 (9) = 0

(8)

where ;1 is the set of winning transitions emerging from
state 9 during the calculation of U8+2 and ;2 is the set of all
the transitions emerging from state 9 .

Low-complexity forward g8 computation beyond MIM: Sim-
ilarly, g8 at the right side of the MIM calls upon transitions
labeled as winning in the backward metric calculation of V8−2:

g8 (9) =

g8−2 (;1) if =8 (9) = 1
max(g8−2 (;1)) if =8 (9) > 1
max(g8−2 (;2)) − Δ 98 (;2) if =8 (9) = 0

(9)

Using (8) and (9), g8 is estimated at each position in the
sub-trellis and is used in the LSOVA SOU to compute the
soft output values. With this proposal, we slightly increase
the memory requirements of the decoder, while reducing the
performed operations after MIM: the number of comparisons
needed for the metric computations is greatly decreased.
Moreover, no branch metric memorization/re-computation is

required. These reductions are expected to lead to signifi-
cant improvements of both the complexity and efficiency of
resulting hardware architectures. To sum up, the proposed
reformulation of the MLM recursive units noticeably reduces
the computational complexity while still suffering from the
serial nature of these computations.

B. Meet in the middle and modified dual-sided LSOVA

Contrary to the LCR approach, the proposed MDS-LSOVA
algorithm avoids the computation of the recursive metrics
after MIM, without significant impact on the error correcting
performance. To do so, we compute U8 (9) and V8 (9) using
paths %1

9
= {" 9 , D

1
9
, !1

9
} and %

5

9
= {" 9 , D

5

9
, !

5

9
} resulting

from the backward and the forward recursion computations
for each state 9 at time index 8 before MIM. A first approach
to carry out these computations in one shot is by considering
a radix-2, /2 LSOVA for the computation of U:+, /2 and
V:+, /2. Hence, no path merge occurs before MIM. Then, only
one LSOVA SOU merge tree is required to update both sides
of MIM while avoiding recursive computations after MIM.

However, the computational complexity of a recursive met-
ric U or V increases exponentially with the number of trellis
sections @ within a radix. With @ = ,/2, the complexity
becomes prohibitive for a practical implementation with typ-
ical values of , (32 or 64). As an alternative, we propose
to use a lower radix order (typically 4, i. e. @ = 2) for the
recursions before MIM, while still applying only one SOU at
MIM. This requires modifications to the LSOVA algorithm
due to the merges that occur after each lower-order radix
during the recursions in this case. Indeed, if we consider for
example a forward recursion with radix 4, it happens that a
state at position 8 does not lead to any winning transition for
the merge at 8 + 2 (i. e. =8 (9) = 0) as seen in Fig. 3. Then,
the forward metric accumulated (before 8) up to this state will
fail to reach the merge tree of the SOU at MIM and will
not be considered for the computation of the final reliability
values, entailing large performance penalties. To address this
issue, we propose to update the reliability values ! for all
previous trellis steps during the computation of the recursion
metrics for each new radix-2@ trellis segment. In the case of
forward recursions, let % 51 (8), %

5

2 (8), . . . %
5

2@ (8) be the paths
at trellis position 8 to be merged to compute %

5
>DC (8 + @) at

trellis position 8 + @. Then, U8+@ = "
5
>DC is computed from U8 ,

and 8 + @ bits are to be updated according to (6). The merge
operation computes

"
5
>DC = 50 ("1, . . . , "2@) = max(" 5

1 , . . . , "
5

2@) (10)

D
5
>DC (;) = 51 (D 51 (;), . . . , D

5

2@ (;))∀; ∈ [1, 8 + @] . (11)

The reliability values are updated through

!
5
>DC (;) = 52 (! 51 (;), . . . , !

5

2@ (;))∀; ∈ [1, 8 + @] (12)

where 51 and 52 are defined as in (5) and (6).
Similar merge operations are to be performed during the

backward recursions. At MIM, the 2a length-,/2 winning
paths of the forward and backward recursions meet. The result

of the addition of their metrics " 5 and "1 is provided as
input to a LSOVA SOU tree involving 2a−1 merge operations,
generally organized in a layers [6]. Each merge operation
involves updating the reliability values of the hard decisions
labeling the merged paths on both sides of MIM, due to
symmetry between the forward and backward processes.

The number of performed updates has a great impact on
computational complexity. Aiming to reduce it, we studied
the effect of limiting the update depth. This was motivated
by the well-known feature of convolutional codes that all
trellis paths merge to the maximum likelihood path after some
trellis steps. When considering no limitation, the number of
reliability updates to be performed for each trellis state when
processing trellis position 8 in the forward recursion, = 5

D?3
(8),

is 8. Therefore, when considering radix-2@ processing for the
recursions, the total number of updates performed during the
forward recursions is

#
5

upd = 2a
,
2@∑
<=1

=
5

upd (<@) = 2a
@

2
,

2@

(
,

2@
+ 1

)
(13)

Due to symmetry, the total number of updates performed
during the backward recursions #1upd is also equal to #

5

upd.
In addition, the total number of updates in the SOU is

#SOU
upd = (2a − 1), (14)

In summary, MDS-LSOVA replaces half of the recursive
computations by updates and can thus largely limit latency
since the necessary update operations can be highly par-
allelized and pipelined. Moreover, limiting the number of
updates can have a significant impact on complexity and error
correction performance. Several trade-offs were assessed when
limiting the value of = 5

D?3
to different fixed values in (13) as

well as the number of updates in (14), depending on the layer
B, B ∈ [1, a] . They are illustrated in the following example.

IV. CASE STUDY: SIMULATION RESULTS AND
COMPLEXITY ANALYSIS

In this section, we consider a turbo code using tail-biting
a = 3 recursive systematic convolutional code with generator
polynomials (1, 15/13)8 as component code. A frame size
 = 128 bits, window size , = 32 and an almost regular
permutation designed following [13] are used. Table I shows
the different configurations for the truncation of the updates.
=SOU

upd (B), B ∈ [1, 3] is the number of updates performed by the
SOU for each merge operation in layer B (instead of ,).

TABLE I: Proposed MDS-LSOVA update truncation configurations.

Conf.
Upd.

=
5

upd =SOU
upd (1) =SOU

upd (2) =SOU
upd (3)

�1 4 4 4 4
�2 8 8 8 8
�3 4 4 4 16
�4 8 8 8 16
�5 4 8 8 16
�6 4 16 16 16
�7 8 16 16 16

As explained above, forward and backward recursions stop
at MIM for MDS-LSOVA. Therefore, the starting and ending

positions of the decoding windows have to be shifted between
the successive iterations of the decoding process. This can be
easily done with a tail-biting code. The starting and ending
positions used for each window in our simulation setup are
shown in Table II. For initialization, we used the metric values
at MIM as initial values for the next iteration, as in the next
iteration initialization technique [14].

TABLE II: Window boundaries for odd/even iter. (= 128,, = 32).

Iteration
Win Win1 Win2 Win3 Win4

odd [0, 31] [32, 63] [64, 95] [96, 127]
even [16, 47] [48, 79] [80, 111] [112, 15]

Fig. 4 shows the error correction performance in terms of bit
error rate (BER) of the proposed algorithms in AWGN channel
using BPSK modulation. Two coding rates, ' = 1/3 and
' = 8/9, were simulated. For both rates, the LCR algorithm
and the full-complexity MDS-LSOVA perform within 0.2 dB
of the reference LSOVA, which is strictly equivalent to the
MLM algorithm. Observed penalties are due to the simplified
recursion metrics in the case of LCR and to the limited
propagation of the forward and backward metrics in a window
(only up to,/2 instead of,) during one iteration for the full-
complexity MDS-LSOVA. Regarding the configurations with
a limited update length, performance is gradually degrading
from �7 to �1, up to 1 dB compared to full-complexity MDS-
LSOVA performance. To choose between configurations, com-
plexity must be taken into account.

The complexity of the different algorithms whose BER
performance is shown in Fig. 4 is provided in Table III. It is
expressed in number of ACS units and updates in the case of
radix-4 processing (@ = 2). Before MIM, the LSOVA and LCR
perform 2a (2@ − 1),2@ = 192 ACS operations and updates for
each recursion, forward or backward. For the MDS-LSOVA,
the same amount of ACS operations is required but the updates
are carried out on a certain amount of previous trellis steps,
depending on the truncation length. After MIM, there are
no more update operations in the recursions and the number
of ACS computations is the same as before MIM for the
reference LSOVA, while it is statistically halved for the LCR
algorithm according to (8) and (9). In the LSOVA and LCR
algorithms, ,

@
= 16 SOUs are required, each SOU performing

2a − 1 = 7 ACS operations, each comparison being followed
by @ = 2 updates (one for each decoded bit). The MDS-
LSOVA no longer needs any recursive computation after MIM
and requires only one SOU for the whole window, involving
2a−1 = 7 ACS operations and (2a−1), = 224 updates for the
full-complexity algorithm. The complexity of the simplified
variants of the MDS-LSOVA is computed according to the
parameters given in Table I.

All the proposed algorithms reduce the number of ACS
units compared to the reference LSOVA. The LCR and MDS-
LSOVA algorithms reduce the number of ACS operations
by more than 20% and 50%, respectively, at the price of
an increased number of updates in some cases. All the
simplified MDS-LSOVA configurations require a lower total

0 1 2 3 4 5 6 7 8 9
Eb/N0(dB)

10
-1

10
-2

10
-3

10
-4

10
-5

10
-6

10
-7

10
-8

B
E
R R=1/3

LSOVA

LCR

MDS

MDS-C1

MDS-C2

MDS-C3

MDS-C4

MDS-C5

MDS-C6

MDS-C7

R=8/9

10
-1

10
-2

10
-3

10
-4

10
-5

10
-6

10
-7

10
-8

B
E
R

2 3 4 5 6 7 8 9

LSOVA

LCR

MDS

MDS-C1

MDS-C2

MDS-C3

MDS-C4

MDS-C5

MDS-C6

MDS-C7

Eb/N0(dB)

Fig. 4: BER comparison of a turbo code using proposed and reference decoding algorithms. = 128 bits, , = 32, code rates ' = 1/3,
' = 8/9 and 8 iterations. AWGN channel and BPSK modulation.

TABLE III: Complexity comparison of the considered decoding
algorithms in number of ACS and update operations required to
decode one window. Radix 4 (@ = 2), , = 32.

Algo
Unit Recursion SOU Compl./LSOVA

ACS Upd. ACS Upd. ACS Upd. Tot. Ops.
LSOVA 768 384 112 224 - - -
LCR 576 384 112 224 -21.8% 0% -12.91%
MDS 384 1152 7 224 -55.6% +55.8% +15.8%
MDS-�1 384 480 7 56 -55.6% -11.8% -37.7%
MDS-�2 384 832 7 112 -55.6% +35.6% -11.3%
MDS-�3 384 480 7 80 -55.6% -7.9% -36.1%
MDS-�4 384 832 7 128 -55.6% +36.7% -9.2%
MDS-�5 384 480 7 128 -55.6% 0% -32.82%
MDS-�6 384 480 7 224 -55.6% +13.6% -26.5%
MDS-�7 384 832 7 224 -55.6% +42.4% -2.8%

number of operations than LSOVA. Therefore, the choice of
the appropriate configuration is a compromise between error
correction performance and complexity/latency reduction. For
example, the LCR decoder offers a significant reduction in
number of ACS units while maintaining the same latency as
the LSOVA decoder. Differently, MDS-�7 performs close to
the reference algorithm, with an expected halved latency but
with only a slight reduction in complexity.

V. CONCLUSION

We proposed several variants of the LSOVA algorithm with
several performance/complexity/latency trade-offs. The LCR
algorithm reduces the complexity of the ACS units by more
than 20% for a penalty of up to 0.2 dB depending on the code
rate. The second variant goes further to halve the number of
ACS units at the cost of more update operations for the soft
output computation in certain cases. The decoder designer is
offered then a much wider panel of trade-offs compared to
prior art. In fact, recent works on LSOVA showed that path-
based complexity reductions directly translate to reductions
in area complexity for hardware implementation [7]. The
results of this paper confirm that path-based variants of the
BCJR algorithm have a high potential in achieving low latency
decoding, while guaranteeing high throughput.

ACKNOWLEDGMENT

This work was partially funded by the French National
Research Agency TurboLEAP project (ANR-20-CE25-0007).

REFERENCES

[1] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear
codes for minimizing symbol error rate (corresp.),” IEEE Trans. Inform.
Theory, vol. 20, no. 2, pp. 284–287, 1974.

[2] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit
error-correcting coding and decoding: Turbo-codes,” in IEEE Int. Conf.
Commun. (ICC), Geneva, Switzerland, May 1993, pp. 1064–1070.

[3] P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and
sub-optimal MAP decoding algorithms operating in the log domain,” in
IEEE Int. Conf. Commun. (ICC), vol. 2, June 1995, pp. 1009–1013.

[4] R. G. Maunder, “A fully-parallel turbo decoding algorithm,” IEEE Trans.
Commun., vol. 63, no. 8, pp. 2762–2775, 2015.

[5] S. Weithoffer, R. Klaimi, C. Abdel Nour, N. Wehn, and C. Douillard,
“Fully pipelined iteration unrolled decoders-The road to Tb/s turbo
decoding,” in IEEE Int. Conf. Acoustics, Speech, and Signal Proc.
(ICASSP), Barcelona, Spain, May 2020.

[6] V. H. S. Le, C. Abdel Nour, E. Boutillon, and C. Douillard, “Revisiting
the Max-Log-Map algorithm with SOVA update rules: new simplifica-
tions for high-radix SISO decoders,” IEEE Trans. Commun., vol. 68,
no. 4, pp. 1991–2004, 2020.

[7] S. Weithoffer, R. Klaimi, C. Abdel Nour, N. Wehn, and C. Douillard,
“Low-complexity computational units for the local-SOVA decoding
algorithm,” in IEEE 31st Int. Symp. Personal, Indoor and Mobile Radio
Commun. (PIMRC), London, UK, Sept. 2020.

[8] J.-H. Kim and I.-C. Park, “A unified parallel radix-4 turbo decoder
for mobile WiMAX and 3GPP-LTE,” in IEEE Custom Integrated Circ.
Conf., San Jose, CA, USA, 2009, pp. 487–490.

[9] O. Sánchez, C. Jégo, M. Jézéquel, and Y. Saouter, “High speed low
complexity radix-16 Max-Log-MAP SISO decoder,” in IEEE Int. Conf.
Electron., Circ., and Sys. (ICECS), Seville, Spain, 2012, pp. 400–403.

[10] R. Klaimi, C. Abdel Nour, C. Douillard, and J. Farah, “Low-complexity
decoders for non-binary turbo codes,” in 10th Int. Symp. on Turbo Codes
Iter. Inf. Proc. (ISTC), Hong Kong, China, Dec. 2018.

[11] J. Hagenauer and P. Hoeher, “A Viterbi algorithm with soft-decision
outputs and its applications,” in 1989 IEEE Global Telecomm. Conf.
and Exhib. (Globecom), Nov 1989, pp. 1680–1686 vol.3.

[12] G. Battail, “Pondération des symboles décodés par l’algorithme de
Viterbi,” in Annal. Telecomm., vol. 42, no. 1-2, 1987, pp. 31–38.

[13] R. Garzón-Bohórquez, C. Abdel Nour, and C. Douillard, “Protograph-
based interleavers for punctured turbo codes,” IEEE Trans. Commun.,
vol. 66, no. 5, pp. 1833–1844, 2018.

[14] M. Bickerstaff, L. Davis, C. Thomas, D. Garrett, and C. Nicol, “A
24Mb/s radix-4 logMAP turbo decoder for 3GPP-HSDPA mobile wire-
less,” in IEEE Int. Solid-State Circ. Conf. (ISSCC), San Francisco, CA,
USA, 2003, pp. 150–484.

