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Abstract—To achieve better connectivity in future communica-
tion networks, the deployment of different types of access points
(APs) is underway. APs are expected to be equipped with self-
organizing capabilities to reduce costs. Moreover, due to the
spectrum crunch, frequency reuse among the deployed APs is in-
evitable, exacerbating the problem of inter-cell interference (ICI).
Therefore, ICI mitigation in self-organizing networks (SONs)
is commonly identified as a key radio resource management
mechanism to enhance performance. To this end, this paper
proposes a novel solution for the uncoordinated channel and
power allocation problems. Based on the multi-armed bandits
(MAB) framework, the proposed technique does not require any
communication between the APs. The case of varying channel
rewards across APs is considered. In contrast to previous work on
channel allocation using the MAB framework, APs are permitted
to choose multiple channels for transmission. Moreover, non-
orthogonal multiple access is used, allowing multiple APs to
access each channel simultaneously. This results in an MAB
model with varying channel rewards, multiple plays and non-
zero reward on collision. The proposed algorithm has an expected
regret in the order of O(log2 T ), with extensive numerical results
revealing it significantly outperforms a well-known baseline
algorithm in terms of energy efficiency.

Index Terms—Uncoordinated channel and power allocation,
MAB with multiple plays and non-zero reward on collision,
varying reward distribution, NOMA, self-organizing networks.

I. INTRODUCTION

Future cellular communication networks are expected to
support a myriad of new applications and services conceived
for both traditional human-type devices and for the growing
number of machine-type devices [1]. To meet the exponential
growth in connectivity and mobile traffic, new technologies
are needed. Among these new technologies, the deployment of
different types of access points (AP), e.g., small base-stations
(SBS), pico-cells, femto-cells, relays, etc., is of particular
importance, since APs can offload mobile traffic from highly
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congested macro-base stations (MBS) [2]. To limit human
intervention and reduce planning and maintenance costs, APs
can be equipped with self-organizing capabilities [3], allowing
them to optimize their resource use in a distributed manner.
APs normally have a lower transmit power budget and a
smaller coverage range when compared to traditional MBSs.
However, thanks to their denser deployment, APs benefit from
the ability to consume less transmit power, leading to signif-
icant gains in power consumption as was shown in [4], [5].
That said, by introducing APs into the network, the problem
of inter-cell-interference (ICI) is aggravated, necessitating the
application of adequate resource allocation algorithms to limit
the interference [6].

The problem of ICI in self-organizing networks (SON)
was extensively studied in the literature. In [7], the weighted
sum-rate of the system is optimized through ICI coordination
between SBSs. The authors adopt a blanking method where
at the level of each SBS, some wireless channels are not used
to mitigate the ICI. In [8], an algorithm for ICI coordination
between SBSs based on asynchronous inter-cell signaling is
proposed. The authors of [9] propose an algorithm based on a
semi-static frequency allocation to mitigate ICI and enhance
the performance of cell-edge users. The proposed solutions of
[7]–[9] rely on explicit communication between the distributed
SBSs to mitigate ICI, resulting in excessive signaling among
SBSs. To limit signaling overhead, decentralized algorithms,
based on reinforcement learning, are preferred.

The use of reinforcement learning in wireless communi-
cations has recently garnered significant attention [10]. The
related framework of multi-player multi-armed bandits (MAB)
[11] has also been widely used to study multiple problems in
wireless communication systems ranging from SON [12]–[14],
to uncoordinated spectrum access [15]–[18], to fast uplink
grant allocation [19], to unmanned-aerial vehicles positioning
and path-planning [20]. In the context of SON, in [12],
[13], a solution is proposed based on the stochastic MAB
framework to allow SBSs to partition efficiently the available
frequency resources in an effort to mitigate ICI. In [21],
a method based on learning automata is proposed where
femto-cells adjust their resource use based on the feedback
received from users. In [14], the authors resort to the EXP3
algorithm from the adversarial MAB framework to mitigate the
ICI while allowing each base-station (BS) to access multiple
frequency bands. The work in [22] proposes a data-driven
approach based on the MAB framework to address the ICI
problem in heterogeneous networks (HetNets). The MAB
framework was also widely used to study the opportunistic
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and the uncoordinated spectrum access problems. For example,
in [15], [16] and [23], the MAB model is used to study
the opportunistic spectrum access problem in cognitive radio
networks where secondary users compete to access the part
of the spectrum not occupied by primary users. In addition to
studying the opportunistic channel access problem, in [23], the
authors also solve the distributed power allocation problem.
In contrast to opportunistic channel access, the authors of
[17], [18] and [24] employ MAB to study the uncoordinated
spectrum access problem without distinguishing between the
users. The distributed power control problem is studied in [24],
and solutions are proposed based on the upper-confidence-
bound (UCB) algorithm, and on the ε-greedy algorithm. In
[25], the channel and power allocation problem in a device-to-
device system is modeled using the MAB framework. A game-
theoretic solution based on the potential game framework is
proposed to minimize regret of users.

With the exception of [14], all previous work on wireless
communications solutions based on MABs assumes that each
player chooses one channel at each timeslot. However, remov-
ing this assumption is expected to improve performance for the
players if a suitable algorithm is formulated, especially for
the case of a SON. Indeed when an AP can access multiple
channels simultaneously, an increase in both, the probability
of a successful transmission and the achieved reward or rate is
observed, allowing the AP to serve more end-users. Moreover,
with the exception of [17], [18], [25], all previous work
based on MABs considered a zero reward for multiple players
accessing the same channel. By alleviating this assumption
and adopting non-orthogonal multiple access (NOMA), system
performance is expected to further improve.

From an information-theoretical point of view, it is well-
known that non-orthogonal user multiplexing using superposi-
tion coding at the transmitter and proper decoding techniques
at the receiver not only outperforms orthogonal multiplexing,
but is also optimal in the sense of achieving the capacity
region of the downlink broadcast channel [26]. As a result,
NOMA emerged as a promising multiple access technology
for 5G systems [27]–[29]. NOMA allows multiple users to
be scheduled on the same time-frequency resource by mul-
tiplexing them in the power domain. At the receiver side,
successive interference cancellation (SIC) is performed to
retrieve superimposed signals.

To limit the ICI in a SON, studying the resource allocation
in the fronthaul portion of the network is of utmost importance
[12]–[14]. When coupled with optimizing the resource allo-
cation in the backhaul link, optimizing the fronthaul portion
leads to significant performance gains [29], [30].

In this paper, we consider the fronthaul part of a self-
organizing wireless network where multiple APs aim at or-
ganizing their uplink transmissions with a central unit in a
distributed manner. Both the uncoordinated channel access and
the distributed power control problems are studied. A solution
based on the MAB framework, which does not necessitate
any coordination or communication between APs, is proposed.
The considered setting is closest to the ones studied in [17]
and [31], where a game-theoretic approach is used to solve
the uncoordinated channel access problem. Our study extends

that of [17] and [31] by allowing each AP to access multiple
channels simultaneously and by proposing a model for the
distributed power control problem. The main contributions of
this paper can be summarized as follows:
• A two-phase algorithm based on the MAB framework,

extending the work in [17], [31], is proposed for the un-
coordinated channel access and distributed power control
problems.

• For the first phase, i.e., the uncoordinated channel access
phase, in addition to considering varying channel rewards
between APs, each AP is allowed to simultaneously
access multiple channels. This is in contrast to the work
in [17] and [31] where each player accesses one channel
in a timeslot. Moreover, each channel can accommodate
multiple APs at once using NOMA, leading to a multi-
player MAB problem with varying player rewards, mul-
tiple plays and non-zero reward on collision.

• For the power control phase, varying power level rewards
between APs are considered and an algorithm to solve the
power control problem on each channel is proposed.

• The proposed technique is shown to achieve a sublinear
regret of O(log2 T ). In addition, simulation results vali-
dating the theoretical results and the performance of the
proposed technique are presented.

• To the best of our knowledge, this is the first work
that studies the uncoordinated channel access and the
distributed power control problems in a SON network,
using both NOMA and the multi-player MAB framework
with varying channel rewards across users, multiple plays,
and non-zero reward on collision.

The rest of this paper is organized as follows. The system
model is presented in section II. In sections III, IV, V and VI,
the proposed algorithm is presented along with an analysis
of the system-wide regret. Simulation results are presented in
section VII and conclusions in section VIII.

II. SYSTEM MODEL

Consider the uplink of a cellular system as shown in Fig.
1 where K APs aim to organize their communications with
an MBS serving as gateway to the core network, over M
available wireless channels, in an uncoordinated manner. The
communication occurs over a finite time horizon T that may
not be known in advance to the APs. At each timeslot t,
every AP k chooses N channels, adjusts its transmission
power, and transmits over the chosen channels. Note that the
proposed solution can be easily extended to the case where
each AP k ∈ K chooses Nk channels at each timeslot, where
1 ≤ Nk ≤M . We assume that NOMA is employed, enabling
multiple APs to choose the same channel for communication
and achieve a non-zero rate. That said, if two or more APs
choose the same channel, the received power levels of these
APs must be different at the receiving BS level in the core
network, to enable SIC decoding at the receiver side. To
ensure the reception of different received power levels for
the signals transmitted by the APs, we generalize the uplink
NOMA power allocation model introduced in [32], where for a
constant SINR requirement, L received power levels, ensuring
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Fig. 1: System Model.

the SINR requirement for L users scheduled on the same
channel, are calculated. In this work, we extend the study of
[32] to allow for L distinct SINR requirements per channel,
Γ = {Γ1, . . . ,ΓL}, sorted by decreasing order. Note that
allowing for distinct SINR levels inherently encompasses the
special case of constant SINR levels.

An AP k choosing SINR requirement Γl over channel m
achieves the following uplink data rate:

Rk,m,l = log2 (1 + Γl) , (1)

where Γl is given by:

Γl =
vl

Vl +N0Bc
. (2)

In Eq. (2), vl is the received power level of AP k, the
expression of which is given in Section II-B, N0 is the noise
power spectral density and Bc the channel bandwidth. At
the receiver side, when the AP transmissions are received
with different power levels, SIC is employed to decode the
received messages in a descending order. In other words, the
AP choosing a higher SINR requirement Γl, and consequently
a higher received power level vl, suffers interference from all
APs choosing a lower SINR requirement. Once decoded, the
signal of the AP choosing Γl is removed using SIC before
decoding the remaining messages. Hence, variable Vl of Eq.
(2) is the power level of the interfering transmissions, not
canceled with SIC, expressed as: Vl =

∑L
l′=l+1 vl′ . To limit

the decoding complexity at the receiving BS in the core
network, as well as the error propagation in SIC, the number
of APs allowed to access a channel and achieve a non-zero
rate is limited to β, such that βM ≥ KN . Note that in the
case of a varying number of chosen channels across users,
this last condition becomes βM ≥

∑
k∈KNk. It is assumed

that when an AP k accesses a channel m at timeslot t, k
receives feedback at the end of the timeslot regarding the total
number of APs currently accessing channel m. No a priori
knowledge of the channel gain experienced over each channel
is assumed. Moreover, these channel gains are distinct for each
AP. To solve the channel and power allocation problems in an
uncoordinated manner, we proceed in two steps, the first, of
length TC , dedicated to channel allocation and the second, of
length TP , dedicated to power allocation. Note that both TC
and TP may not be known to the APs.

A. Uncoordinated Channel Allocation

To allow each AP to access N channels simultaneously in a
NOMA manner, the problem of uncoordinated multiple access
is modeled as a stochastic multi-player MAB problem with
multiple plays and non-zero reward on collision. The set of
players is the set of APs K and the set of arms is the set of
channels M. The action of each AP k at each timeslot t is
atk ∈ {0, 1}M×1 such that atk(m) = 1 if AP k pulls channel
m at timeslot t. Moreover,

∑M
m=1 a

t
k(m) = N, ∀k ∈ K.

The action space of each AP k, Ak, consists of all possi-
ble combinations of N channels, hence |Ak| =

(
M
N

)
. Let

at = {at1, . . . ,atK} denote the strategy profile of all APs in
timeslot t. Upon choosing an action atk ∈ at, AP k receives
the following average reward:

gtk(at) =

M∑
m=1

atk(m)µM (k,m, km), (3)

where km is the number of APs choosing channel m at
timeslot t. The variable µM (k,m, km) is the mean reward of
AP k over channel m when km APs access it. Note that the
actual value of the received reward by AP k when choosing
channel m at timeslot t is drawn from a uniform distribution
with mean µM (k,m, km).

We assume that the mean reward of AP k when accessing
channel m alone is equal to the normalized average channel
gain of AP k over channel m, i.e.,

µM (k,m, 1) = hk,m/µ
max
M , (4)

where µmaxM = max
k∈K,m∈M

hk,m and hk,m is the average

channel gain of AP k over channel m accounting for both
small scale Rayleigh fading and large scale fading (i.e., path-
loss and log-normal shadowing). Note that it is assumed that
the BS at the core network performs channel estimation on
the received signals from all APs. Hence, the average channel
gains hk,m,∀k ∈ K,∀m ∈ M are assumed to be perfectly
known by the receiving BS. For 1 < km ≤ β, the mean
reward of an AP must account for the added interference
brought by the (km − 1) other APs scheduled on the same
channel m. Ideally, the mean reward should take into account
the interference brought by each particular AP. However, that
would result in a prohibitive complexity since any channel,
for each 1 < km ≤ β, would have

(
K−1
km

)
distinct reward

values. To simplify the analysis, in this work, we assume that
the mean reward for 1 < km ≤ β, is a decreasing function of
the number of interfering APs on the same channel. In other
words,

µM (k,m, km) = µM (k,m, 1)/km. (5)

When km > β, µM (k,m, km) = 0. The normalization in Eq.
(4) leads to: µM (k,m, km) ∈ [0, 1] for every AP k ∈ K, on
every channel m ∈M and for every number of APs km ∈ [β].
Hence, gtk(at) ∈ [0, N ].

In addition to receiving the achieved rewards, we assume
that the feedback received by each AP k from the MBS
includes the total number of APs simultaneously accessing
its chosen channels. In other words, for all channels m such
that atk(m) = 1, AP k receives the total number of APs
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accessing channel m, i.e., receives km =
∑
k∈K a

t
k(m). This

information is useful for the future decisions of APs regarding
chosen channels and is necessary for the correct estimation
of the mean rewards, allowing APs to learn and settle on
the optimal allocation. Moreover, since β is normally kept
small, feeding back to each AP k the total number of APs
simultaneously accessing its chosen channels requires only a
few bits.

APs make their decisions in a distributed manner observing
neither the channels chosen by other APs nor the rewards
received by other APs. Each AP k can only observe the reward
it gets on each of its chosen channels. Our aim is to propose
a distributed algorithm allowing APs to organize their trans-
missions on the available channels, without communicating
together, in such a way as to maximize the sum reward of the
system. By definition, the action profile yielding the highest
sum reward a∗ is given by:

a∗ = argmax
a∈A

K∑
k=1

M∑
m=1

ak(m)µM (k,m, km), (6)

where A is the action space of all APs, i.e., A =
∏
k∈KAk.

The expected regret incurred during TC is the difference
between the achieved reward when playing a∗ at all timeslots,
and the actually achieved reward by the learning players during
the TC timeslots [11]. In our case, it is given by:

R̄ =TC
∑
k,m

a∗k(m)µM (k,m, k∗m)−

E

 TC∑
t=1

∑
k,m

ak(m)µM (k,m, km)

 ,

(7)

where k∗m is the optimal number of APs scheduled over
channel m under a∗.

After TC timeslots, the APs receive a signal from the core
network to terminate the channel allocation phase. At the end
of the channel allocation phase, at most β APs are scheduled
over each channel m ∈ M. Moreover, as an outcome of this
first phase, each AP k computes an estimate of its average
channel gain over each channel m, denoted by ĥk,m.

B. Distributed Power Allocation

Once settled over their chosen channels, the APs receive a
signal from the core network to move to the power allocation
stage. Since different frequency bands are allocated to different
channels, power allocation over each channel m can be done
independently of other channels m′ ∈ M \ {m}. In the
following, we will focus on the power allocation over channel
m ∈M, where the set of scheduled APs is Km.

To simplify the distributed power allocation, we assume that
each AP chooses, for each of its allocated channels, one SINR
level among a fixed set of L ≥ β available SINR levels, with
Γ being the set of pre-determined available SINR levels. The
AP then calculates the necessary power level vl for the chosen
SINR level Γl. For successful SIC decoding, each power level
can support one AP only. In other words, if multiple APs
choose the same power level, SIC fails and the signals of all

Km APs are not decodable. Inspired by [32], it can be shown
that, to satisfy Eq. (2), the power level vl must be set as:

vl = ΓlN0Bc

L∏
l′=l+1

(Γl′ + 1) . (8)

Note that the expression of vl is obtained by proceeding
backwards and by induction from vL = ΓLN0Bc.

The expression of vl ensures the SINR requirement Γl
when considering that an AP chooses each subsequent SINR
requirement, hence the worst case scenario. Note that our
setting allows for similar SINR levels. However, for similar
or distinct SINR levels, the power levels chosen by APs need
to be distinct to allow for SIC decoding.

To ensure SIC stability, i.e., successful decoding of the re-
ceived signals in descending order [33], the distributed power
control scheme must ensure that the power of each signal
scheduled for decoding at the BS is larger than the received
power of the interference generated by the combination of the
remaining signals, i.e., vl > Vl. From Eq. (8), the power level
vl depends on the associated SINR level Γl as well as on the
interfering SINR levels Γl′ , l

′ = l + 1, . . . , L.

Proposition 1. To ensure SIC stability, the available SINR
levels must satisfy:

Γl >
2(L−l−1) × ΓL
L∏

l′=l+1

(Γl′ + 1)

. (9)

Proof. By proceeding backwards, to get vL−1 > vL, the
following must hold:

ΓL−1 >
ΓL

ΓL + 1
=

2(L−(L−1)−1)ΓL
ΓL + 1

. (10)

Similarly, to get vL−2 > vL−1 + vL, the following must hold:

ΓL−2 >
ΓL−1(ΓL + 1) + ΓL
(ΓL−1 + 1)(ΓL + 1)

(a)
>

ΓL
ΓL+1 (ΓL + 1) + ΓL

(ΓL−1 + 1)(ΓL + 1)

>
2ΓL

(ΓL−1 + 1)(ΓL + 1)
=

2(L−(L−2)−1)ΓL
L∏

l′=L−1

(Γl′ + 1)

,
(11)

where (a) follows from Eq. (10).

To get vl > Vl =
L∑

l′=l+1

vl′ , assume that Eq. (9) holds. By

induction, to get vl−1 >
L∑
l′=l

vl′ , we must have:

Γl−1 >
2(L−(l−1)−1)ΓL

L∏
l′=l

(Γl′ + 1)

. (12)

�

Knowing the available SINR levels, each AP k ∈ Km
calculates the associated received power levels using Eq. (8).
Then, using the estimated average channel gain over m, ĥk,m,
AP k ∈ Km calculates the necessary transmit power for each
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power level vl, pk,m,l, according to:

pk,m,l = vl/ĥ
2
k,m. (13)

Each AP is assumed to have a power budget per channel Pmk .
Hence, AP k can transmit over channel m using power level vl
if pk,m,l ≤ Pmk . AP k ∈ Km builds the set of possible power
levels, Pak,m, where Pak,m = {vl| pk,m,l ≤ Pmk , l ∈ [L]}. Note
that the set of possible power levels are AP-dependent because
of their dependency on the estimated average channel gain of
each AP, ĥk,m, and on the AP power budget.

The power allocation among APs on the same channel
consists of APs choosing SINR levels, and hence received
power levels, in a distributed manner, and without any inter-
AP coordination. Since APs choosing the same SINR level
result in an unsuccessful SIC decoding, the APs must aim at
organizing their transmissions using different SINR levels. For
this purpose, the power allocation on each channel is modeled
using the MAB framework with single play and zero-reward
on collision. Over channel m, the set of players is Km and the
set of arms is the set of power levels VL = {vl, l = 1, . . . , L}.
Since L = |VL| ≥ β ≥ Km = |Km|, a solution where each
AP accesses one power level, without collision, is achievable.
At each timeslot, each AP k ∈ Km chooses an action atk,m,
i.e., a power level vl ∈ Pak,m, and transmits using pk,m,l. The
action space of AP k is Pak,m. Let atm denote the strategy
chosen by all APs in Km over channel m at timeslot t. Upon
choosing action atk,m ∈ atm, AP k receives the following
average reward on channel m:

gtk,m(at) = µP (k,m, atk,m)η(atm), (14)

where µP (k,m, atk,m) is the reward of AP k when choosing
atk,m. Note that the actual value of the received reward by AP
k when choosing action atk,m on channel m at timeslot t is
drawn from a uniform distribution with mean µP (k,m, atk,m).

The mean reward µP (k,m, atk,m) is chosen in a way to
strike a trade-off between SINR maximization and transmit
power minimization. Therefore, it is set as:

µP (k,m, atk,m = vl) = w1
k

Γl
Γmax

+ w2
k

1

pk,m,l max
k,m,l

( 1
pk,m,l

)
,

(15)
where w1

k and w2
k are weight parameters relative to AP k ∈

Km satisfying w1
k +w2

k = 1. The variable Γmax is the highest
available SINR, i.e., Γmax = Γ1. Note that µP (k,m, atk,m) ∈
[0, 1] and is not known by the AP in advance. Let Nm

vl
(atm)

be the set of APs choosing power level vl at timeslot t, i.e.,
Nm
vl

(atm) = {k ∈ Km | atk,m = vl}. The variable η(atm) is
the collision indicator of the strategy profile of all APs, atm,
i.e., η(atm) = 1 if |Nm

atk,m=vl
(atm)| ≤ 1,∀ vl ∈ VL, and 0

otherwise. Note that no feedback regarding the value of the
collision indicator η(atm) is necessary. In fact, in the case of
collision on channel m, the MBS returns a zero reward to the
APs having chosen channel m. When no collision takes place,
the MBS returns only the value of the mean reward to the AP
since the collision indicator is equal to one in the case of no
collision.

APs choose power levels in a distributed manner without

any coordination, with each AP only observing the reward
received on the chosen power level. The proposed power
allocation scheme aims at maximizing the sum reward of the
system. Let a∗Pm be the action profile yielding the highest sum
reward over channel m:

a∗Pm = argmax
am∈Pam

∑
k∈Km

µP (k,m, atk,m) η(atm), (16)

where Pam is the action space of all APs scheduled on channel
m, i.e., Pam =

∏
k∈Km P

a
k,m.

The expected regret incurred during the time horizon TP
over all M channels is given by:

R̄p =
∑
m∈M

{
TP

∑
k∈Km

µP (k,m, a∗Pk,m) −

E

(
TP∑
t=1

∑
k

µP (k,m, atk,m) η(atm)

)}
.

(17)

III. PROPOSED SOLUTION

A. Proposed Algorithm for the Channel Allocation Problem

Since the time horizon TC is not necessarily known in
advance, the proposed solution, presented in Algorithm 1,
proceeds in epochs, each epoch consisting of three phases,
namely, exploration, matching and exploitation. The explo-
ration phase aims at estimating the previously unknown means
of each channel, as well as the number of APs competing
for system resources. During this phase, each AP uniformly
accesses one channel at a time to estimate its mean reward. AP
k accessing channel m gets as feedback the achieved reward
on m as well as the total number of APs simultaneously
accessing channel m. This phase runs for a constant number
of timeslots given by T 0

C . Upon termination, all APs have
an estimate µ̂M of the means of the channels and of the
channel gain experienced over each channel. Each AP also
calculates an estimate of the number of APs K̂, as was done
in [18]. These estimated means and number of APs are used
in the second phase of the algorithm where APs play a non-
cooperative game with the aim of maximizing the achieved
sum rewards. The estimated reward means are taken to be the
actual utilities achieved in the matching phase. In other words,
after choosing a channel m, if the received reward is non-zero,
AP k assumes that this reward is equal to:

uk(m) = µ̂M (k,m, km). (18)

The dynamics of this matching phase, adopted from [34],
are described in section III-B. The matching phase runs for
c1l

1+δ frames, where c1 and δ are constants and l is the epoch
number. The third and final phase is an exploitation phase in
which APs settle on the channels that resulted in the best
performance in the previous matching phase. The exploitation
phase runs for c22l timeslots, c2 being a constant.

B. Matching Dynamics

Each AP k is associated with a state [āk, ūk, S]. The
baseline action of AP k is āk ∈ {0, 1}M×1, such that∑M
m=1 āk(m) = N . The baseline utility of AP k is
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Algorithm 1 Channel Allocation Solution
Initialization: Set µ̂M (k,m, km) = 0, ∀k ∈ K,m ∈M, km ∈
[β]. Set btk = 0, ∀k ∈ K. Let ε > 0 and c ≥ KN .

1: for l = 1, . . . , LC do
1- Exploration Phase:

2: for t = 1 : T 0
C do

3: Choose one channel m ∈M uniformly.
4: Receive the achieved reward xtk(m), and the total number

of APs, km, accessing channel m simultaneously.
5: W t

k(m, km) =W t−1
k (m, km) + xtk(m),

cotk(km) = cotk(km) + 1.
6: if km > 1 then
7: btk = bt−1

k + 1
8: end if
9: end for

10: Estimate means: µ̂M (k,m, km) =
W t
k(m,km)

cot
k
(km)

, ∀ km ∈ [β].
11: Estimate the number of APs according to:

K̂ = min

round

 log

(
T0
C−b

t
k

T0
C

)
log(1− 1

M )
+ 1

 , βM

.

2- Matching Phase: for the next c1l1+δ frames, play according
to the dynamics described in section III-B.

12: If Sk = C, choose the action to play according to Eq. (20).
If Sk = D, choose the action according to Eq. (21).

13: If the achieved reward for some chosen channel uk(m),
found from Eq. (18), is 0, the AP becomes discontent as per
Eq. (23).

14: If ak 6= āk or uk 6= ūk or player k is discontent, the state
transition happens according to Eq. (24).

15: Each AP keeps a counter of the number of times each action
a′k was played and resulted in it being content:

F lk(a
′
k) =

c2l
1+δ∑
t=1

I
(
atk = a′k, S

t
k = C

)
, (19)

with I being the indicator function.
3- Exploitation phase: for c22l timeslots:

16: Play the action al∗
k = argmax

ak∈Ak
F lk(ak).

17: end for

ūk, such that |ūk| = N . Variable S ∈ {C,D} is the
mood of AP k and reflects whether k is content or dis-
content with the current action and utility. At each frame
of the matching phase, each AP chooses an action ac-
cording to the game dynamics and receives a reward that
depends on the collective choices of all the APs. Define
uk,max = argmax

a

∑M
m=1 ak(m)µM (k,m, km), where uk,max

is the highest reward achievable by AP k, with a number of
estimated APs given by K̂.

At each frame t during the matching phase, AP k adheres
by the following dynamics to decide on the action to choose:

• A content AP plays its baseline action with high proba-
bility:

pakk =

{
εc

|Ak|−1 , if ak 6= āk,

1− εc, if ak = āk.,
(20)

where ε > 0 is a small perturbation and c is a constant
satisfying c ≥ KN .

• A discontent AP chooses its action uniformly at random:

pakk =
1

|Ak|
, ∀ ak ∈ Ak. (21)

In Eq. (20) and (21), pakk is the probability with which AP k
chooses action ak.

After deciding on the action and observing the reward
uk(m) for chosen channels, the state transition of each AP
k occurs according to:
• If ak = āk and uk = ūk, a content AP remains content:

[āk, ūk, C]→ [āk, ūk, C]. (22)

• If uk(m) = 0 for some m = 1, . . . , N , AP k becomes
discontent with probability one.

[āk, ūk, C/D]→ [ak,uk, D]. (23)

• If ak 6= āk or uk 6= ūk or player k is discontent, the
state transitions occur according to:

[āk, ūk, C/D]→


[ak,uk, C] w.p. ε

uk,max−
N∑
n=1

uk,n
,

[ak,uk, D] w.p. 1− ε
uk,max−

N∑
n=1

uk,n
.

(24)

C. Proposed Solution for the Distributed Power Allocation

A simplified version of Algorithm 1 can be used to solve the
power allocation problem over each channel m. The solution
is divided into three phases:

1) Exploration phase: This phase runs for T 0
P timeslots and

aims at estimating the reward of each power value. During
this phase, each AP chooses each of its possible power
levels, i.e., power levels in Pak , uniformly at random.
Upon termination, APs have estimates of the reward
associated to each power value, denoted by µ̂P .

2) Matching phase: In this phase, APs play a non-
cooperative game according to the dynamics presented
in Section III-B, after replacing Ak in Eq. (20) and (21)
by Pak,m. Each AP keeps a counter of the number of times
each action was played and resulted in content behavior.

3) Exploitation phase: During this phase, each AP k exploits
the action, i.e., the power level, that resulted in the most
content behavior during the matching phase.

IV. REGRET ANALYSIS

The time horizon of the channel allocation phase can be
lower bounded by [31]:

TC ≥
LC−1∑
l=1

(T 0
C + c1l

1+δ + c22l) ≥ c2(2LC − 2), (25)

where LC is the total number of epochs occurring within TC
and upper bounded by:

LC ≤ log (TC/c2 + 2) . (26)

Similarly, the number of epochs, LP , occurring within the time
horizon TP dedicated to the power allocation stage is upper
bounded by LP ≤ log(TP /c2 + 2).
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A. Regret in the Exploration Phase
In the exploration phase of the channel allocation, each AP

samples channels uniformly to get estimates of their means.
Even though the purpose of this work is to assign to each AP
N channels at each timeslot, the number of channels sampled
by each AP at a timeslot is set to one in the exploration phase.
The expected regret incurred by all APs in the exploration
phase of the channel allocation, R1

C , can be upper bounded
by:

R1
C ≤

LC∑
l=1

KNT 0
C ≤ KNT 0

C log (TC/c2 + 2) . (27)

Similarly, the expected regret incurred by all APs in the
exploration phase of the power allocation, R1

P , can be upper
bounded by:

R1
P ≤

M∑
m=1

LP∑
l=1

KmT
0
P ≤ KT 0

P log(TP /c2 + 2). (28)

B. Regret in the Matching Phase
The expected regret in the matching phase of the channel

allocation, R2
C , can be upper bounded by:

R2
C ≤

LC∑
l=1

KNc1l
1+δ ≤ KNc1 log2+δ (TC/c2 + 2) . (29)

Similarly, the expected regret in the matching phase of the
power allocation, R2

P , can be upper bounded by:

R2
P ≤

M∑
m=1

LC∑
l=1

Kmc1l
1+δ ≤ Kc1 log2+δ (TP /c2 + 2) . (30)

C. Regret in the Exploitation Phase
In the exploitation phase of epoch l of the channel alloca-

tion, each AP k plays the action that it played the most and
resulted in content behavior in the matching phase of epoch
l. The exploitation phase fails in two cases:

1) If the exploration phase of epoch l fails: This happens
with a probability ≤ 4(Mβ)2e−l as shown in Lemma 2.

2) If the most played action of the matching epoch differs
from the optimal action: This happens with a probability
≤ A1e

−l1+δ as shown in Lemma 5.
The expected regret incurred by all APs in the exploitation
phase can be upper bounded by:

R3
C ≤

LC∑
l=1

KNc22l
(

4(Mβ)2e−l +A1e
−l1+δ

)
≤ A3,

(31)
where A1 and A3 are constants.

Similarly, the regret incurred by the APs in the exploitation
phase of the power allocation is R3

P ≤ A3.

D. Regret of the Proposed Technique
Theorem 1. The expected regret of the proposed allocation
solution can be upper bounded as:

R ≤ R1
C +R2

C +R3
C +R1

P +R2
P +R3

P = O
(

log2+δ(T )
)
.

(32)

V. EXPLORATION PHASE

The exploration phase is performed so APs learn estimates
of the channel mean reward in the channel allocation phase,
and of the power level mean reward in the power allocation
phase. Moreover, by keeping track of the number of times
each channel was accessed with one or more other APs in
the channel allocation phase, the APs can estimate the total
number of APs in the system. In this section, we find the
minimum length of the exploration phase ensuring an accurate
estimation of both the reward means and the number of APs.

A. Estimation of the Reward Means

Since the estimation may not always be perfect, the result of
the assignment with the estimated means (µ̂M and µ̂P ) might
differ from the result of the assignment calculated with the true
means (µM and µP ). However, if the estimation inaccuracy
is kept small as in [17] and [31], the result of the assignment
would not be affected.

Lemma 1. Let J1
M and J2

M be the sum reward achieved
by the best channel assignment and the second best channel
assignment and let ∆M =

J1
M−J

2
M

2KN . Moreover, let J1
P and J2

P

be the sum reward achieved by the best power allocation on
each channel m and the second best power assignment and
let ∆P =

J1
P−J

2
P

2Km
. If the difference between the estimated and

the correct reward means satisfies:

|µM (k,m, km)− µ̂M (k,m, km)| < ∆M ,

∀k ∈ K,m ∈M, km ∈ [β],
(33)

|µP (k,m, vl)− µ̂P (k,m, vl)| < ∆P ,

∀k ∈ Km,m ∈M, vl ∈ VL,
(34)

then, the best assignment result does not change due to the
estimation inaccuracy.

Proof. See Appendix A. �

Next, we upper bound the probability of error, i.e., the
probability of having channel reward estimates (resp. power
level reward estimates) that do not satisfy the condition in
(33) (resp. condition (34)) in the exploration epoch l. We also
provide a lower bound of the length of the exploration epoch
Tµ̂M in the channel allocation phase, and T 0

P in the power
allocation phase.

Lemma 2. If Tµ̂M =

⌈
2Me(

K−1
M−1 )

∆2
M (M−1)1−β

⌉
, all players have an

estimate of the channel means satisfying the condition in (33),
with probability ≥ 1 − γMe,l, where γMe,l is the probability of
error in the lth exploration phase of the uncoordinated channel
access. Moreover, γMe,l ≤ 4(Mβ)2e−l.

For the power allocation exploration phase, if T 0
P =⌈

2Le(
β−1
L−1 )

∆2
p

⌉
, all players have an estimate of the power level

means satisfying the condition in (34), with probability ≥
1 − γPe,l, where γPe,l, is the probability of error in the lth

exploration phase of the power allocation, upper bounded
by 4βLe−l.

Proof. See Appendix B. �
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We now turn our attention to finding the minimum length of
the exploration phase in the channel allocation stage ensuring
an accurate estimate of the number of APs K̂.

B. Estimating the number of APs

For AP k, btk found in step 7 of Algorithm 1 denotes the
number of timeslots player k was not the sole occupier of
some channel m until t.

Lemma 3. If the length of the exploration epoch in the channel
allocation step satisfies:

TK̂ =

⌈
2.08 log

(
2

η

)
M2e2(Mβ−1

M−1 )
⌉
, (35)

then all APs have an estimate of the number of APs K̂
satisfying K̂ = K with probability higher than 1 − η, where
η is the probability of error in the estimation of the number
of APs.

Proof. See Appendix C. �

C. Length of the Channel Allocation Exploration Phase

To ensure an accurate estimate of the channel reward means
and of the number of APs, the minimum length of the
exploration phase in the channel allocation solution, T 0

C , must
satisfy the conditions in Lemma 2 and Lemma 3. Hence, the
following must hold:

T 0
C = max

{⌈
2Me(

K−1
M−1 )

∆2
M (M − 1)

1−β

⌉
,⌈

2.08 log

(
2

η

)
M2e2(Mβ−1

M−1 )
⌉}

.

(36)

VI. MATCHING PHASE

The matching phase of the channel allocation solution aims
at reaching a final assignment in which every AP accesses N
channels, such that the achieved sum reward is maximized.

The dynamics presented in section III-B and adopted in the
matching phase induce a Markov chain over the state space
Z =

∏K
k=1{AK × [0, 1]N×1 × {C,D}}. Let P ε denote the

transision matrix of the regular perturbed Markov chain Z .
The work in [34] guarantees that, when playing according to
these dynamics, the optimal state, i.e., the one maximizing
the sum rewards, is played most often. The proof relies on the
theory of resistance trees for regular perturbed Markov chains
[35]. The dynamics used in this paper differ from those in [34]
in two aspects:

1) If AP k receives a reward equal to 0 on some channel
m, AP k is discontent with probability one. In [34], the
game is assumed to be interdependent which means that
it is not possible to partition APs into two groups that
do not interact with each other. However, this property
does not hold in the considered setting as shown in [31].
Therefore, as in [31], to characterize the stable states of
the unperturbed chain when ε = 0, a player with 0 reward
on some channels is discontent with probability one.

2) For the transition probabilities between content and dis-

content in Eq. (24), instead of using ε
N−

N∑
n=1

uk,n
, we use

ε
uk,max−

N∑
n=1

uk,n
, since the maximum utility achievable by

each AP k is uk,max.
Next, the recurrence states of Z are characterized.
Lemma 4. Let D0 denote the set of states where all APs are
discontent. Moreover, let C0 denote all singleton states where
all APs are content and their baseline actions and utilities are
aligned. As proved in [34], the only recurrence states of Z are
D0 and all singletons in C0.

The resistance of moving from one recurrence state to the
other being similar to [34], the stochastic potential of any state
z ∈ C0 is of the form:

ζ(z) = c[|C0| − 1] +

K∑
k=1

uk,max −
M∑
m=1

ak(m)µ̂(k,m, km).

(37)
From Theorem 1 of [34], the stable state is the one mini-
mizing the stochastic potential, hence the one maximizing the
achieved sum reward. This stable state is guaranteed to be
played the majority of times for a small enough perturbation ε
[31], [34]. In the exploitation phase, as the state that was most
played and that resulted most in the players being content is
played, the stable state is hence expected to be played with
high probability. Next, the probability of error in the matching
epoch l is found.

Let π denote the stationary distribution of the Markov
chain Z and let z∗ = [ā∗, ū∗, CK ] denote the optimal
state. According to [31], π(z∗) > 1/2 for a small enough
perturbation ε. The following lemma finds the probability of
error in the matching phase of the lth epoch, δm,l.
Lemma 5. Let a(l) denote the action that was most played in
some epoch l. As proved in [17], the probability of error in
the matching phase in epoch l, δm,l, is upper bounded by:

δm,l = Pr(a∗ 6= a(l)) ≤ A0 ‖φ‖π exp

(
−θ2π(z∗)c2l

1+δ

72Tm(1/8)

)
,

(38)
where A0 is a constant, φπ is the probability distribution of
the initial state played in epoch l and Tm(1/8) is the mixing
time of the Markov chain Z with an accuracy of 1/8 [36].

The analysis of the matching phase of the power allocation
solution is similar to the one given above and is omitted for
space constraints.

VII. SIMULATION RESULTS

Extensive simulations of the proposed algorithm were con-
ducted to validate its performance. The following simulation
parameters were chosen: K = 4,M = 4, N = β = L =
2, Bc = 2.5 MHz, c1 = 3000, c2 = 5000, ε = 5×10−5, γ = 0.
The available SINR values are Γ = {24, 4.77} (dB) leading to
achieved rates of 20 and 5 Mbps respectively. For the channel
allocation stage, the parameter c used in the matching phase
(Cf. Section III-B) is set as: c = KN , whereas for the power
allocation stage c = Km for each channel m ∈ M. Two
of the APs are assumed to have a power budget of 1W per
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Constant Exploration
Phase Length

Decreasing Exploration
Phase Length

(c)

Fig. 2: Estimation error as time progresses in the channel allocation stage for (a) the estimation of the rewards, (b) the
estimation of the number of APs. (c) Comparison of the estimation error as a function of the epoch index in the channel
allocation stage for the estimation of the rewards.

channel, while the remaining two have a power budget of 2W
per channel. Additional simulation parameters are given in
Table I [37].

TABLE I: Simulation parameters.
Cell Radius Rd 150 m

Overall Transmission Bandwidth 10 MHz
Number of channels 4

Number of APs 4
Power Budget per AP {1, 1, 2, 2} (W)

per channel Pm(.)
Available SINR Requirements Γ = {24, 4.77}(dB)

Distance Dependent Path Loss 128.1 + 37.6 log10(d)(dB),
d in Km

Receiver Noise Density 4.10−18 mW/Hz

A. Estimation Accuracy of the Exploration Phase
First, we evaluate the estimation accuracy of the exploration

phase in the channel allocation stage. As shown in Fig. 2a
and Fig. 2b, the estimation of both the reward means and the
total number of APs converges rather quickly to the correct
values. Having observed that the estimation of the exploration
phase converges quickly, a version of the proposed algorithm
where the exploration phase length is divided by the epoch
index was tested. The estimation error of this version with
a decreasing exploration phase length was compared against
the version with a constant exploration phase length. Fig. 2c
plots the channel rewards estimation error for both versions.
Although the constant length version outperforms the version
with a decreasing exploration phase length, the estimation
error achieved by both methods is lower than 1.1 × 10−2%,
hence negligible. When it comes to the number of APs
estimation, both versions accurately estimate K̂, without error,
when convergence is reached.

For the power allocation stage, the power level rewards
estimation also converges quickly to a negligible error value.

B. Performance Analysis
Fig. 3 shows the average accumulated regret as a function

of time in the channel allocation stage for both the constant

and the decreasing length exploration phase versions. The
results show that the average accumulated regret for both
versions increases with time as O(log(t)2). More specifically,
the regret incurred for the constant length exploration phase
version is bounded between 7000 log(t)2 and 22000 log(t)2, as
shown in Fig. 3a. The regret incurred for the decreasing length
exploration phase version is bounded between 4000 log(t)2

and 7000 log(t)2. In fact, most of the regret is accumulated
during the exploration phase where APs choose a channel
uniformly at random. Hence, decreasing the length of the
exploration phase lowers the value of the accumulated regret as
shown in Fig. 3b, without jeopardizing the estimation accuracy
as was shown in Section VII-A.

The regret incurred on all channels during the power alloca-
tion stage is bounded between 100 log(t)2 and 400 log(t)2, as
shown in Fig. 3c. The lower regret observed during the power
allocation stage, when compared to the channel allocation
stage, results from the smaller number of APs competing for
a smaller number of arms. In fact, on each channel m ∈ M
during the power allocation stage, the number of competing
APs is Km ≤ β = 2, while the number of arms or power levels
is L = 2. In contrast, during the channel allocation stage, the
number of players is K = 4 with

(
M
N

)
= 6 available arms.

Remark. To provide insight on the accumulated regret as a
function of time in seconds, and the time duration needed to
reach convergence, assume that a subcarrier spacing of 240
KHz [38] is considered, resulting in a timeslot duration equal
to 62.5 µs. In Fig. 3a and 3b, the performance of the proposed
solution is evaluated for a large number of timeslots to assess
its performance in the long run. Therefore, in Fig. 4, the
accumulated regret in the uncoordinated channel access part of
the solution is plotted for a shorter duration. Fig. 4 shows that
convergence to the optimal allocation is first reached at the
fourth epoch, which takes place from 0.45× 106 to 0.6× 106

timeslots approximately. In terms of time duration in seconds,
convergence is reached in 0.45×106×62.5×10−6 = 28.125
seconds. From the subsequent epochs shown by Fig. 4, the
system converges to the optimal allocation in each epoch,
resulting in zero regret in the matching and the exploitation
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Fig. 3: Accumulated regret as time progresses (a) for the channel allocation phase with a constant exploration phase length,
(b) for the channel allocation phase with a decreasing exploration phase length, (c) for the power allocation stage.

phases. Note that for the uncoordinated power control part,
convergence is reached from the first epoch, i.e., at around
0.1× 105 timeslots, or 0.625 seconds with a timeslot duration
of 62.5 µs.
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Fig. 4: Accumulated regret as a function of time for K =
M = 4.

In Fig. 5, we compare the performance of the proposed
method with a technique based on the UCB algorithm pro-
posed in [24] and similar to the one proposed in [23], denoted
by Two-Dimensional UCB. In the Two-Dimensional UCB
method, channel and power allocation are conducted at the
same time, using the UCB algorithm, by considering all
possible combinations of the channels and the power levels.
For the considered setting, the number of arms in the Two-
Dimensional UCB method is hence

(
M
N

)
×LN = 24 arms. In

Fig. 5a, the achieved rate is plotted as a function of time. Both
methods converge relatively quickly to the highest achievable
rate, with small variations for the Two-Dimensional UCB
technique. The sharp falls in the achieved rate of the proposed
method are due to the exploration phase during each epoch of
the power allocation stage where APs choose the power levels
uniformly at random, causing collisions and leading to zero
rates.

The total transmit power used by the APs as a function
of time is shown in Fig. 5b. While both methods converge
to the same highest achievable rate, the power used by our
proposed method is significantly lower than the one needed

by the Two-Dimensional UCB method. This means that the
UCB-based method does not lead APs to learn the optimal
allocation and converges to a sub-optimal resource partitioning
among the APs. In other words, our proposed method achieves
a better allocation for the channel and power when compared
to the UCB-based method. Moreover, our proposed method
has performance guarantees in terms of regret and optimality,
while the Two-Dimensional UCB method [24] does not.

To check the combined effect of rate and power on the
performance of the compared methods, the achieved energy
efficiency (EE), which is the ratio of the achieved rate to the
used power, is plotted in Fig. 5c. Once again, the sharp falls
in the performance of our proposed method are due to the
exploration phase in each epoch of the power allocation stage.
Fig. 5c shows that our proposed method greatly outperforms
the UCB-based method, by achieving more than a twofold
increase in the EE. This is due to our method converging to the
optimal allocation when the UCB-based technique converges
to a sub-optimal allocation requiring more transmit power as
shown by Fig. 5b.

VIII. CONCLUSION

In this paper, the uncoordinated channel and power al-
location problems in a SON were studied. The considered
framework allows each AP to choose N channels at each
timeslot, and allows each channel to simultaneously accom-
modate multiple APs in a NOMA manner. The considered
problem was modeled using the multi-player MAB framework,
with varying user rewards, multiple plays, and non-zero reward
on collision. A game-theoretic approach was used to develop
an algorithm with a sub-linear regret of O(log2 T ). Simulation
results validated the sub-linear regret of the proposed method
and showed its superior performance, when compared with
one of the most used algorithms in the MAB literature.
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Fig. 5: Performance comparison as a function of time of (a) the achieved rate, (b) the total transmit power, (c) the energy
efficiency.

APPENDIX A
PROOF OF LEMMA 1

In the channel allocation phase, denote by a(1) the optimal
assignment, and by J1

M the sum rewards achieved when a(1)

is played, which is then given by:

J1
M =

K∑
k=1

M∑
m=1

a
(1)
k (m)µM (k,m, k∗m). (39)

Furthermore, denote the second best assignment and the sum
reward achieved under it by a(2) and J2

M respectively. Let the
estimated mean of AP k over channel m with km APs on
channel m be written as:

µ̂M (k,m, km) = µM (k,m, km) + z(k,m, km), (40)

where z(k,m, km) is the estimation inaccuracy during the
channel allocation phase satisfying |z(k,m, km)| ≤ ∆M . The
sum reward achieved when a(1) is played with the estimated
channel means satisfies:

K∑
k=1

M∑
m=1

a
(1)
k (m)µ̂M (k,m, km) =

K∑
k=1

M∑
m=1

a
(1)
k (m)(µM (k,m, km) + z(k,m, km)) >

K∑
k=1

M∑
m=1

a
(1)
k (m)µM (k,m, km)−KN∆M .

(41)

Any other assignment a 6= a(1) 6= a(2) must perform at most
as well as a(2):

K∑
k=1

M∑
m=1

ak(m)µ̂M (k,m, km) =

K∑
k=1

M∑
m=1

ak(m)(µM (k,m, km) + z(k,m, km)) <

K∑
k=1

M∑
m=1

a
(2)
k (m)µM (k,m, km) +KN∆M .

(42)

To avoid changing the optimal assignment because of the
estimation inaccuracy, the following must hold ∀a 6= a(1):
K∑
k=1

M∑
m=1

a
(1)
k (m)µ̂M (k,m, km) >

K∑
k=1

M∑
m=1

ak(m)µ̂M (k,m, km).

(43)
To ensure Eq. (43), we need to have: J1

M −KN∆M > J2
M +

KN∆M , which holds if:

∆M <
J1
M − J2

M

2KN
. (44)

In the power allocation phase, following a similar approach
over each channel m, we get:

∆P <
J1
P − J2

P

2Km
. (45)

APPENDIX B
PROOF OF LEMMA 2

A. Lower Bound of the Length of the Exploration Phase in
the Channel Allocation Step

To find a lower bound of the length of the exploration phase
in the channel allocation step, we first find the required number
of observations of each channel by each AP to guarantee
condition (33) [18], [39]. To do so, the probability of each AP
not having a correct estimation of the channel means should
be bounded. Let γ = γMe,l/2. Define the following events:

• A: all players have an estimate satisfying condition (33),
• B: all players have ≥ Q observations of each channel
m for every s in [β],

• Ak: player k has an estimate satisfying condition (33),
• Bk: player k has ≥ Q observations of each channel m

for every s in [β].

The following must hold:

Pr(Āk | Bk) ≤ γ

K
. (46)
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In fact,

Pr(Āk|Bk) ≤

Pr (∃ m, s, s.t. |µM (k,m, s)− µ̂M (k,m, s)| > ∆M | Bk)
(a)
≤

M∑
m=1

β∑
s=1

Pr (|µM (k,m, s)− µ̂M (k,m, s)| > ∆M | Bk) =

M∑
m=1

β∑
s=1

∞∑
q=Q

Pr (|µM (k,m, s)− µ̂M (k,m, s)| > ∆M |

k has q observations of (m, s))× p2

(b)
≤

M∑
m=1

β∑
s=1

∞∑
q=Q

2p2e
(−2q∆2

M ) ≤
M∑
m=1

β∑
s=1

2e(−2Q∆2
M ) =

2Mβe(−2Q∆2
M ),

(47)
where (m, s) refers to channel m with s players on
it, (a) results from applying the union bound and (b)
from using Hoeffding’s inequality [40], and p2 =
Pr (q observations of (m, s) | q ≥ Q).

To ensure Pr(Āk|Bk) is lower than γ
K , Q must satisfy:

Q ≥ 1

2∆2
M

log(
2KMβ

γ
). (48)

Then,

Pr (A|B) = 1−Pr(Ā|B) ≥ 1−
K∑
k=1

Pr (Āk|Bk) = 1−γ, (49)

leading to all APs having an estimate of every channel
satisfying condition (33) with probability higher than 1− γ.

Next, we need to find a time horizon Th for the exploration
phase of the channel allocation step large enough such that all
players have ≥ Q observations of each arm with probability
higher than 1 − γ. Note that the length of each exploration
phase Tµ̂ does not necessarily satisfy Tµ̂ ≥ Th. In other
words, all players can get ≥ Q observations of each arm with
probability higher than 1−γ after multiple exploration phases.

Let Ak,m,s(t) = 1 if player k observed channel m with s
APs on it at timeslot t, and 0 otherwise. For 0 < τ < 1, we
have:

Pr ( k has ≤ (1− τ)ThE[Ak,m,s] observations ) =

Pr

(
Th∑
t=1

Ak,m,s(t) ≤ (1− τ)ThE[Ak,m,s]

)
=

Pr
(
e

(
−d
∑Th
t=1 Ak,m,s(t)

)
≥ e(−d(1−τ)ThE[Ak,m,s])

)
(a)
≤

E
[
e

(
−d
∑Th
t=1 Ak,m,s(t)

)]
e(−d(1−τ)ThE[Ak,m,s])

,

(50)

where d > 0 and (a) results from applying the Chernoff
bound. By noting that all players are randomly and uniformly
sampling every channel during the exploration phase, for any

k ∈ K,m ∈ S, s ∈ [β], Ak,m,s are i.i.d. across time. Hence:

E
[
e

(
−d
∑Th
t=1 Ak,m,s(t)

)]
=

Th∏
t=1

E
[
e(−dAk,m,s(t))

]
. (51)

Moreover, Ak,m,s(t) is a Bernoulli random variable that takes
the value 1 with probability pA. Therefore, we have:

E
[
e(−dAk,m,s(t))

]
= 1 + pA(e−d − 1)

(a)
≤ e(pA(e−d−1)), (52)

where (a) follows since 1 + y ≤ ey . Eq. (51) can hence be
expressed as:

E
[
e

(
−d
∑Th
t=1 Ak,m,s(t)

)]
≤ e

Th∑
t=1

(pA(e−d−1))
=

e(ThE[Ak,m,s](e−d−1)).

(53)

By inserting Eq. (53) into Eq. (50), we get:

Pr (player k has ≤ (1− τ)ThE[Ak,m,s] ) ≤

e(ThE[Ak,m,s](e−d−1))+(d(1−τ)ThE[Ak,m,s]).
(54)

To make the bound as tight as possible, d is chosen such
that the right hand side of Eq. (54) is minimized, leading to
d = − log(1− τ). By substituting d by its value in Eq. (54),
we get:

Pr (player k has ≤ (1− τ)ThE[Ak,m,s] ) ≤
e(−ThE[Ak,m,s](τ−(1−τ) log(1−τ))) =(

e−τ

(1− τ)(1−τ)

)(ThE[Ak,m,s]) (a)
≤ e− τ

2

2 ThE[Ak,m,s],

(55)

where (a) results from having (1− τ) log(1− τ) > −τ + τ2

2 ,
obtained by using a Taylor expansion.

Taking τ = 1/2 and using a union bound on (55), we get:

Pr (∃ k,m, s s.t. k has ≤ Th
2
E[Ak,m,s(t)] observations) ≤

KMβe

(
− 1

4
ThE[Ak,m,s]

2

)
,

(56)
which is upper bounded by γ if Th satisfies:

Th ≥
8

E[Ak,m,s]
log

(
KMβ

γ

)
. (57)

Moreover, the number of observations of each arm during
Th timeslots,

∑Th
t=1Ak,m,s(t), must be at least equal to Q.

Hence we need:
Th∑
t=1

Ak,m,s(t) >
Th
2
E[Ak,m,s] ≥ Q >

1

2∆2
M

log

(
2KMβ

γ

)
,

(58)
which holds if:

Th ≥
⌈

max
{

8

E[Ak,m,s]
log

(
KMβ

γ

)
,

1

∆2
ME[Ak,m,s]

log

(
2KMβ

γ

)}⌉
.

(59)
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Note that:

E[Ak,m,s] =

(
K − 1

s− 1

)(
1

M

)s(
1− 1

M

)K−s (a)
≥(

1

M

)s(
1− 1

M

)K−s
≥(

1

M

)(
1

M

)s−1(
1− 1

M

)K−1(
1− 1

M

)1−s (b)
≥

1

Me(
K−1
M−1 )

(M − 1)
1−s (c)
≥ (M − 1)

1−β

Me(
K−1
M−1 )

,

(60)

where (a) follows from having
(
K−1
s−1

)
≥ 1, (b) from the fact

that (1− 1
x )x−1 ≥ 1

e , and (c) from s ≤ β.
Hence, Th can be re-written as:

Th ≥

⌈
max

{
8Me(

K−1
M−1 )

(M − 1)
1−β log

(
KMβ

γ

)
,

Me(
K−1
M−1 )

∆2
M (M − 1)

1−β log

(
2KMβ

γ

)}⌉
.

(61)

Having Th, the probability of all APs having an estimate of
the channel means satisfying Eq. (33) is lower bounded by:

Pr(A) = 1− Pr(Ā) = 1−
(
Pr(Ā|B) Pr(B) + Pr(Ā|B̄) Pr(B̄)

)
≥ 1−

(
Pr(Ā|B)) + Pr(B̄)

)
≥ 1− (γ + γ) = 1− γMe,l.

(62)
Since ∆M =

J1
M−J

2
M

2KN ≤ KN−0
2KN ≤ 1

2 , Eq. (61) is satisfied if:

Th =
2Me(

K−1
M−1 )

∆2
M (M − 1)

1−β log

(
4KMβ

γMe,l

)
. (63)

Having found the minimum needed length of the exploration
epoch in the channel allocation phase, next, we upper bound
the error probability in the lth exploration epoch. To do so, we
first note that:

Tµ̂M × l = Th =
2Me

(
K−1
M−1

)
∆2
M (M − 1)

1−β log

(
4KMβ

γMe,l

)
. (64)

To have γMe,l ≤ 4KMβe−l ≤ 4(Mβ)2e−l, the length of each
exploration epoch must satisfy:

Tµ̂M ≥
2Me(

K−1
M−1 )

∆2
M (M − 1)

1−β . (65)

B. Lower Bound of the Length of the Exploration Phase in
the Power Allocation Step

By following a similar analysis of the one in Appendix B-A,
the minimum length of the length of the exploration phase on
each channel m in the power allocation step can be given by:

T 0
P =

⌈
2Le(

β−1
L−1 )

∆2
p

⌉
. (66)

If the length of the exploration phase in the power allocation
step on each channel m satisfies Eq. (66), then all players
have an estimate of the power level means satisfying the
condition in (34), with probability ≥ 1 − γPe,l, where γPe,l is
upper bounded by 4βLe−l.

APPENDIX C
PROOF OF LEMMA 3

Let p be the true probability of player k not being the sole
occupier of some channel m when k accesses the M channels
uniformly at random:

p = 1−
M∑
m=1

1

M

(
1− 1

M

)K−1

= 1−
(

1− 1

M

)K−1

. (67)

From Eq. (67), the number of APs K is given by:

K = round
(

log(1− p)
log(1− 1

M )
+ 1

)
. (68)

The estimated probability of player k not accessing channel
m alone at time t is: p̂t = btk/t. For a correct estimation of
the number of APs, we need to find a time t sufficiently large
to guarantee with high probability that:

K̂ = round
(

log(1− p̂t)
log(1− 1

M )
+ 1

)
=

round
(

log(1− p)
log(1− 1

M )
+ 1

)
= K.

(69)

To ensure Eq. (69), if κ < 1/2, the following must hold:∣∣∣∣∣ log(
t−btk
t )

log(1− 1
M )
− log(1− p)

log(1− 1
M )

∣∣∣∣∣ =

∣∣∣∣∣∣
log
(

1−p̂t
1−p

)
log
(
1− 1

M

)
∣∣∣∣∣∣ ≤ κ. (70)

Let p̂t − p = ξ. After some calculations, Eq. (70) can be
expressed as:

(1− p)

(
1−

(
1− 1

M

)−κ)
≤ ξ ≤

(1− p)
(

1−
(

1− 1

M

)κ)
.

(71)

With high probability, K = K̂ when κ < 1
2 , if |p̂t − p| ≤ ξ1,

where:

ξ1 = min

{∣∣∣∣∣(1− p)
(

1−
(

1− 1

M

)−κ)∣∣∣∣∣ ,∣∣∣∣(1− p)(1−
(

1− 1

M

)κ)∣∣∣∣} .
(72)

Let TK̂ be a large enough time horizon for which the estimated
probability p̂TK̂ is an average of i.i.d. random variables with
expectation p. Using Hoeffding’s inequality [40], we get:

Pr
(
|p̂TK̂ − p| ≥ ξ1

)
≤ 2e−2TK̂ξ

2
1 . (73)

To bound the probability of an incorrect estimation of K̂ by
some small value η, TK̂ must be lower bounded by:

TK̂ ≥
log(2η)

2ξ2
1

. (74)

To get a simpler expression of ξ1 and hence of TK̂ , suppose
that κ = 0.49. With the expression of p given by Eq. (67), the
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first term in Eq. (72) can be lower bounded as:∣∣∣∣∣
(

1− 1

M

)K−1
(

1−
(

1− 1

M

)−0.49
)∣∣∣∣∣ =

−
(

1− 1

M

)K−1
(

1−
(

1− 1

M

)−0.49
)

(a)
≥

(
1− 1

M

)Mβ−1
(

1−
(
−1 +

1

M

)−0.49
)

(b)
≥

1

e(
Mβ−1
M−1 )

(
1−

(
−1 +

1

M

)−0.49
)

(c)
≥ 0.49

Me(
Mβ−1
M−1 )

,

(75)

where (a) results from having Mβ ≥ K, (b) from (1 −
1
x )x−1 ≥ 1

e , and (c) from using a Taylor Expansion. Similarly,
the second term in Eq. (72) can be lower bounded as:∣∣∣∣∣
(

1− 1

M

)K−1
(

1−
(

1− 1

M

)0.49
)∣∣∣∣∣ ≥ 0.49

Me(
Mβ−1
M−1 )

.

(76)
Variable ξ1 is therefore lower bounded by:

ξ1 ≥
0.49

Me(
Mβ−1
M−1 )

. (77)

Hence, K̂ = K with probability higher than 1− η if:

TK̂ =
⌈
2.08 log (2/η)M2e2(Mβ−1

M−1 )
⌉
. (78)
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