
HAL Id: hal-03265593
https://imt-atlantique.hal.science/hal-03265593v1

Submitted on 21 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Byzantine-tolerant Uniform Node Sampling Service in
Large-scale Networks

Emmanuelle Anceaume, Yann Busnel, Bruno Sericola

To cite this version:
Emmanuelle Anceaume, Yann Busnel, Bruno Sericola. Byzantine-tolerant Uniform Node Sampling
Service in Large-scale Networks. International Journal of Parallel, Emergent and Distributed Systems,
2021, 36 (5), pp.1-28. �10.1080/17445760.2021.1939873�. �hal-03265593�

https://imt-atlantique.hal.science/hal-03265593v1
https://hal.archives-ouvertes.fr

Byzantine-tolerant Uniform Node Sampling Service in Large-scale

Networks

Emmanuelle Anceaume a and Yann Busnel b and Bruno Sericola c

a CNRS, Univ Rennes, Inria, IRISA, Rennes, France;
b IMT Atlantique, IRISA, Cesson-Sévigné, France;
c Inria, Univ Rennes, CNRS, IRISA, Rennes, France

ARTICLE HISTORY

Compiled March 15, 2021

ABSTRACT
We consider the problem of achieving uniform node sampling in large scale systems
in presence of Byzantine nodes. The uniform node sampling service offers to applica-
tions using it a single simple primitive that returns, upon invocation, the identifier
of a random node that belongs to the system. We first propose an omniscient strat-
egy that processes on the fly an unbounded and arbitrarily biased input stream
made of node identifiers exchanged within the system, and outputs a stream that
preserves the uniformity property. Informally, uniformity states that any node in
the system should have the same probability to appear in the sample of any correct
node of the system. We show through a Markov chain analysis that this property
holds despite any arbitrary bias introduced by the adversary. We then propose a
strategy based on a sketch data structure that is capable of approximating the om-
niscient strategy without requiring any prior knowledge on the composition of the
input stream. We show through both theoretical analysis and extensive simulations
that this “knowledge-free” strategy accurately approximates the omniscient one. We
evaluate the resilience of the knowledge-free strategy by studying two representa-
tive attacks (flooding and targeted attacks). We quantify the minimum number of
identifiers that Byzantine nodes must insert in the input stream to prevent unifor-
mity. Finally, we propose a new construction that processes each input stream with
sketches put in series that allows to both increase the accuracy of a single sketch
and decrease the time to converge to a uniform output stream. To our knowledge,
such a work has never been proposed before.

KEYWORDS
Data stream; Byzantine nodes; Uniform sampling; Markov chains;Randomized
approximation algorithm

The uniform node sampling service offers to applications using it a single simple
primitive that returns the identifier of a random node that belongs to the system.
Providing at any time randomly chosen nodes in the system has deserved a lot of
attention to construct large scale distributed applications. A typical example is load

This work has been partially founded by the French ANR project SocioPlug (ANR-13-INFR-0003) and by

the DeSceNt project granted by the Labex CominLabs excellence laboratory (ANR-10-LABX-07-01).

A shorter preliminary version of this paper entitled “Uniform Node Sampling Service Robust against
Collusions of Malicious Nodes” appeared in the 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), 2013.

CONTACT Emmanuelle Anceaume. Email: emmanuelle.anceaume@irisa.fr

balancing in cluster-based applications: choosing a host at random among those that
are available is often a choice that provides performance close to that offered by more
complex selection criteria, without imposing any burden [1]. Another case where hav-
ing access to random node identifiers is important is epidemic-based applications: by
periodically selecting few random nodes as neighbours, large-scale environments pre-
serve their connectivity despite node dynamicity [2–5].

Unfortunately, the unavoidable presence of malicious nodes in large scale and open
systems seriously impedes the construction of uniform node sampling [6–8]. The objec-
tive of malicious nodes mainly consists in continuously and largely biasing the input
data stream out of which samples are obtained, to prevent (correct) nodes from be-
ing selected as samples. Consequences of these collective attacks are, among others,
(i) the overwhelming load of some specific nodes when it is used to provide random
locations for data caching or storage, or (ii) the eventual partitioning of the system
when the node sampling service contributes to the construction of nodes local views
in epidemic-based protocols. Solutions that basically consist in storing the identifier
of all the nodes of the system so that each of these node identifiers can be randomly
selected when needed are impracticable and even infeasible due to the size of the sys-
tem and the churn, that is the frequent arrival and departure of nodes to and from
the system [9]. Rather, providing a solution that requires as little space as possible
(e.g., sub-linear in the population size of the system) is definitely desirable. Bortnikov
et al. [10] have recently proposed a uniform node sampling algorithm that tolerates
malicious nodes by exploiting the properties offered by min-wise permutations. Specif-
ically, their sampling component outputs the node identifier whose image value under
the randomly chosen permutation is the smallest value ever encountered [10]. Thus
eventually, by the property of min-wise permutation, the sampler converges towards a
random sample. However by the very same properties of min-wise permutation func-
tions, once the convergence has been reached, it is stuck to this convergence value
independently from any subsequent input values. Thus the sample does not evolve ac-
cording to the current composition of the system, which makes it static. Actually it has
been shown in [9] that imposing strict restrictions on the number of messages sent by
malicious nodes during a given period of time and providing each correct node with a
very large memory (proportional to the size of the system) is a necessary and sufficient
condition to output an unbiased and non static stream. Thus, lack of adaptivity or
full-space algorithms seem to be the only defenses against adversarial behaviors when
considering deterministic algorithms. In this paper, we solve this problem by adopting
a probabilistic approach.

Our contributions

The algorithms we propose are designed in the data stream model. In this model,
presented in Section 2, nodes of the system receive a possibly infinite sequence of data
items, and must process them sequentially and in a single pass. The size of the working
memory of each node is sub-linear in n and m, where m represents the number of data
items read so far by a node, and n is the size of the set from which data items are
drawn. Within this model, we assume the presence of an adversary capable of actively
tampering with the data stream of any (correct) node to bias the samples output by
this node.

Based on this model, we propose in Section 3 a formal definition of the node sampling
service tolerant to malicious nodes. This property says that for any node identifier

2

present in the input stream, the probability that this node identifier is selected as a
sample is equal to 1/n, where n is the size of the population.

We present a first solution to this problem by assuming that each node exactly
knows the probability with which the received node identifiers will occur in its input
stream. This solution, called in the following the “omniscient algorithm” and presented
in Section 4, has only access to a memory of small and constant size. We study the
behavior of this algorithm through a Markov chain analysis, and show that it is capable
of tolerating any bias, introduced by the adversary, in the input stream of each correct
node of the system. We study both the asymptotic and the transient behaviors of the
Markov chain.

We then propose in Section 5 a randomized approximation algorithm, called in
the following the “knowledge-free algorithm”, that outputs an almost uniform stream
whose deviation from an exact uniform stream is bounded with any tunable proba-
bility. This is achieved without any prior knowledge on the composition of the input
stream. This algorithm is a one-pass algorithm (i.e., each piece of data of the input
stream is scanned sequentially on the fly), and is space-efficient (i.e., only a compact
synopsis or sketch that contains the most important information about data items is
locally maintained). We show that using O(log(n) log(1/δ)/ε) bits of space allows us
to additively (ε, δ)-approximate a uniform and fresh output stream from an arbitrarily
biased input one.

We then evaluate in Section 6 the minimum effort that needs to be exerted by an
adversary to bias the output stream when two representative attacks are launched. The
first one, known as a targeted attack consists for the adversary to bias the frequency of
a single node identifier, while the flooding attack aims at biasing all the node identifier
frequencies. Both evaluations are conducted by modeling them as an urn problem. One
of the main results of this analysis is the fact that the effort that needs to be exerted
by the adversary to subvert the sampling service can be made arbitrarily large by any
correct node by just increasing the memory space of the sampler.

Extensive simulations achieved with both real data and synthetic traces confirm the
robustness of our sampler service. Main results are presented in Section 7.

Finally, we propose in Section 8 a new construction that processes the input stream
with sketches put in series. We show that this construction both increases the accuracy
of a single sketch and decreases the time needed to converge to a uniform stream, and
this is achieved without requiring any additional space nor additional operations per
item.

1. Related Work

The authors in [6–8] propose techniques to detect and exclude malicious nodes by
observing that malicious nodes try to get an in-degree much higher than correct nodes
in order to isolate them. In particular, Jesi et al. [6] propose a solution that supposes
that the ultimate goal of the malicious nodes is to mutate the random graph into a hub-
based graph, hub for which malicious nodes gain the lead. Once this goal is reached,
malicious peers can very quickly and easily subvert the whole overlay by performing
denial-of-service attacks. Conducting a hub attack mainly consists for malicious peers
in increasing their in-degree. Jesi et al. [6] propose to detect highly popular peers by
extending classic membership services with a module that identifies and blacklists peers
that have an in-degree much higher than the other peers of the overlay. This approach,
also adopted in several structured based systems [8] through auditing mechanisms, or

3

in sensor networks [7], is effective only if the number of malicious nodes is very small
with respect to the size n of the system (i.e., typically of O(log n)). When the system is
populated by a large number of malicious peers (i.e., a linear proportion of the nodes
of the system as assumed in our paper), which is definitively a realistic assumption in
peer-to-peer systems [11,12], additional mechanisms have been proposed.

In structured peer-to-peer systems, analytical studies have shown that regularly
pushing nodes to random positions in the overlay is a necessary and sufficient condition
to defend the system against adversarial behaviours [13–15]. By taking advantage of
the properties of structured graphs, the authors of both papers [13,14] have shown
that, with high probability, any node is equally likely to appear in the local view of
each other correct node in a number of rounds polynomial in the size of the system.

Bortnikov et al. [10] have proposed a membership algorithm that relies on a sampling
service that exploits the properties offered by min-wise permutations. Namely, their
sampling service, similarly to the one we propose, is fed with the stream of node
identifiers periodically gossiped by nodes. Differently from our solution, their sampler
outputs the node identifier whose image value under the randomly chosen permutation
is the smallest value ever encountered. Thus eventually, by the property of min-wise
permutation, the sampler service converges towards a random sample. By limiting the
number of node identifiers malicious nodes can periodically issue (no more than 20%
of the total number of requests can be sent by malicious nodes), their solution requires
a single node identifier to be stored in the local memory. However, once convergence
has been reached, it is stuck to this convergence value independently from the input
values. Thus the sample does not evolve according to the current composition of the
system. In contrast, and as will be demonstrated in the following, the uniform node
sampling algorithm we propose self adapts to the current composition of the system,
and as such could be integrated in the membership algorithm proposed by Bortnikov
et al. [10] to cope with dynamic environment.

Streaming algorithms have shown their highly desirable properties in data intensive
monitoring applications [16,17]. These algorithms process the input stream in a single
pass and sequentially. All these algorithms rely on pseudo-random functions that map
elements of the stream to uniformly distributed image values. The interested reader is
invited to read the nice survey by Muthukrishnan [18]. Most of the research done so far
with this approach has mainly focused on computing functions or statistic measures
with a given small error using a little amount of space with respect to the size of the
input stream and the set from which items belong to. These include, as examples,
the computation of the number of different data items in a given stream [19–21],
the frequency moments [22], the most frequent data items [22,23], the entropy of the
stream [24,25], or the proposition of a metric that allows to estimate a broad class
of distance measures between any two massive streams [26], or the correlation among
different streams [27].

In this work, we go a step further by continuously computing, in an adversarial
context, a uniform sample of the nodes of the system so that for any node identifier
present in the input stream, the probability that this node identifier is selected as a
sample is equal to 1/n, where n is the size of the population.

4

2. System Model and Assumptions

2.1. Model of the Network

We consider a large scale and dynamic open system N . Each node of N is assigned
a random identifier from an b-bit identifier space. Identifiers (denoted by ids in the
following) are derived by using some standard cryptographic one-way hash function
(e.g., SHA256 hash function). The value of b is large enough to make the probability of
identifiers collision negligible. Nodes of the system can freely join and leave the system
as often as they wish. At any time, each node i ∈ N knows only a small set of the
nodes of the system with which it can communicate. This set, whose size is classically
logarithmic in the total population size, is called the view or the neighborhood of i.
To keep the system connected despite churn, each node i periodically renews its view
membership. This is achieved through gossip-based algorithms during which node i
exchanges some of its neighbors with those of its neighbors.

2.2. Adversary

We assume the presence of malicious (i.e., Byzantine) nodes that collectively try to
subvert the system by manipulating the prescribed protocol. A node present in the
system that adheres to the protocol is called correct. We model adversarial behav-
iors through an adversary that fully controls and manipulates these malicious nodes.
Specifically, we suppose that the adversary owns t node identifiers, with t any posi-
tive integer. Each of these t node identifiers does not need to correspond to a single
real node. Indeed, the adversary will augment its power by owning numerous node
identifiers, such that only a limited number of real malicious nodes are linked to these
identifiers. However, affecting multiple identifiers per node is costly as it requires to in-
teract with a central trusted authority to receive a certificate assessing the validity and
integrity of each identifier. The adversary may actively tamper with the input stream
of any correct node i by sending to i as many messages as possible such that for each
of those messages, the adversary uses one of its t node ids as the source address of the
message. Formally, each time a correct node i receives a message in its input stream,
with probability α, this message has been sent by the adversary, and with probability
1 − α, it has been sent by a correct node. We will show that t only depends on the
sampling protocol parameters, while α may be close to 1. Classically, we assume that
the adversary can neither drop a message exchanged between two correct nodes nor
tamper with its content without being detected [10]. This is achieved by assuming
the existence of a signature scheme (and the corresponding public-key infrastructure)
ensuring the authenticity and integrity of messages. This refers to the authenticated
Byzantine failure model [28]. Note that correct nodes cannot a priori distinguish cor-
rect nodes from malicious ones. We finally suppose that any algorithm run by any
correct node is public knowledge to avoid some kind of security by obscurity.

2.3. Sampling Assumptions

We first assume that there exists a time T0 such that after that time, the churn of the
system ceases (churn is classically defined as the rate of turnover of nodes in large scale
systems [29]). This assumption, also adopted by Bortnikov et al. [10] is necessary to
make the notion of uniform sample meaningful. Thus from T0 onwards, the population
of the system N is composed of n nodes such that t of them are malicious, with t < n.

5

Note that even if in practice there are not t malicious nodes, but t node identifiers
owned by the set of malicious nodes, without loss of generality we assume that those
t node identifiers correspond to t real nodes. The value of both t and n is not known
by correct nodes. We also suppose that at any discrete time k ≥ T0 all the nodes in N
can communicate through an undirected connected graph. In the following we suppose
that T0 = 0.

3. Node Sampling Service tolerant to Malicious Nodes

As mentioned in the introduction, a sampling service is a functionality local to each
(correct)1 node i, which offers to applications using it, a single primitive that returns
the identifier of a random node that belongs to the system. To implement the sampling
service, each node i uses all the messages it continuously receives from all the other
nodes of the system. More precisely, node i uses the address (or simply the identifier) of
the sender of each received message. In the following, this infinite sequence of identifiers
is called the input stream of node i. For efficiency and memory constraints reasons, the
sampling service must process its input stream in one pass and sequentially, and must
only have access to a bounded size memory. The objective of the sampling service is to
output a stream of node identifiers such that the identifier of each node of the system
appears in this output stream with a probability equal to 1/n. Note that in absence of
any malicious behaviors, the sampling service could be easily implemented by relying
on a reservoir sampling algorithm [30]. These algorithms randomly choose a sample of
items from a sequence containing an unknown number of items, large enough so that
the sequence cannot fit in memory. We denote respectively by σi = (σi(k))k≥0 and by
Si = (Si(k))k≥0 the input stream and the output stream of the sampling service at
any correct node i. The input stream σi takes its values in the set N = {1, . . . , n}.
It is a sequence of independent and identically distributed (i.i.d.) random variables.
Moreover, this stream is supposed to have the following property called positivity
which means that each node identifier j occurs in each position k with a positive
probability denoted by pi,j . That is, for every k ≥ 0 and for every j ∈ N , we have, at
correct node i,

pi,j = P{σi(k) = j} > 0. (H)

In order to simplify the notation, when node i is fixed, which is the case in what follows,
we simply denote this probability by pj , the input stream by σ and its distribution by
p = (p1, . . . , pn). The following section describes the impact of the adversary in the
constitution of σ.

3.1. Constitution of the input stream σ

Let us denote by Nm the subset of malicious nodes and by Nc the subset of correct
nodes. We have |Nm| = t and |Nc| = n − t. The input stream σ may be obtained
by multiplexing two independent streams : an i.i.d. stream σ(c) of correct nodes with
values in Nc and distribution p′ = (p′j , j ∈ Nc), p′j > 0, and an i.i.d. stream of

malicious nodes, produced by the adversary, with values in Nm and distribution p′′ =

1Although malicious nodes also implement such a functionality, we cannot impose any assumptions on how

they build it as their behavior can be totally arbitrary.

6

(p′′j , j ∈ Nm), p′′j > 0 . Then the input stream σ = (σ(k))k≥0 is obtained by a random

multiplexing of streams σ(c) and σ(m), in the following way. We introduce a sequence
B = (Bk)k≥0 of i.i.d. Bernoulli random variables independent of σ(c) and σ(m), with
P{Bk = 0} = α, where α ∈ (0, 1) is a parameter chosen by the adversary. The input
stream σ is then obtained by taking successively a node id from σ(m) with probability
α and from σ(c) with probability 1− α. More formally, σ is obtained as follows.

For all k ≥ 0, if Bk = 0 then σ(k) = σ(m)(0) and ∀` ≥ 0, σ(m)(`) = σ(m)(`+ 1)

if Bk = 1 then σ(k) = σ(c)(0) and ∀` ≥ 0, σ(c)(`) = σ(c)(`+ 1).

This means in practice that the stream σ is composed from σ(c) and σ(m) by taking
the first entry of σ(m) with probability α and the first entry of σ(c)(0) with probability
1 − α. Note that if at k = 0, the first entry σ(m)(0) of σ(m) is selected then the next
competition will be between σ(c)(0) and σ(m)(1), and so on. That is why we need to
shift the streams in the previous procedure.

The stream σ is thus i.i.d. and its distribution p = (p1, . . . , pn) is given by

pj = P{σ(k) = j} =

{
(1− α)p′j if j ∈ Nc
αp′′j if j ∈ Nm.

The probability α ∈ (0, 1) and the number t of malicious nodes are parameters which
are set by the adversary in order to bias, as much as he wishes, the distribution of the
input stream σ. From a practical point of view, the adversary owns t addresses (that
is t node identifiers), for any value of t smaller than n. Of course, correct nodes are not
capable of distinguishing node identifiers owned by the adversary from correct ones,
and do not even know t: each correct node i run its sampling algorithm fed with its
input sampling σi, oblivious of the presence of malicious identifiers in σi.

3.2. The addressed problem

The goal of this paper is to design at each correct node i a Byzantine-tolerant sampling
algorithm taking as input the stream σi and building an output stream Si satisfying
the following uniformity property.

Property 3.1 (Uniformity).
For any discrete time k ≥ 0, for any node i ∈ N and for any node j ∈ N ,

P{Si(k) = j} = 1/n.

Remark 1. Note that for each node i, the output stream Si generated by our node
sampling service does not need to be i.i.d. because it is not expected to act as the input
stream of another node. As said in the introduction of the paper, a node sampling
service can be used for instance in network metrology, or load balancing applications
where in both cases one needs to choose uniformly at random nodes to either store or
process data, or to explore or analyze the network. Our service is also an important
ingredient to prevent eclipse attacks when used in a membership protocol.

7

stream of node ids S (k)i

Γi

Sampling memory

Figure 1.: Sampling component of node i ∈ N .

ALGORITHM 1: Omniscient Node Sampling Algorithm run at any correct node i ∈ N
Input: An arbitrary input stream σi;
Output: A modified output stream Si;
Data: Γi a set of maximum size c. Initially, Γi = ∅ ;

1 for j ∈ σi do
2 if |Γi| < c then
3 Γi ← Γi ∪ {j};
4 else
5 with probability aj do
6 choose ` from Γi with probability r`/

∑
h∈Γi

rh;

7 Γi ← (Γi \ {`}) ∪ {j};
8 end
9 end

10 choose w from Γi with probability 1/|Γi|;
11 write w in the output stream Si;
12 end

4. An Omniscient Sampling Service

This section is devoted to the design of a Byzantine-tolerant sampling service in a
somehow ”ideal” context, that is in a context in which it is omniscient. More precisely,
we suppose that the sampling service at any correct node i knows the values of the
probabilities pj , for any j ∈ N .

The omniscient sampling service has uniquely access to a set (or a data structure)
Γi, referred to as the sampling memory, as illustrated in Figure 1. The maximal size of
Γi is constant, independent from n and is denoted by c. The sampling memory contains
the node ids that are selected by the algorithm when reading σi. Algorithm 1 describes
the pseudo-code of the omniscient algorithm. This algorithm contains parameters aj
and rj , j ∈ N , that must be determined in order to obtain an output stream Si
possessing the uniformity property 3.1. Note that these parameters should be noted
ai,j and ri,j , but as we did for the pi,j , we drop index i when node i is fixed.

Specifically, the omniscient algorithm at correct node i reads on the fly and se-
quentially the input stream and for each read element j, decides whether j is a good
candidate for being stored into the constant size memory Γi or not. Intuitively, if pj is
very small, then j must definitely be stored into Γi so that j might have a chance to
be part of the output stream. On the other hand, with larger pj , there will be other
opportunities for the sampler to receive j in the future. The probability to insert j in
Γi is denoted by aj in the algorithm. Although inserting j into Γi with probability aj
(the values of aj are analyzed below) is a necessary condition to prevent very frequent
ids from continuously eclipsing the ids already stored in Γi, this is not sufficient to
guarantee that a rare id ` already stored in Γi will not be evicted each time a new
id j is stored (assuming that Γi is full upon receipt of j). Recall that the goal of the
adversary is to prevent identifiers of correct nodes to uniformly appear in the output

8

stream. This is achieved by removing ` from Γi with probability r`/
∑

h∈Γi
rh, where

r1, . . . , rn are positive real numbers that are analyzed below. Finally, a random node
id w is chosen from Γi and written in the output stream (note that w is not removed
from Γi).

In the remainder of this section, we prove that there exist both (aj)j∈N and (rj)j∈N
such that the output stream provided by Algorithm 1 satisfies the uniformity property
3.1. This is achieved by modelling the receipt of node ids from σi by using a discrete-

time homogeneous Markov chain denoted by X(i) = {X(i)
k , k ≥ 0}. Markov chain X(i)

represents the evolution of the node identifiers in Γi. Again, note that for clarity reason
we shall omit the superscript i when it is clear from context. The state space S of X
is defined by S = {A ⊆ N such that |A| = c}. For any k ≥ 0, the event Xk = A
means that just after the k-th transition (i.e. the k-th received node identifier), we
have Γ = A. By Algorithm 1, the transition probability matrix, denoted by P , is given
for every A,B ∈ S with A 6= B, by

PA,B =

r`
rA
pjaj if A \B = {`} and B \A = {j}

0 otherwise,

where for every A ⊆ N , rA =
∑

h∈A rh. It is easily checked that |S| =
(
n

c

)
. Matrix P

being stochastic, for every A ∈ S,

PA,A = 1−
∑

B∈S,B 6=A
PA,B.

= 1−
∑
`∈A

∑
j /∈A

 ∑
B∈S,A\B={`},B\A={j}

PA,B

= 1−

∑
`∈A

∑
j /∈A

r`
rA
pjaj

= 1−
∑
j /∈A

pjaj

= 1−
∑
j∈N

pjaj +
∑
j∈A

pjaj .

4.1. Stationary Analysis of Markov Chain X

The Markov chain X is clearly irreducible and aperiodic. It thus has a stationary
distribution that we denote by π = (πA, A ∈ S). The row vector π is the unique
solution to the linear system π = πP with π1 = 1, where 1 is the column vector with
all entries equal to 1. The symmetries observed in the transition probability matrix
P gives us the intuition that X is reversible, i.e. that for every A,B ∈ S we have
πAPA,B = πBPB,A. This intuition is verified by the following theorem.

9

Theorem 4.1. The Markov chain X is reversible and for every A ∈ S, we have

πA =
rA
K

(∏
h∈A

phah
rh

)
(1)

where

K =
∑
B∈S

rB

(∏
h∈B

phah
rh

)
.

Proof. Proof of this theorem has been previously presented in the former paper [31].

Let us introduce now, for every h ∈ N , the subset of states Sh defined by

Sh = {A ∈ S | h ∈ A}

and consider the probability γh for X to be in subset Sh in stationary regime. We then
have

γh =
∑
A∈Sh

πA.

It is easily checked, as expected, that we have

|Sh| =
(
n− 1

c− 1

)
and

∑
h∈N

γh = c.

4.2. Building a Uniform Node Sampler

We are now able to prove that there exist vectors (aj)j∈N and (rj)j∈N (that respec-
tively represent the probability to insert item j ∈ N in the local memory Γi and the
probability to remove item j ∈ N from this memory), such that the output stream Si
provided by Algorithm 1 satisfies the uniformity property 3.1. For every distribution
(pj)j∈N , we introduce the notation q = minj∈N pj . The probabilities pj being positive,
we have q > 0.

Theorem 4.2. If, for every j ∈ N and for every r > 0, aj and rj are given by

aj = q/pj and rj = r

then the stationary probability γh is given by

γh = c/n for all h ∈ N .

Proof. Proof of this theorem has been previously presented in the former paper [31].

10

4.3. Transient Analysis of Markov Chain X

This section is devoted to the analysis of the transient behavior of the Markov chain
X. For every k ≥ 0, we denote by π(k) = (πA(k), A ∈ S) the row vector containing
the distribution of X at instant k, which is defined, for k ≥ 0 and A ∈ S, by

πA(k) = P{Xk = A}.

Vector π(k) is given by

π(k) = π(0)P k,

where π(0) is the initial distribution of X. For every h ∈ N , we denote by γh(k) the
probability for X to be in subset Sh at instant k. This probability is given by

γh(k) = P{Xk ∈ Sh} =
∑
A∈Sh

πA(k) =
∑
A∈Sh

(
π(0)P k

)
A
.

The integer h being fixed, we consider the partition Sh, S ′h of the state space S, where
S ′h = S \ Sh. We decompose the transition probability matrix P with respect to that
partition by writing

P =

(
PSh PShS′

h

PS′
hSh PS′

h

)
,

where matrix PSh (resp. PShS′
h
) is the submatrix of P containing the transition prob-

abilities from states of Sh to states of Sh (resp. S ′h) and PS′
h

(resp. PS′
hSh) is the

submatrix of P containing the transition probabilities from states of S ′h to states of
S ′h (resp. Sh). We also introduce the |S|-dimensional column vector 1h defined by

1h(A) = 1{h∈A}. With respect to the partition Sh, S ′h, vector 1h writes 1h =

(
1
0

)
.

We recall that vector 1 (resp. 0) is a column vector with all its entries equal to 1 (resp.
0), its dimension being given by the context of its use. Here the dimension of column
vector 1 (resp. 0) is |Sh| (resp. |S ′h|). Using this partition and these notations, we get,
for every k ≥ 0,

γh(k) = π(0)P k1h.

11

Note that, for every A ∈ Sh, we have

(PSh1)A = PA,A +
∑

B∈Sh,B 6=A
PA,B (2)

= 1−
∑
j∈N

pjaj +
∑
j∈A

pjaj +
∑

j ∈ A and ` ∈ B
s.t. B ∈ Sh, B 6= A

r`pjaj
rA

1{A\B=`,B\A={j}}

= 1−
∑
j∈N

pjaj +
∑
j∈A

pjaj +
∑

`∈A\{h}

∑
j∈N\A

r`
rA
pjaj

= 1−
∑
j∈N

pjaj +
∑
j∈A

pjaj +

(
1− rh

rA

) ∑
j∈N\A

pjaj

= 1− rh
rA

∑
j∈N\A

pjaj . (3)

The matrix P being stochastic, we get(
PShS′

h
1
)
A

=
rh
rA

∑
j∈N\A

pjaj .

In the same way, we have, for every A ∈ S ′h,(
PS′

h
1
)
A

= PA,A +
∑

B∈S′
h,B 6=A

PA,B

= 1−
∑
j∈N

pjaj +
∑
j∈A

pjaj +
∑

j ∈ A and ` ∈ B
s.t. B ∈ S′h, B 6= A

r`pjaj
rA

1{A\B=`,B\A={j}}

= 1−
∑
j∈N

pjaj +
∑
j∈A

pjaj +
∑
`∈A

∑
j∈(N\A)\{h}

r`
rA
pjaj

= 1−
∑
j∈N

pjaj +
∑
j∈A

pjaj +
∑

j∈(N\A)\{h}

pjaj

= 1−
∑
j∈N

pjaj +
∑
j∈A

pjaj +
∑

j∈N\A

pjaj − phah

= 1− phah.

Note that this quantity is independent of A ∈ S ′h. This means that we have

PS′
h
1 = (1− phah)1.

The matrix P being stochastic, we get

PS′
hSh1 = phah1.

We are now able to state the following theorem.

12

Theorem 4.3. If, for every j ∈ N and for every r > 0, aj and rj are given by

aj = q/pj and rj = r

then the transient probability γh(k) is given, for every h ∈ N and k ≥ 0, by

γh(k) =
c

n
+
(

1− qn

c

)k (
πSh(0)− c

n

)
,

where πSh(0) is the probability for Markov chain X to start in subset Sh.

Proof. We use Relation (2). Since aj = q/pj and rj = r, we have, for every h ∈ N
and A ∈ Sh and recalling that |A| = c,

(PSh1)A = 1− qn− c
c

and
(
PShS′

h
1
)
A

= q
n− c
c

.

This rewrites as

PSh1 =

(
1− qn− c

c

)
1 and PShS′

h
1 = q

n− c
c

1. (4)

In the same way, we get

PS′
h
1 = (1− q)1 and PS′

hSh1 = q1. (5)

For every h ∈ N , we introduce the discrete-time stochastic process Y (h) = {Y (h)
k , k ≥

0} over the state space {sh, s′h} defined, for every k ≥ 0, by

Y
(h)
k = sh (resp. s′h)⇐⇒ Xk ∈ Sh (resp. S ′h).

From Relations (4) and (5), it is easily checked using the results on state aggregation
in Markov chains, (see [32] or [33]), that Y (h) is a homogeneous Markov chain with
transition probability matrix Q given by

Q =

 1− qn− c
c

q
n− c
c

q 1− q

 .

If the initial distribution π(0) of X is decomposed through the partition Sh, S ′h of S
as

π(0) =
(
π(Sh)(0), π(S′

h)(0)
)
,

then the initial distribution α =
(
αsh , αs′h

)
of Y is given by

αsh = π(Sh)(0)1 and αs′h = π(S′
h)(0)1 = 1− αsh .

13

These results lead, for every h ∈ N and k ≥ 0, to

γh(k) = π(0)P k1h = αQke1,

where e1 is the 2-dimensional column vector

(
1
0

)
. It is then very easy to check that

we have, for every h ∈ N and k ≥ 0,

γh(k) =
c

n
+
(

1− qn

c

)k (
αsh −

c

n

)
which completes the proof.

The following corollary summarizes the analysis.

Corollary 4.4. Given any arbitrary i.i.d. input stream satisfying the positivity prop-
erty (H), Algorithm 1 outputs a stream that satisfies the uniformity property 3.1 if

∀j ∈ N , aj =
q

pj
and rj = r, for every r > 0.

Proof. Let any correct node i run Algorithm 1. By assumption, at any discrete time
k, every node j in N has a probability pj > 0 to feed Algorithm 1. Thus, aj > 0 for
every j ∈ N . From Theorem 4.2, when k tends to infinity, any node j has a probability
γj = c/n to be in the sampler memory. From Algorithm 1, the output of the sampler
is any node from Γi chosen with probability 1/c. Thus j appears as an output with
probability 1/n, which ensures the uniformity property 3.1.

5. A Knowledge-free Sampling Service

We have proposed in Section 4 a local algorithm capable of building a uniform stream
on the fly, from any arbitrary i.i.d. input stream σ satisfying the positivity property
(H). This local algorithm uses a constant amount of memory, and does not need to
know ahead of time which node identifiers will appear in σ. However it needs to
know, upon receipt of a data item j, its probability of occurrence pj in σ (which is
the reason why we call it omniscient). Clearly such an assumption is unrealistic in
dynamic systems and moreover, the adversary may modify the occurrence probability
of any node identifier in the stream by increasing the number of occurrences of the t
node identifiers it manipulates.

In this section, we propose an algorithm, called hereafter knowledge-free algorithm,
that does not assume that probabilities p1, . . . , pn are known. For each received node
id j from σ, the proposed algorithm selects the identifier that will be part of the
output stream by solely relying on an estimation of the frequency fj of node j. Such an
estimation is computed on the fly by using a sublinear number of bits in the population
size of the system. Specifically, the knowledge-free algorithm uses one additional data
structure with respect to the omniscient one, as illustrated in Figure 2. This data
structure is the Count-Min Sketch F̂ proposed by Cormode and Muthukrishnan [34].

Sketch F̂ is built on the fly and provides at any time, and for any j read from σ, an
approximation f̂j of the number fj of times j has appeared in σ from the inception of

the stream. For self-containment reasons, we briefly describe how F̂ is built.

14

Input stream
F

u j lΓ v

Si(k)
l vu jjjjjjj

Output stream

fj ?^

j

Figure 2.: Sampling Sketch of node i ∈ N .

5.1. Frequency Estimation of each Item in the Stream

For any item j in the input stream σ, the algorithm proposed by Cormode and
Muthukrishnan [34] outputs an estimation f̂j of the number fj of times j has oc-

curred in the stream so far. The error of the estimator in answering a query for f̂j
is within a factor of ε(m − fj) with probability δ, where m represents the number
of items read from the input stream. The estimation is computed by maintaining a
two-dimensional array F̂ of s1s2 counters with s1 = dlog(1/δ)e and s2 = de/εe (where
e = exp(1)), and by using 2-universal hash functions h1, . . . , hs1 .

A collection H of hash functions h : {1, . . . ,M} → {1, . . . ,M ′} is said to be 2-
universal if for every two different items x, y ∈ {1, . . . ,M},

∀h ∈ H,P{h(x) = h(y)} ≤ 1

M ′
,

which is exactly the probability of collision obtained if the hash function assigns truly
random values to any x ∈ {1, . . . ,M}.

Each time an item j is read from the input stream, this causes one counter per line
to be incremented, i.e. F̂ [v][hv(j)] is incremented for all v ∈ {1, . . . , s1}. Thus at any
time, the sum of the buckets of any given line is equal to the number of items read
from the input stream. When a query is issued to get an estimate f̂j of the frequency
of j (i.e. the number of occurrences of j read so far from the stream), the returned

value corresponds to the minimum among the s1 values of F̂ [v][hv(j)], v ∈ {1, . . . , s1}.
Space required by this algorithm is proportional to log(1/δ)/ε, and the update time
per element is significantly sublinear in the size of the sketch [34], which makes this
algorithm fully adapted to our context. Specifically, authors of [34] have shown that,
after reading m items from the stream, we have

∀j ∈ N , P
{
f̂j − fj ≥ ε (m− fj)

}
≤ δ. (6)

5.2. The Knowledge-free Sampling Algorithm

The knowledge-free data-stream algorithm we propose is a simple extension of the om-
niscient one, where the insertion probability aj for any received j ∈ σ is computed by

using the estimation f̂j provided by Algorithm [34]. The pseudo-code of our algorithm
is presented in Algorithm 2. Note that the instructions cobegin at lines 2 and 5 mean
that codes of Algorithm [34] and lines (6–17) are executed in parallel (at any discrete
time k the first id of σ is read by both codes). We analyze in Section 6 the resilience
of Algorithm 2 against representative attacks, i.e. targeted and flooding attacks. Then
in Section 7 we evaluate with extensive simulations the quality of the knowledge-free

15

algorithm with respect to the omniscient one.

ALGORITHM 2: Knowledge-free data-stream algorithm run at any correct node i ∈ N
Input: An arbitrary input stream σi; real values δ and ε;
Output: An (ε, δ) uniform output stream Si;
Data: Γi a set of maximum size c. Initially, Γi = ∅ ;

Data: F̂ the Count-min Sketch matrix
1 for j ∈ σi do
2 cobegin
3 execute Algorithm [34] using ε and δ/2 as parameters;
4 end
5 cobegin

6 f̂j ← Estimate(fj);

7 q̂ ← min1≤u≤s1,1≤v≤s2 F̂ [u][v];
8 if |Γi| < c then
9 Γi ← Γi ∪ {j};

10 else

11 with probability âj = q̂/f̂j do
12 choose ` from Γi with probability 1/c;
13 Γi ← (Γi \ {`}) ∪ {j};
14 end
15 end
16 choose w from Γi with probability 1/|Γi|;
17 write w in the output stream Si;
18 end
19 end

5.3. Complexity Analysis

In this section, we show that the knowledge-free data-stream algorithm provides an
efficient approximation of the omniscient one, without requiring any a priori knowledge
neither on the size of the input stream, nor on the number of distinct elements that
compose it, nor on the probability distribution of these elements. For every ` ∈ N ,
we denote by â` (respectively p̂`), the estimation of a` (respectively p`) defined in
Section 4. Finally, and as above, m represents the current size of the input stream (i.e.
the number of node ids that have been read so far from the input stream).

Theorem 5.1. For every ` ∈ N , for every m, the knowledge-free algorithm imple-
mented in Algorithm 2 satisfies

P
{
|â` − a`| ≥ ε

(
1

p`
− a`

)}
≤ δ

where ε > 0 and δ ∈ (0, 1) are two real values introduced in Section 5.1, and p` is the
empirical probability of occurrence of item ` in the input stream, i.e. p` = f`/m.

Proof. Since pj = fj/m and p̂j = f̂j/m, we get from [34], for any j ∈ N ,

P {p̂j − pj ≥ ε (1− pj)} = P
{
f̂j − fj ≥ ε (m− fj)

}
≤ δ

2
.

16

We introduce the notation

A = P
{
â` − a` ≥ ε

(
1

p`
− a`

)}
(7)

and

B = P
{
â` − a` ≤ −ε

(
1

p`
− a`

)}
(8)

We first focus on Relation (7). For every u ∈ {1, . . . , s1} and ` ∈ N , we denote by
Wu,` the random variable defined by

Wu,` =
min1≤j≤s2 F̂ [u][j]

min1≤v≤s1 F̂ [v][hv(`)]
− a`,

where a` is given in Corollary 4.4. We then have

E[Wu,`] = E

[
min1≤j≤s2 F̂ [u][j]

min1≤v≤s1 F̂ [v][hv(`)]

]
− a`.

From [34], we have s2 = de/εe. We first prove that, for any u ∈ {1, . . . , s1}, the
following statement holds:

min
1≤j≤s2

F̂ [u][j] ≤ m

s2
. (9)

Suppose by contradiction that min1≤j≤s2 F̂ [u][j] > m/s2. Thus,
∑

1≤j≤s2 F̂ [u][j] >

m which is impossible by construction. From Relation (9), and since

min1≤v≤s1 F̂ [v][hv(`)] ≥ mp` [34], we then have

E[Wu,`] ≤
1

s2p`
− a` ≤

1

s2

(
1

p`
− a`

)
.

Using the Markov inequality, and s2 = de/εe, we then get

P
[
Wu,` ≥ ε

(
1

p`
− a`

)]
≤ P [Wu,` ≥ εs2E[Wu,`]]

≤
E[Wu,`]

εs2E[Wu,`]
=

1

εs2

≤ 1

2
.

The above probability holds for any line u of F̂ . From both Algorithms [34] and 2, we

17

have

â` − a` =
min1≤u≤s1,1≤j≤s2 F̂ [u][j]

min1≤v≤s1 F̂ [v][hv(`)]
− a`

= min
1≤u≤s1

(
min1≤j≤s2 F̂ [u][j]

min1≤v≤s1] F̂ [v][hv(`)]
− a`

)
= min

1≤u≤s1
Wu,`

By construction of the pairwise hash functions h1, . . . , hs1 , array F̂ is made of s1

independent lines. Thus, we obtain

P
{
â` − a` ≥ ε

(
1

p`
− a`

)}
= P

{
min

1≤u≤s1
Wu,` ≥ ε

(
1

p`
− a`

)}
= P

{
W1,` ≥ ε

(
1

p`
− a`

)
, . . . ,Ws1,` ≥ ε

(
1

p`
− a`

)}
=
∏
u∈[s1]

P
{
Wu,` ≥ ε

(
1

p`
− a`

)}

≤ 1

2s1
≤ δ

2
. (10)

We now focus on Relation (8). By extension of the notation q = minj∈N pj used in
Section 4.2, we define q̂ = minj∈N p̂j . We then have

P
{
â` − a` ≤ −ε

(
1

p`
− a`

)}
= P

{
q̂

p̂`
− q

p`
≤ −ε

(
1

p`
− q

p`

)}
= P

{
p̂`q − p`q̂
p̂`p`

≥ ε
(

1− q
p`

)}
.

By definition p̂` ≥ q̂ and by Count-Min sketch, q̂ ≥ q. Thus,

P
{
â` − a` ≤ −ε

(
1

p`
− a`

)}
≤ P {(p̂` − p`) q̂ ≥ εp̂` (1− q)}

≤ P {(p̂` − p`) p̂` ≥ εp̂` (1− q)}
= P {p̂` − p` ≥ ε (1− q)} .

Finally, from Relation (6) and since 1− q ≥ 1− p`, we have

P
{
â` − a` ≤ −ε

(
1

p`
− a`

)}
≤ P {p̂` − p` ≥ ε (1− p`)}

≤ δ

2
. (11)

From Relations (10) and (11), we obtain

P
{
|â` − a`| ≥ ε

(
1

p`
− a`

)}
≤ δ, (12)

18

which completes the proof.

This completes the time and space analysis of Algorithm 2 which is summarized in
the following Corollary.

Corollary 5.2. The knowledge-free algorithm whose pseudo-code is presented in Al-
gorithm 2 uses O(log(n) log(1/δ)/ε) bits of space to approximate a uniform output
stream from an arbitrarily biased input one.

Proof. By Theorem 5.1, Algorithm 2 returns an approximation of (p`)`∈N and (a`)`∈N
used in the omniscient algorithm presented in Algorithm 1. By Corollary 4.4, the
omniscient algorithm implements a node sampling service robust to any biased input
stream. Thus the second part of the corollary holds. Now log(1/δ) log(n)/ε bits of
space are needed to approximate node id frequencies, and c log(n) bits of space are
needed by the sampling memory Γ. By construction, c is constant, which concludes
the proof.

6. The reason why our Algorithm is Tolerant to Collusions of Malicious
Nodes

As said in Section 2.2, we suppose that the adversary has enough resources to generate
a large number t of node identifiers in the input stream σi of any correct node i in
order to prevent the sampler service of i to output a uniform stream Si. In this section,
we derive the minimum number of identifiers the adversary has to generate to subvert
the node sampling service.

We have shown in Section 4 that the omniscient algorithm is capable of building a
uniform stream from any arbitrary i.i.d. input stream. We have shown in Section 5 that
the knowledge-free algorithm, implemented by Algorithm 2, is an (ε, δ)-approximation
of the omniscient algorithm. Thus the only latitude given to the adversary to bias the
output stream of any correct node is to increase the error made on the estimations
f̂j with j ∈ N . By construction of the Coun-Min sketch Algorithm [34], each re-

ceived element j is mapped to exactly one entry in each row of matrix F̂ , and each
of these entries is incremented by one. Thus to disrupt the estimation of any f̂j , the
adversary has to generate sufficiently many node identifiers o1, . . . , ot such that for all
v ∈ {1, . . . , s1}, there exists i ∈ {1, . . . , t} such that hv(oi) = hv(j). By doing so the

estimation f̂j will be arbitrarily overestimated, and thus, by Algorithm 2, j will occur
in the output stream with an arbitrary smaller frequency. We call this attack a targeted
attack. Note that, the adversary will blindly bias the frequency estimation of several
node identifiers, including its owns, i.e., o1, . . . , ot. A flooding attack consists for the
adversary in overestimating all the node identifiers. We now analyze the minimum
effort that needs to be exerted by the adversary to make a targeted attack successful
with probability 1− ηT where ηT < 1.

6.1. Analysis of the Effort Needed to Make a Targeted Attack Successful

We model a targeted attack as an urn problem, where each entry of F̂ is modeled as an
urn and each received distinct node identifier as a ball. Consider a set of s2 urns initially
empty in which we throw balls, one by one, according to the uniform distribution (by
definition of 2-universal hash functions, each ball has an equal probability to be thrown

19

in any of the s2 urns, see Section 2). We denote by Nk the number of non empty urns
at time k, i.e., just after the throwing of the k-th ball and we consider the integer Ls2 ,
which counts the number of balls needed to get a collision with a probability greater
than 1− ηT . Formally, for a given value of s2 and ηT ∈ (0, 1), we have

Ls2 = inf{k ≥ 2 | P{Nk = Nk−1} > 1− ηT }.

In the knowledge-free algorithm, the previous experiment is executed identically and
independently in s1 sets of s2 urns. At each time, we throw in parallel s1 balls, one in

each set of s2 urns. For i = 1, . . . , s1, the random variable N
(i)
k counts the number of

non empty urns among the i-th set of s2 urns at time k and we consider the integer
Ls2,s1 which counts the number of balls needed to get a collision in each set of s2 urns,
with a probability greater than 1− ηT . We thus have in particular Ls2 = Ls2,1. More
formally, for given values of s1, s2 and ηT ∈ (0, 1), integer Ls2,s1 is defined by

Ls2,s1 = inf{k ≥ 2 | P{N (1)
k = N

(1)
k−1, . . . , N

(s1)
k = N

(s1)
k−1} > 1− ηT }.

Since the s1 experiments in parallel are identical and independent, the random

variables N
(1)
k , . . . , N

(s1)
k are, for each k ≥ 1, independent and identically distributed.

It is thus sufficient to consider a single set of s2 urns and Ls2,s1 is then given by

Ls2,s1 = inf{k ≥ 2 | (P{Nk = Nk−1})s1 > 1− ηT }. (13)

The random variable Nk takes its values in the set {1, . . . , s2 ∧ k}, where s2 ∧ k =
min{s2, k}. The distribution of Nk is given, for every s2 ≥ 1 and k ≥ 1, by the
following theorem which uses the Stirling numbers S(k, i) of the second kind. These
numbers are defined, for k ≥ 1 and i = 1, . . . , k, by the relations S(1, 1) = 1 and

S(k, i) = S(k − 1, i− 1)1{i 6=1} + iS(k − 1, i)1{i 6=k}. (14)

It is well-known that this recursion leads to the explicit formula

S(k, i) =
1

i!

i∑
h=0

(−1)h
(
i

h

)
(i− h)k. (15)

Theorem 6.1. For every s2 ≥ 1, k ≥ 1 and i = 1, . . . , s2 ∧ k, we have

P{Nk = i} =
S(k, i)s2!

s2
k(s2 − i)!

.

Proof of this theorem has been previously presented in the former paper [31].
We are now able to compute, for every k ≥ 2, the probabilities P{Nk = Nk−1}. We

20

have

P{Nk = Nk−1} =

s2∧(k−1)∑
i=1

P{Nk = i | Nk−1 = i}P{Nk−1 = i}

=
1

s2

s2∧(k−1)∑
i=1

iP{Nk−1 = i} =
E(Nk−1)

s2

The number of balls Ls2,s1 needed to get a collision in each set of s2 urns is linear
in s2 and sublinear in s1 and ηT which explains why attacking a single node requires
a significant number of distinct malicious node identifiers. For instance, when s2 = 50
and s1 = 10, the adversary has to inject in the input stream 150 distinct node identifiers
to have no more than 50% of chance to get its targeted attack successful. On the
other hand, with the same settings of s2 and s1, 571 distinct node identifiers need
to be injected to guarantee with probability 0.9999 a successful targeted attack. Note
that this analysis, as well as the one presented in Section 6.2, derives the minimum
number of distinct identifiers that need to be injected by the adversary in a given
stream σ to bias the output stream. It does not consider the frequency at which these
identifiers must appear in the input stream σ to significantly impact the estimation of
the identifiers that share the same entry in the sketch. As said in Section 2, the effort
required by an adversary to bias the output stream is not in the repeated injection of
node identifiers in σ but rather on the cost of creation of these identifiers. Indeed, to
own an identifier, a node typically needs to interact with a central authority to receive
a certificate assessing the validity and integrity of the identifier. The impact at which
node identifiers recur in the input stream is analyzed in Section 7.

6.2. Analysis of the Effort Needed to Make a Flooding Attack Successful

We now analyze the minimum effort that needs to be exerted by the adversary to
make a flooding attack successful with probability 1 − ηF where ηF < 1. As for the
targeted attack, we model this attack as an urn problem, where as previously, each
entry is modeled as an urn and each distinct node identifier received as a ball. Let Us2
be the number of balls needed in order to obtain all the s2 urns occupied, i.e. with at
least one ball. It is easily checked that P{U1 = 1} = 1 and that, for k ≥ s2 ≥ 2, we
have

Us2 = k =⇒ Nk−1 = s2 − 1.

We thus have

P{Us2 = k} = P{Us2 = k,Nk−1 = s2 − 1}
= P{Us2 = k | Nk−1 = s2 − 1}P{Nk−1 = s2 − 1}

=
1

s2
P{Nk−1 = s2 − 1}.

21

From Theorem 6.1 and Relation (15), we get, for s2 ≥ 2 and k ≥ s2,

P{Us2 = k} =
S(k − 1, s2 − 1)(s2 − 1)!

s2
k−1

=
1

s2
k−1

s2−1∑
r=0

(−1)r
(
s2 − 1

r

)
(s2 − 1− r)k−1.

Finally, we consider the integer Es2 which counts the number of balls needed to
get a collision in all the s1s2 urns. Note that this number is independent of s1 as by
definition, the s1 experiments in parallel are identical and independent. Thus, filling
entirely a set of s2 urns leads to obtain all the s1 sets of s2 urns occupied. For given
value of s2 and ηF ∈ (0, 1), integer Es2 is defined by

Es2 = inf

{
k ≥ s2

∣∣∣∣∣
k∑

i=s2

P{Us2 = i} > 1− ηF

}
. (16)

Table 1.: Key values of Ls2,s1 and Es2 .

Settings
ηT or ηF Ls2,s1 Es2Error (s2 = de/εe) Precision (s1 = dlog(1/δ)e)

10 5
10−1 38 44

(ε ∼ 0.3)
(
δ ∼ 10−2

)
10 5 10−4 104 110
15 10 10−1 68 73
15 10 10−4 168 173
50

5 10−1 193

306

(ε ∼ 0.05)

50
10

10−1 227(
δ ∼ 10−3

)
50

40
10−1 296(

δ ∼ 10−12
)

50 5 10−4 537
65150 10 10−4 571

50 40 10−4 640
250

10 10−1 1,138 1,617
(ε ∼ 0.01)

250 10 10−4 2,871 3,363

The number Es2 of distinct ids the adversary has to inject in the input stream to
introduce a bias on the identifiers of all the correct nodes actually shows the upper
bound of Ls2,s1 given s2 and ηT = ηF . Making a flooding attack successful with
probability 0.9 when s2 = 50 requires around 300 malicious identifiers, while it requires
around 650 node identifiers when the desired probability of success is equal to 0.9999.

The main results of both analyses are summarized in Table 1. The most important
one is that the effort that needs to be exerted by the adversary to subvert the sampling
service can be made arbitrarily large by any correct node by just increasing the memory
space of the sampler. The second one, which derives from the first one, is the absence
of relationship between the effort of the adversary and the size of the population size,
which guarantees the scalability of our node sampler service.

22

7. Performance Evaluation of the Node Sampling Service

7.1. Settings of the Experiments

We have implemented both the omniscient and knowledge-free algorithms of the node
sampling service and have conducted a series of experiments on different types of
streams and for different parameters settings. We have fed our algorithms with both
real-world data sets and synthetic traces. Real data give a realistic representation of
some existing systems, while the latter ones allow us to capture phenomenon which
may be difficult to obtain from real-world traces, and thus allow us to check the robust-
ness of our algorithms. We have varied all the significant parameters of our algorithm,
that is, the size m of the stream, the number of distinct data items n in each stream,
the size of the local memory c, the number s2 of entries in each line of the Count-Min
Sketch matrix, and the number s1 of lines of this matrix. For each parameters setting,
we have conducted and averaged 100 trials of the same experiment, leading to a total
of more than 100, 000 experiments for the evaluation of our algorithms. Real data have
been downloaded from the repository of Internet network traffic [35]. We have used
three large traces among the available ones. The first one represents one month of
HTTP requests to the NASA Kennedy Space Center WWW server, the second one
contains two weeks logs of HTTP requests to the Internet service provider ClarkNet
WWW server (ClarkNet is a full Internet access provider for the Metro Baltimore-
Washington DC area), and the last one represents seven months of HTTP requests
to the WWW server of the University of Saskatchewan, Canada. These data sets will
be respectively referred to as NASA, ClarkNet, and Saskatchewan traces in the re-
maining of the paper. Table 2 presents some statistics of these data traces, in term of
stream size (cf. “# ids”), population size in each stream (cf. “# distinct ids”) and the
number of occurrences of the most frequent id (cf. “max. freq.”). Note that all these
benchmarks share a Zipfian behaviour, with a lower α parameter for the University of
Saskatchewan.

Table 2.: Statistics of real data traces

Data trace # ids (m) # distinct ids (n) max. freq.

NASA 1,891,715 81,983 17,572
ClarkNet 1,673,794 94,787 7,239
Saskatchewan 2,408,625 162,523 52,695

7.2. Main Lessons drawn from the Experiments

We now present the main lessons drawn from these experiments. As said above, these
experiments aim at showing the impact of over-represented (malicious) node identifiers
in the input stream of the sampler service.

In order to evaluate the accuracy of our algorithm at node i, we measure the
Euclidean distance between the output stream Si and the uniform one, denoted by
D(Si,U). Note that all the distance measures in the Ali-Silvey distances are applica-
ble to quantifying statistical differences between data streams. Based on the Euclidean

23

 0

 200

 400

 600

 800

1 000
0 10 000 20 000 30 000 40 000

Omniscient strategy

0 50 100 150 200 250 300 350 400

 0

 200

 400

 600

 800

1 000

Knowledge−free strategy

0 50 100 150 200 250 300 350 400

 0

 200

 400

 600

 800

1 000

Input stream

0 50 100 150 200 250 300 350 400

Figure 3.: Frequency distribution as a function of time.
Settings: n = 1000, c = 15, s1 = 10 and s2 = 15.

distance, the accuracy of our algorithm at node i is computed as

GED = 1− D(Si,U)

D(σi,U)
.

Figure 3 presents a kind of isopleth in which the horizontal axis shows time (or
equivalently the number of received node identifiers), the vertical axis represents the
node identifiers, and the body of the graph depicts the frequency of each node identifier
(i.e. the number of occurrences of each node identifier). A lighter color is representa-
tive of a very frequent node identifier. The figure at the top of Figure 3 represents the
frequency of each node identifier in the input stream of the node sampler. This figure
shows that at the inception of the stream, a few number of node identifiers have been
received in the input stream which explains the dark color on the left. As time elapses,
the number of received identifiers increases (up to 40, 000), and progressively the bias
of the input stream appears: a small number of identifiers recur with a high frequency
equal to 400, while the frequency of the other node identifiers is significantly lower.
This is representative to a truncated Poisson distribution. Now the two other figures
represent the output of the node sampler run with respectively the knowledge-free
algorithm and with the omniscient one. Clearly the omniscient algorithm succeeds in
outputting a uniform stream, illustrated by a color that progressively and uniformly
becomes lighter as the number of received identifiers augments. The knowledge-free
algorithm is not as good as the omniscient one, nevertheless it succeeds in significantly
decreasing the peak of high frequency identifiers with a very small memory (the sam-
pling memory may contain up to 15 node identifiers, and the Count-Min data structure
F̂ is a 10× 15 matrix.) w.r.t. the length m of the input stream.

Figure 4 shows the frequency distribution of node identifiers in respectively the in-
put and output streams as a function of node identifiers. Figure 4a is representative of
a particular attack, called peak attack in the following, in which the adversary injects

24

 10

 100

 1000

 10000

 100000

 0 100 200 300 400 500 600 700 800 900 1000

F
re

q
u
en

cy

Node identifier

Max frequency for Knowledge-free algorithm

Input Stream
 Knowledge-free algorithm

 Omniscient algorithm

(a) σ is biased by a peak attack generated by

Zipfian distribution with α = 4.

 0

 200

 400

 600

 800

 1000

 1200

 0 100 200 300 400 500 600 700 800 900 1000

F
re

q
u
en

cy

Node identifier

Input Stream
Knowledge-free algorithm

Omniscient algorithm

(b) σ is biased by both targeted and flooding

attacks generated by truncated Poisson distri-
bution with λ = n/2.

Figure 4.: Frequency distribution as a function of node identifiers. Settings: m =
100, 000, n = 1, 000, c = 15, s1 = 10 and s2 = 15.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 1 10 100 1000

D
is

ta
n
ce

 f
ro

m
 U

n
if

o
rm

 D
is

tr
ib

u
ti

o
n

Number of malicious node identifiers

Input Stream
Knowledge-free algorithm
Omniscient algorithm

Figure 5.: Euclidean distance as a function of the number of malicious node identifiers.
Settings: m = 100, 000, n = 1, 000, c = 15, s1 = 10 and s2 = 15

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900 1000

G
ai

n
 G

E
D

c

Knowledge-free algorithm
Omniscient algorithm

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000
 50000

 1 10 100 1000

F
re

q
u

en
cy

Node identifier

Input stream

(a) GED as a function of the number of entries
c of the sampling memory Γ. The input stream
is biased by a peak attack generated by Zipfian
distribution with α = 4.

Settings: m = 100, 000, n = 1, 000, s1 = 10,
s2 = 15.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900 1000

G
ai

n
 G

E
D

s2

Knowledge-free algorithm
Omniscient algorithm

(b)GED as a function of the number of columns
s2 of the Count-Min Sketch matrix. The input
stream is biased by a peak attack generated by
Zipfian distribution with α = 4.

Settings: m = 100, 000, n = 1, 000, c = 15,
s1 = 10.

Figure 6.: Gain of the knowledge-free algorithm as a function of its parameters.

25

50, 000 times a single node identifier while all the other identifiers occur 50 times in the
whole stream. Clearly the omniscient algorithm fully tolerates such an attack by suc-
cessfully outputting a uniform and fresh output stream. The knowledge-free algorithm
allows to reduce by a factor 50 the frequency peak with a small amount of memory
space with respect to the population size n and the length m of the input stream (the
sampling memory contains 15 entries and the Count Sketch matrix contains 150 ones).
Figure 4b represents a scenario in which the adversary has successfully subverted the
knowledge-free algorithm by launching both a targeted and flooding attacks. Indeed,
in this figure around 100 node identifiers are over represented in the input stream σ.
Now from Table 1, when s2 = 15, the minimum number of malicious node identifiers
that need to be injected by the adversary to make a targeted attack successful with
probability 0.9 and 0.9999 is respectively equal to Ls2,s1 = 68 and Ls2,s1 = 168, while
it is equal to Es2 = 73 and Es2 = 173 to launch a flooding attack. Note that although
both attacks are successful, the sampler service divides by 3 the frequencies of ma-
licious node identifiers. Again, the omniscient algorithm is fully robust against both
attacks.

Figure 5 complements Figures 4a and 4b by showing the impact of an “uniform”
attack on the distance between the output stream and a uniform one as a function
of the number of manipulated node ids. More precisely, in these experiments, the
adversary progressively takes the control of a uniform input stream by injecting its
malicious node ids in such a way that each malicious node identifier appears ten
times as many as a correct one. The adversary injects t = 1, 2, . . . , 100, . . . , 1000 node
ids leading to respectively 0.9%, 1%, . . . , 52%, . . . , 100% of the total size of the input
stream, that is 100, 000 items. The input stream can thus be seen as a combination of
two uniform streams, one made of correct node ids, and the other one made of malicious
ones, such that the frequency of malicious one is ten times the one of correct node ids.
The first observation is the very good behaviour of the omniscient algorithm whatever
the proportion of malicious node ids. Now, regarding the knowledge-free algorithm, the
worst (but weak) impact is observed when the adversary has succeeded to manipulate
10% of the total number of node identifiers, which amounts to 52% of the input stream.
Then the distance slowly decreases until being null, which is easily explained by the
fact that the input stream is progressively composed of solely the uniform stream
generated by the adversary. While in some way unrealistic, this scenario of attack
completes the ones generated with a Zipf with α = 4 distribution (i.e. peak attack)
and a Poisson distribution (targeted and flooding attack) by showing that whatever
the effort exerted by the adversary in terms of number of items injected in the input
stream, the omniscient algorithm succeeds in outputting a perfectly uniform stream,
and the knowledge-free algorithm clearly help to mitigate their impact on the output
stream. As an example, Figure 5, and the inset graphs of Figure 7 show that when the
adversary floods the input stream with around 50, 000 items, which corresponds i) for
a uniform attack to send one hundred node ids 5, 000 times each, ii) for a peak attack,
to flood 48, 000 times a single node id, and iii) for a “Poisson” attack to send one
hundred nodes ids with a Poisson like frequency distribution, then in all these types
of attacks, the distance of the output distribution with a uniform one is very small.
Note that a strong incentive for the adversary to generate a specific type of attack
is the cost it needs to pay for owning malicious node identifiers. Coming back to the
figures, it costs almost zero effort for the adversary to generate a peak attack because
it requires a single malicious node id, while in the other two cases the adversary has
to interact one hundred times with a central authority to receive certificates assessing
the validity ad integrity of the one hundred node identifiers. The good news with our

26

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000

G
ai

n
 G

E
D

n

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 10 100 1000

D
is

ta
n
ce

 f
ro

m
 U

n
if

o
rm

 D
is

tr
ib

u
ti

o
n

Input Stream
Knowledge-free algorithm

Omniscient algorithm

(a) σ is biased by a peak attack generated by
Zipfian distribution with α = 4.

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000

G
ai

n
 G

E
D

n

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 100 1000

D
is

ta
n
ce

 f
ro

m
 U

n
if

o
rm

Input Stream
Knowledge-free algorithm
Omniscient algorithm

(b) σ is biased by both targeted and flooding
attacks generated by a truncated Poisson dis-

tribution with λ = n/2.

Figure 7.: GED as a function of the number of distinct node identifiers n.
Settings: m = 100, 000, c = 15, s1 = 10 and s2 = 15.

knowledge-free algorithm is that it is highly efficient in presence of peak attacks.
Figures 6a and 6b illustrate the intuitive fact that increasing the number of entries

c of sampling memory, or increasing the available space of the sketch is a very powerful
defence against attacks.

Actually, Figure 7 confirms the impressive robustness of the omniscient algorithm,
and shows the very good resilience of the knowledge-free algorithm against a peak
attack (modelled by a zipfian distribution for Figure 7b). This figure shows the gain
GED of the output stream over the input stream as a function of the number of
distinct node identifiers. Note that the inset graph in Figure 7 simply illustrates the
ED distance between the input stream and the uniform one (continuous line) and the
ED distance between the output stream generated by respectively the omniscient and
knowledge-free algorithms and the uniform stream (dotted lines) as a function of the
number of node identifiers. This inset graph is obtained with the same parameters
setting as the main figure. When the number of distinct ids is close to the size of
the sampling memory (i.e., n ≤ 20), the knowledge-free algorithm builds a uniform
distribution since almost all the distinct ids are stored in the sampling memory. Now,
for increasing values of n, the distance between the output stream and the uniform
one does augment (i.e., GED decreases) however in a very slight extent. Storing 15%
of the node ids in the sampling memory versus 1.5% decreases the gain from 0.95 to
0.9, which shows the good behaviour of the knowledge-free algorithm.

Figure 8 shows the time needed for both output streams (constructed with respec-
tively the omniscient algorithm and the knowledge-free one) to reach their stationary
regime. The main observation is that for an input stream made of 1, 000 node iden-
tifiers and biased by a peak attack, in between 1, 000 and 10, 000 items must be read
by the omniscient and the knowledge-free algorithms to output respectively a uniform
and a quasi-uniform stream, which is fully compatible with monitoring requirements.

Now, Figure 9 illustrates the outcome of the sampler service fed by the real traces
presented in Section 7.1. As previously said, these real traces share a zipfian behaviour,
revealing the presence of a small number of highly frequent node identifiers among a
very large number of rare ones. This figure confirms the observations made on synthetic
traces, namely the capability for the knowledge-free algorithm to build a quasi uniform
stream from a highly biased one in a space efficient way. Note the best results are
obtained for the most skewed trace, i.e., the Saskatchewan one, which is explained by

27

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000 100000 1e+06

G
ai

n
 G

E
D

m

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 10 100 1000 10000 100000 1e+06

D
is

ta
n
ce

 f
ro

m
 U

n
if

o
rm

 D
is

tr
ib

u
ti

o
n

Input Stream
Knowledge-free algorithm

Omniscient algorithm

Figure 8.: GED as a function of the input stream size m. The input stream is biased
by a peak attack generated by Zipfian distribution with α = 4.
Settings: n = 1, 000, c = 15, s1 = 10 and s2 = 15.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

N
A

SA

C
larkN

et

Saskatchew
an

D
is

ta
n
ce

 f
ro

m
 U

n
if

o
rm

 D
is

tr
ib

u
ti

o
n

Input Stream
Knowledge-free algorithm c = s2 = log n

c = s2 = n/100Knowledge-free algorithm
Omniscient algorithm

Figure 9.: Euclidean distance between the different streams (input and output ones)
and the uniform one. The input stream has been extracted from the real dataset.
Settings: s1 = 10.

the fact that the accuracy of Count-Min sketch is higher in presence of highly frequent
items. Regarding the omniscient algorithm, its performance is very good whatever the
size c of the sampling memory.

8. Sketches in Series to Build a Uniform Stream

In Section 4.3, we have demonstrated that q = minj∈N pj impacts the time needed for
an output stream to converge to a uniform stream (see Theorem 4.3). We have ex-
ploited this result by putting sketches in series as illustrated in Figure 10. Experiments
have shown that processing the input stream with sketches put in series decreases the
convergence time, and this is achieved without requiring any additional space nor addi-
tional operations per item. The proposed algorithm, denoted by A(r) in the following,

works as follows. Each node maintains r instances of both data structures F̂ and Γ and
applies Algorithm 2 on each of these r instances. Upon receipt of some item j from
the input stream, A(r) feeds the first instance of the knowledge-free algorithm with j
leading to the output of some item `. This item then feeds the second instance of the
knowledge-free algorithm, and the same process is repeated until all the r instances
have been traversed. The outputs of A(r) is the output of the r-th instance of the
knowledge-free algorithm. Figure 10 illustrates the construction for A(3).

We have conducted experiments to validate the performance of our new con-

28

Input stream Si(k)

Output stream
u j u v lsj j

F ̂

j lΓ

s l v uj

F ̂

jΓ k d

l

F ̂

sΓ t k

d

v

Figure 10.: Algorithm A(3) run by node i ∈ N .

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 1 2 3 4 5 6 7 8 9 10

D
is

ta
n
ce

 f
ro

m
 U

n
if

o
rm

 D
is

tr
ib

u
ti

o
n

r (Number of instances)

Input Stream
A(r)

(a) σ is biased by a peak attack generated by a
Zipf distribution with α = 4.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 1 2 3 4 5 6 7 8 9 10

D
is

ta
n
ce

 f
ro

m
 U

n
if

o
rm

 D
is

tr
ib

u
ti

o
n

r (Number of instances)

Input Stream
A(r)

(b) σ is biased by both targeted and flooding
attacks generated by a truncated Poisson dis-

tribution with λ = n/2.

Figure 11.: Distance of the output stream generated by A(r) from the uniform one
as a function of the number of instances r of the knowledge-free algorithm. Settings:
m = 100, 000, n = 1, 000, and c = 15, s1 = 10, s2 = 15 for each sketch instance.

struction. Figure 11 shows that the presence of r > 1 sketches, each one using
(s1s2 + c) log n bits of space, improves upon the results obtained with a single sketch
of size (s1s2 + c) log n. Figure 12 confirms the interest of such a construction when
the total size of the r instances is exactly equal to the size of a single sketch. In order
to evaluate the accuracy of our algorithms, we have measured the euclidean distance
between the output streams and a uniform one.

In more details, Figure 11 shows the distance between the output stream and a uni-
form one as a function of the number of instances r of the knowledge-free algorithm,
and for two different shapes of input streams. Note that an abscissa equal to zero
represents the original input stream. As expected, the output stream built by Algo-
rithm A(r) gets closer to a uniform stream as a function of r. When the input stream
follows a highly skewed distribution (see Figure 11a) the impact of a single instance
is predominant compared to the other ones. On the other hand, for less extreme dis-
tributions, the improvement is almost proportional to the number of instances. Note
however that all these experiments have been conducted by using (s1s2 + c) log n bits
of space for each instance of the knowledge-free algorithm.

Figure 12 shows that A(r) still outperforms A(1), even using exactly the same
amount of space for both A(r) and for A(1). In other words, using a series of small
sketches is more efficient than a single but large one to build a uniform stream from an
arbitrary one. The last point that needs to be discussed concerned the delay introduced
by the presence of r sketches with respect to a single one. Let δ the time needed for a
sketch when fed by an item j to output some item `. Then, algorithm A(r) introduces
a delay of δ times r to output its first item, and then the stream is output at the rate
of the input stream. On the other hand the presence of r sketches with respect to a
single one does not substantially increase the number of operations devoted to each
item.

29

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 1 2 3 4

D
is

ta
n
ce

 f
ro

m
 U

n
if

o
rm

 D
is

tr
ib

u
ti

o
n

r (Number of instances)

Input Stream
A(r)

(a) σ is biased by a peak attack generated by a
Zipf distribution with α = 4.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 1 2 3 4

D
is

ta
n
ce

 f
ro

m
 U

n
if

o
rm

 D
is

tr
ib

u
ti

o
n

r (Number of instances)

Input Stream
A(r)

(b) σ is biased by both targeted and flooding
attacks generated by a truncated Poisson dis-

tribution with λ = n/2.

Figure 12.: Distance of the output stream generated by A(r) from the uniform one
as a function of the number of instances r of the knowledge-free algorithm. Settings:
m = 100, 000; n = 1, 000; and total space used by A(r) = (10× 15 + 15) log n.

9. Conclusion

In this paper, we have studied the node sampling problem in presence of malicious
nodes in a very large system by adopting a probabilistic approach. We have proposed
and analyzed two online algorithms. The omniscient one is fully resilient to any attacks
launched by a strong adversary, while the knowledge-free one is capable of drastically
decreasing the impact of adversarial attacks by using small memory space. We are
currently revisiting the Count-Min sketch to improve its behaviour when the input
distribution shows a long tail, which seems to be popular distributions modeling phe-
nomena where the frequency of input items can vary by many orders of magnitude.

As future work, we plan to extend this work by removing the assumption of a global
trusted party supplying verifiable random identifiers. A possible solution would to rely
on node stake. The idea would be to assume that nodes own some minimal amount of
stake (as for example digital money) that evolves according to node transactions. We
might adopt (a simplified version of) what is commonly known as the Bitcoin Unspent
Transaction Output (UTXO) model [36]. An UTXO can be roughly seen as a node’s
account credited by some stake. An UTXO is uniquely characterized by a public key pki
and its associated amount of stake si. Each public key is related to the digital signature
schema Σ with the uniqueness property, which allows stakeholders to use the public
keys (or a hash thereof) of their UTXOs as a reference to them, as demonstrated
in the ”Public Keys as Identities principle” of Chaum [37]. Relying on stake has
been extensively used to build permissionless blockchains (including Omniledger [38],
Ouroboros [39] Algorand [40], Snow White [41], StakeCube [42]). The challenge here
would be to find a very efficient way to parse the blockchain or any data structure
based on it (such as the UTXO pool) to determine node stake, and thus node legitimacy
to appear in the input node stream sampling. By achieving this, we could obtain a
fault tolerant random sampling service fully adapted to any large scale system with
no trusted third authority.

30

References

[1] Lv Q, Cao P, Cohen E, et al. Search and Replication in Unstructured Peer-to-Peer Net-
works. In: Proceedings of the International Conference on Supercomputing (ICS); 2002.
p. 84–95.

[2] Bollobás B. Random Graphs – 2nd Edition. Cambridge University Press; 2001.
[3] Demers A, Greene D, Hauser C, et al. Epidemic algorithms for replicated database mange-

ment. In: Proceedings of the 6th ACM Symposium on Principles of Distributed Computing
(PODC); 1987. p. 1–12.

[4] Jelasity M, Voulgaris S, Guerraoui R, et al. Gossip-based Peer Sampling. ACM Transac-
tion on Computer System. 2007;25(3):1–36.

[5] Stutzbach D, Rejaie R, Duffield NG, et al. On Unbiased Sampling for Unstructured Peer-
to-Peer Networks. IEEE/ACM Transactions on Networking. 2009;17(02):377–390.

[6] Jesi GP, Montresor A, van Steen M. Secure Peer Sampling. Computer Networks. 2010;
54(12):2086–2098.

[7] Liu D, Ning P, Du W. Detecting Malicious Beacon Nodes for Secure Location Discovery
in Wireless Sensor Networks. In: Proceedings of the 25th IEEE International Conference
on Distributed Computing Systems (ICDCS); 2005. p. 609–619.

[8] Singh A, Ngan TW, Druschel P, et al. Eclipse Attacks on Overlay Networks: Threats
and Defenses. In: Proceedings of the 25th IEEE International Conference on Computer
Communications (INFOCOM); 2006. p. 1–12.

[9] Anceaume E, Busnel Y, Gambs S. On the power of the adversary to solve the node
sampling problem. Transactions on Large-Scale Data and Knowledge-Centered Systems.
2013;:102–126.

[10] Bortnikov E, Gurevich M, Keidar I, et al. Brahms: Byzantine Resilient Random Mem-
bership Sampling. Computer Networks. 2009;53:2340–2359.

[11] Sit E, Morris R. Security Considerations for Peer-to-Peer Distributed Hash Tables.
In: Proceedings of the 1rst International Workshop on Peer-to-Peer Systems (IPTPS).
Springer-Verlag; 2002. p. 261–269.

[12] Douceur J, Donath J. The Sybil Attack. In: Proceedings of the 1rst International Work-
shop on Peer-to-Peer Systems (IPTPS); 2002. p. 251–260.

[13] Awerbuch B, Scheideler C. Group Spreading: A Protocol for Provably Secure Distributed
Name Service. In: Proceedings of the 31rst International Colloquium on Automata, Lan-
guages and Programming (ICALP); 2004. p. 183–195.

[14] Awerbuch B, Scheideler C. Towards a Scalable and Robust Overlay Network. In: Pro-
ceedings of the 6th International Workshop on Peer-to-Peer Systems (IPTPS); 2007.

[15] Anceaume E, Ludinard R, Sericola B, et al. Modeling and evaluating targeted attacks
in large scale dynamic systems. In: Proceedings of the 41rst IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN); 2011.

[16] Anceaume E, Busnel Y, Rivetti N, et al. Identifying global icebergs in distributed streams.
In: Proceedings of the 35th IEEE Symposium on Reliable Distributed Systems (SRDS’15);
Sep.; Montreal, Canada; 2015.

[17] Rivetti N, Anceaume E, Busnel Y, et al. Online Scheduling for Shuffle Grouping in Dis-
tributed Stream Processing Systems. In: Proceedings of the ACM/IFIP/USENIX Mid-
dleware 2016; 2016.

[18] Muthukrishnan SM. Data streams: Algorithms and applications. Now Publishers Inc.;
2005.

[19] Bar-Yossef Z, Jayram TS, Kumar R, et al. Counting distinct elements in a data stream.
In: Proceedings of the 6th International Workshop on Randomization and Approximation
Techniques (RANDOM). Springer-Verlag; 2002. p. 1–10.

[20] Flajolet P, Martin GN. Probabilistic counting algorithms for data base applications. Jour-
nal of Computer and System Sciences. 1985;31(2):182–209.

[21] Kane DM, Nelson J, Woodruff DP. An optimal algorithm for the distinct element problem.
In: Proceedings of the Symposium on Principles of Databases (PODS); 2010. p. 41–52.

31

[22] Alon N, Matias Y, Szegedy M. The space complexity of approximating the frequency
moments. In: Proceedings of the 28th annual ACM symposium on Theory of computing
(STOC); 1996. p. 20–29.

[23] Charikar M, Chen K, Farach-Colton M. Finding frequent items in data streams. Theo-
retical Computer Science. 2004;312(1):3–15.

[24] Chakrabarti A, Cormode G, McGregor A. A near-optimal algorithm for computing the
entropy of a stream. In: Proceedings of the ACM-SIAM Symposium on Discrete Algo-
rithms; 2007. p. 328–335.

[25] Lall A, Sekar V, Ogihara M, et al. Data streaming algorithms for estimating entropy of
network traffic. In: Proceedings of the joint international conference on Measurement and
modeling of computer systems (SIGMETRICS). ACM; 2006. p. 145–156.

[26] Anceaume E, Busnel Y. Lightweight metric computation for distributed massive data
streams. Transactions on Large-Scale Data and Knowledge-Centered Systems. 2017;33:1–
33.

[27] Anceaume E, Busnel Y. Deviation estimation between distributed data streams. In: Pro-
ceddings of the 10th European Dependable Computing Conference (EDCC); 2014.

[28] Lynch N. Distributed algorithms. Morgan Kaufmann Publishers; 1996.
[29] Godfrey PB, Shenker S, Stoica I. Minimizing churn in distributed systems. In: Proceedings

of the ACM SIGCOMM; 2006. p. 147–158.
[30] Vitter J. Random sampling with a reservoir. ACM Transactions on Mathematical Soft-

ware. 1985;37(57).
[31] Anceaume E, Busnel Y, Sericola B. Uniform node sampling service robust against collu-

sions of malicious nodes. In: Proceedings of the 43rst IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN); 2013.

[32] Keneny JG, Snell JL. Finite markov chains. Springer-Verlag; 1976.
[33] Rubino G, Sericola B. On weak lumpability in Markov chains. Journal of Applied Prob-

ability. 1989;26:446–457.
[34] Cormode G, Muthukrishnan SM. An improved data stream summary: the count-min

sketch and its applications. Journal of Algorithms. 2005;55(1):58–75.
[35] Archive TIT. http://ita.ee.lbl.gov/html/traces.html [Lawrence berkeley national labora-

tory]; Online on feb. 2016.
[36] Nakamoto S. Bitcoin: A peer-to-peer electronic cash system

[https://bitcoin.org/bitcoin.pdf]; 2008.
[37] Chaum D. Untraceable electronic mail, return addresses, and digital pseudonyms. Com-

munications of the ACM. 1988;24(2):84–90.
[38] Kokoris-Kogias E, Jovanovic P, Gasser L, et al. Omniledger: A secure, scale-out, decen-

tralized ledger via sharding. In: IEEE Symposium on Security and Privacy (SSP); 2018.
[39] Badertscher C, Gaži P, Kiayias A, et al. Ouroboros genesis: Composable proof-of-stake

blockchains with dynamic availability. In: ACM SIGSAC Conference on Computer and
Communications Security (CCS); 2018.

[40] Gilad Y, Hemo R, Micali S, et al. Algorand: Scaling byzantine agreements for cryptocur-
rencies. In: Proceedings of the 26th Symposium on Operating Systems Principles; ACM;
2017. p. 51–68.

[41] Daian P, Pass R, Shi E. Snow White: Provably Secure Proofs of Stake [Cryptology eprint
archive, report 2016/919]; 2016. https://eprint.iacr.org/2016/919.

[42] Durand A, Hbert G, Toumi K, et al. The stakecube blockchain : Instantiation, evalua-
tion and applications. In: Proceedings of IEEE International Conference on Blockchain
Computing and Applications (BCCA); 2020.

32

