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Summary: In connection with cybersecurity issues in ICS, we consider the problem of detecting yet unknown attacks by 

presenting a theoretical framework for the detection of anomalies when the observations have unknown distributions. We 

illustrate the relevance of this framework with experimental results. 
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1. Introduction 

Vulnerability of systems in Industry 4.0 and Smart 

Factories increases as the number of new threats grows 

with the number of connected devices, especially in 

ICSs (Industrial Control Systems). It is crucial to 

devise methods capable of reliably detecting novel 

types of attacks. Anomaly detection [1, 2] addresses 

this issue by considering possibly novel attacks as 

anomalies with respect to nominal system behaviors. 

However, the diversity of processes and the various 

variable users' habits and behaviors entail many 

deviations with respect to nominal system behaviors, 

even in the absence of attacks. Because of this 

variability, anomaly detection may yield too many 

false alarms. It is thus desirable to cast the anomaly 

detection problem into a theoretical framework to deal 

with deviations around a nominal model, with 

guaranteed performance and even optimality. 

Although statistical hypothesis testing provides a 

“statistically justifiable solution for anomaly 

detection” even “in an unsupervised setting without 

any need for labeled training data” [1] , they however 

assume that observations obey specific distributions, 

which is questionable in practice because of the 

aforementioned variations around nominal models, 

even in absence of attacks. 

The Random Distortion Testing (RDT) [3] aims to 

overcome the aforementioned limitations of statistical 

methods and anomaly detection. This framework 

incorporates the existence of unknown deviations and 

deals with fully unknown probability distributions for 

the observation. The observation is assumed to result 

from some signal with unknown distribution observed 

in additive and independent Gaussian noise, and the 

RDT approach is optimal with guaranteed performance 

to decide whether the noisy signal drifts by too much 

from a certain deterministic model. Since RDT 

assumes a perfectly known noise distribution, we 

present below theoretical and experimental results to 

upgrade the original RDT framework to the White 

Gaussian Noise (WGN) case with estimated standard 

deviation. 

Notation and terminology. 𝑀(Ω,ℝ𝑑) denotes the 

set of all 𝑑-dimensional real random vectors defined 

on the probability space (Ω, Σ, ℙ). 𝑄𝑑/2 is the 

generalized Marcum function. ∀(𝜃0, 𝜌) ∈ ℝ
𝑑 ×

(0,∞), 𝑆𝜌 = {𝑦 ∈ ℝ𝑑: ‖𝑦 − 𝜃0‖2 = 𝜌}, 𝐵𝜌 = {𝑦 ∈

ℝ𝑑: ‖𝑦 − 𝜃0‖2 ≤ 𝜌} and 𝐵𝜌
𝑐 = {𝑦 ∈ ℝ𝑑: ‖𝑦 − 𝜃0‖2 >

𝜌}. For all 𝑡 > 0, we define the test 𝑇𝑡: ℝ
𝑑 → {0, 1} by: 

∀𝑦 ∈ ℝ𝑑 , 𝑇𝑡(𝑦) = { 
1    if ‖𝑦 − 𝜃0‖2 > 𝑡
0    otherwise

 

 

2. The RDT appoach in the WGN case 

The RDT problem can be stated as follows [3]: 

{
 
 
 

 
 
 

Data model: ∃(𝑌, 𝛩) ∈ 𝑀(Ω,ℝ𝑑)2, ∃𝑋~𝑁(0, 𝜎2𝑰𝑑),

     {

𝛩 and 𝑋 are independent,

𝑌 = 𝛩 + 𝑋,

∀𝑦 ∈ ℝ𝑑 , ∃𝜔 ∈ Ω, 𝑦 = 𝑌(𝜔)                            (1)

Testing problem: Given 𝑦 = 𝑌(𝜔), test:

𝐻0: 𝛩(𝜔) ∈ 𝐵𝜏      vs.     𝐻1: 𝛩(𝜔) ∈ 𝐵𝜏
𝐶

    with 𝜏 > 0 and 𝜃0 ∈ ℝ
𝑑

 

The existence of optimal tests for the RDT problem 

is established via the notions of conditional size and 

conditional power defined as follows. 

Definition 1. For 𝜌 > 0 and 𝑇:ℝ𝑑 → {0, 1}, we set: 

Conditional power: 

∀Θ ∈ 𝑀(Ω, ℝ𝑑), ℙ[ 𝑇(Θ + 𝑋) = 1  ∣∣ Θ ∈ 𝑆ρ ] 

Conditional size: 

α𝑇 = sup
Θ∈𝑀(Ω,ℝ𝑑):𝑃[Θ∈𝐵τ]≠0

ℙ[ 𝑇(Θ + 𝑋) = 1  ∣∣ Θ ∈ 𝐵𝜏 ] 

Definition 2. Given 𝛩 ∈ 𝑀(Ω,ℝ𝑑) and 𝜌 ≥ 0, a test 𝑇 

is said to have constant conditional power function 

(CCPf) given 𝛩 ∈ 𝑆𝜌 if for every 𝜃 ∈ 𝑆𝜌: 

ℙ[𝑇(Θ + 𝑋) = 1  ∣∣ Θ ∈ 𝑆𝜌 ] = ℙ[𝑇(𝜃 + 𝑋) = 1] 

We can then exhibit optimal tests as follows. 

Theorem 1. Given 𝛾 ∈ (0,1), if 𝜆𝛾(𝜏) is such that 

𝑄𝑑/2 (𝜏, 𝜆𝛾(𝜏)) = 1 − 𝛾, 𝑇𝜆𝛾(𝜏) is optimal in that: 

i. 𝛼𝑇𝜆𝛾(𝜏)
= 𝛾; 

ii. ∀𝛩 ∈ 𝑀(Ω,ℝ𝑑) and for ℙ(‖Θ − θ0‖2)
−1-almost 

every 𝜌 > 𝜏, 𝑇𝜆𝛾(𝜏) has CCPf given 𝛩 ∈ 𝑆𝜌 and for 

all 𝑇 with 𝛼𝑇 ≤ 𝛾 and CCPf given 𝛩 ∈ 𝑆𝜌: 
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ℙ [𝑇𝜆𝛾(𝜏)(𝛩 + 𝑋) = 1 ∣
∣ 𝛩 ∈ 𝑆𝜌 ]

≥ ℙ[ 𝑇(𝛩 + 𝑋) = 1 ∣∣ 𝛩 ∈ 𝑆𝜌 ] 

 

3. Asymptotic RDT 

For any 𝑡 > 0, let 𝑇�̃� be the function defined by: 

𝑇�̃�: ℝ
𝑑 × ℝ𝑑 × (0.∞) → {0, 1}

(𝑦, 𝜃, 𝜎) ↦ { 
1   if ‖𝑦 − 𝜃‖2 > 𝜎𝑡
0   otherwise

 

We herafter consider consistent estimators �̂�𝑛 and �̂�𝑛 

of  𝜃0 and 𝜎0 respectively. Set 𝑍 = (𝑌, 𝜃0, 𝜎0) and 

∀𝑛 ∈ ℕ, 𝑍𝑛 = (𝑌, �̂�𝑛, �̂�𝑛). ∀𝜌 ≥ 0 and ∀𝑛 ∈ ℕ, define 

Πn(𝜌,⋅) and Π(ρ,⋅) by setting for all Borel set 𝐴 ⊂
ℝ2𝑑+1: 

Π𝑛(𝜌, 𝐴) = ℙ[ 𝑍𝑛 ∈ 𝐴 ∣∣ ‖𝛩 − 𝜃0‖2 = 𝜌 ]

Π(𝜌, 𝐴) = ℙ[ 𝑍 ∈ 𝐴 ∣∣ ‖𝛩 − 𝜃0‖2 = 𝜌 ]
 

Theorem 2 (Asymptotic level). If 𝑆 = {Ξ ∈

𝑀(Ω,ℝd): ∀𝑛 ∈ ℕ, Ξ and (�̂�𝑁 , �̂�𝑁) are independent}, 

then: 

limsup supℙ [ �̃�𝜆𝛾(𝜏)(Ξ + 𝑋, �̂�𝑁 , �̂�𝑁) = 1 ∣∣ Ξ ∈ 𝐵𝜏 ] ≤
𝑛         Ξ∈𝑆:ℙ[Ξ∈𝐵𝜏]≠0                                                                              

𝛾 

Define the critical region of �̃�: ℝ2𝑑+1 → {0, 1} as: 

𝐾�̃� = {(𝑦, 𝜃, 𝜎) ∈ ℝ
𝑑 × ℝ𝑑 × (0,∞): �̃�(𝑦, 𝜃, 𝜎) = 1} 

Theorem 3. If �̃�: ℝ2𝑑+1 → {0, 1} is such that  

�̃�(⋅, 𝜃0, 𝜎0) has asymptotic level 𝛾 and constant 

conditional power function given ‖Θ − 𝜃0‖2 = 𝜌 for 

ℙ‖Θ − 𝜃0‖2
−1-almost every 𝜌 and if the critical region 

𝐾�̃� is a ℙ𝑍−1-continuity set, then: 

limsup
𝑛

(Π𝑛 (𝜌, 𝐾�̃�𝜆𝛾(𝜏)
) − Π𝑛(𝜌, 𝐾�̃�)) ≥ 0          (2) 

 

4. Experimental results for signal detection in 

non-asymptotic regimes 

Consider the detection problem (3), where Δ ∈
M(𝛺,ℝ𝑑) is a bounded random interference and 

assume that we have a consistent estimator of 𝜎. The 

standard Neyman-Pearson test and the GLRT cannot 

be used since the distribution of Δ is unknown. We can 

cast (3) in (1) with Θ = 𝜀𝜃0 + Δ and thus use �̃�𝜆𝛾(𝜏) to 

perform the decision. The false alarm rate (FAR) of 

�̃�𝜆𝛾(𝜏)  tends to 𝛾 by upper values as 𝑁 increases. 

{
 
 
 
 

 
 
 
 

Observation: 𝑌 = 𝜀𝜃0 + Δ + 𝑋, where:

    

{
 
 

 
 

 

𝜀 ∈ {0, 1} is unknown

𝜃0 ∈ ℝ
𝑑 is known, 𝑋~𝑁(0, 𝜎2𝐼𝑑)

Δ ∈ 𝑀(Ω,ℝ𝑑) has unknown distribution

‖Δ‖2 ≤ 𝜏 for a known 𝜏 ≥ 0
Δ and 𝑋 are independent

 

Testing problem: given 𝑦 = 𝑌(𝜔), test:

𝐻0: 𝜀 = 0      vs.     𝐻1: 𝜀 = 1

     (3) 

It is then possible to determine 𝜏∗ so that �̃�𝜆𝛾(𝜏∗) 

maintains the FAR below 𝛾 for the detection problem 

(3). This adjustment is achieved as follows. Consider a 

uniform distribution for Δ on 𝑆𝜏 because this 

distribution is the least favorable in that it maximizes 

the FAR. Seek the value 𝑘 = 1, 2, … such that the FAR 

of �̃�𝜆𝛾(𝑘𝜏) drops below 𝛾. For the value of 𝑘 thus found, 

fix 𝜏𝑙 = (𝑘 − 1)𝜏 and 𝜏𝑢 = 𝑘𝜏. Then, by dichotomy, 

calculate 𝜏∗ ∈ (𝜏𝑙 , 𝜏𝑢) such that the FAR of �̃�𝜆𝛾(𝜏∗) 

approximates at best 𝛾 without exceeding this level. In 

our experiments below, the dichotomy was stopped 

after 10 steps. The Monte-Carlo simulations were 

carried out with the following parameters: 𝑑 = 2; 

𝜎 = 1; 𝜏 = 1.77, which corresponds to a Distortion-to-

Noise ratio of 2 dB; ‖𝜃0‖2 = 5.62, which corresponds 

to an SNR of 12 dB; �̂� was the Maximum Likelihood 

Estimate from 𝑁 iid standard Gaussian samples, with 

𝑁 = {20, 50, 100}. The ROC curves of �̃�𝜆𝛾(𝜏) in Fig. 1 

exhibit two important features. First, they are identical, 

which can be proved mathematically. Second, 

although �̃�𝜆𝛾(𝜏∗) is not optimal in the sense of 

Theorem 3, it maintains the FAR below 𝛾 without 

much performance loss in comparison with the optimal 

𝑇𝜆𝛾(𝜏) that requires a known 𝜎. 

 

 
 

Fig. 1. ROC curves of �̃�𝜆𝛾(𝜏∗) and �̃�𝜆𝛾(𝜏) 

 

5. Conclusion and perspectives 

In this paper, with respect to current issues in 

cybersecurity and ICS, we have presented Asymptotic 

RDT, which extends the initial RDT approach so as to 

take estimation of the model and the noise variance 

into account. We have illustrated the relevance of the 

approach through simulations and presented a way to 

compensate the effect of the estimation when detection 

is performed via Asymptotic RDT. The approach is 

very promising due to its genericity. Applications to 

change detection are in progress. Future works involve 

extension to the case of an unknown noise covariance 

matrix and to noise distributions other than Gaussian. 
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