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Context and main goal

I In the IPCC → ensemble of unweighted projections (”one
model one vote” or ”model democracy”, [Knutti, 2010])

I Idea → learn weights from historical observations and
simulations, then propagate weights to climate projections
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Climate uncertainties revealed by CMIP

Source: [Hawkins and Sutton, 2011]

I Climate projections are sensitive to internal, model and
scenario uncertainties

I Potential to narrow uncertainties, especially in regional
climate predictions [Hawkins and Sutton, 2009]
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New at IPCC: emergent constraints

Source: [Eyring et al., 2019]
Pros:
I Easy to implement (projection using linear regression)
I Easy to understand (synthetic graphical representation)
I Do not weight climate simulations (not directly)

Cons:
I Causality not obvious (especially for large horizons)
I Low number of samples to fit the regression
I Questionable linear relationship and homoscedasticity
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Proposed approach: use advanced data science methods

Three main steps:
I (a) Data assimilation (ensemble Kalman filter)
I (b) Data-driven forecasting (local linear regression)
I (c) Distance obs-forecasts (contextual model evidence)
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Ingredient 1: (a) EnKF + (c) contextual model evidence

Contextual model evidence in data assimilation (CME):

L
(
y(t)|M(i)

)
∝ exp

(
−d(i)(t)>Σ(i)(t)−1d(t)

)
(1)

with the innovation defined by its mean and covariance:
d(i)(t) = y(t)− Hxf(i)(t) and Σ(i)(t) = HPf

(i)(t)H> + R.

Source: [Carrassi et al., 2017]
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Ingredient 2: (a) EnKF + (b) analog forecasting

Analog forecasting within data assimilation (AnDA):

x(t) = A (x(t − dt),η(t)) (2)

y(t) = H (x(t)) + ε(t) (3)

with A the analog forecasting operator [Lguensat et al., 2017].

Source: [Tandeo et al., 2015]
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Ingredients 1 + 2: (a) EnKF + (b) AF + (c) CME

I Tested on a simplified GCM (SPEEDY, [Molteni, 2003]):
I 7 vertical levels, 96× 48 horizontal grid
I simple physics (convection, clouds, radiation, boundary layer)

I Relative Humidity threshold in the Boundary Layer:
I RHBL = 0.9→ the ”true” model
I RHBL = 0.8→ slightly imperfect model
I RHBL = 0.7→ imperfect model
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Ingredients 1 + 2: (a) EnKF + (b) AF + (c) CME
I Analog data assimilation details:

I EnKF with 40 members with adaptive inflation [Miyoshi, 2011]
I 30-years catalogs for 3 parameterizations (RHBL 0.9, 0.8, 0.7)
I 3D local domains (3 vertical levels, 3× 3 horizontal grid)
I 3 years of noisy observations from RHBL 0.9 (std = 0.7K )
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Ingredients 1 + 2: (a) EnKF + (b) AF + (c) CME

I Results about model identification (in space):
I tropical-subtropical regions affected by model imperfections
I degree of imperfection is captured (RHBL 0.7 < 0.8)
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Ingredients 1 + 2: (a) EnKF + (b) AF + (c) CME

I Results about model identification (in space and time):
I sensibility to the RHBL parameter is evolving in time
I detection of model imperfection more important in summers

(i.e., when there is more convection observed)
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Ingredients 1 + 2: (a) EnKF + (b) AF + (c) CME

Conclusions:

I Combination of advanced data-science methods

I Able to compare short-term model dynamics

I Ruiz et al., will be submitted soon to the Journal of Climate

Pros:

I Local approach (sub-domain, given period, partial variables)

I Low-cost procedure (no need to run climate models)

I Capture spatiotemporal differences in model identifications

Cons:

I Need historical numerical simulations

I Need tuning (analogs, inflation, domain, observations)

I May seem complicated (but not so much!)
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Next step: application to climate simulations

I Data → compare current observations to CMIP simulations
I Method → combine data-science methods (DA, AF, CME)
I Goal 1 → create weighted projections of climate metrics
I Goal 2 → reduce the uncertainty of climate projections
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Next step: application to climate simulations
Specificity of climate simulations [Knutti et al., 2019]:
I Interdependence → many CMIP models share ideas, parts of

code, or whole components (e.g., the sea ice model)
I Performance → some CMIP models are ”good” at

representing a specific climate index, other models are not
I Simulations are sometimes biased and need standardization

Source: [Cheng et al., 2013]
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Next step: application to climate simulations

Caveats and improvement of the methodology:
I (a) → deal with model interdependence (e.g., work with

clusters of models), deal with non-parametric distributions
I (b) → find differences in the short-term dynamics of climate

metrics (especially in the extremes), find relevant dt
I (c) → define more flexible metrics (e.g., optimal transport),

find relevant observations (long time series, knowing noise)
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Thank you for your attention! Any questions?
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