
LatSeq: A Low-Impact Internal Latency
Measurement Tool for OpenAirInterface

Flavien Ronteix–Jacquet∗†, Alexandre Ferrieux∗,
Isabelle Hamchaoui∗, Stéphane Tuffin∗, Xavier Lagrange†

IMT Atlantique, Rennes†

Orange Labs Networks, Lannion∗

Emails: †{firstname.lastname}@imt-atlantique.fr, ∗{firstname.lastname}@orange.com

Abstract—Building a thorough understanding of latency in the
5G-NR RAN requires a reliable system level measurement tool
able to collect relevant data in a broad range of situations.

For this purpose, we propose LatSeq, an open-source software
extension aimed at providing the OpenAirInterface Base Station
with internal latency measurement capabilities. This paper dis-
cusses its design choices and evaluates its fitness for purpose in
a first baseline usage scenario.

We demonstrate the low impact of LatSeq on the observed
system, the usefulness of statistics it enables and the relevance
of its capability of tracing individual packet journeys inside the
base station.

Index Terms—Latency, Cellular Network, Measurements,
Characterization, Open Source, OpenAirInterface.

I. INTRODUCTION

Offering ultra low latency communications is undoubtedly
one of the foremost 5G promises. However, coping with
latency objectives under a few milliseconds creates tough
challenges for the air interface design but also for QoS
management and resource allocation on the radio segment.

The Third Generation Partnership Project (3GPP) designed
the 5G New Radio (NR) interface with the aim of reducing the
latency as far as possible using a lean design and flexibility
[1]: slot duration to 1/8 ms, resource allocation with symbol-
level granularity (1/14 slot), delay between a data resource
block and its acknowledgement lower than one slot. Such
characteristics are a prerequisite to very low latency but they
may be pointless without adequate scheduling algorithms,
which remain vendor specific.

Many mechanisms have been proposed to cut down the la-
tency [2], [3] including scheduling, active queue management
and resource reservation. However, these mechanisms were
generally not considered specifically for radio access. In [4],
the authors review various mechanisms to reduce latency for
wireline and wireless access. Moreover, a vast majority of the
mechanisms proposed in the literature were only evaluated in
simulated environments.

Furthermore, several open-source platforms of end-to-end
mobile networks have recently emerged: OpenAirInterface
(OAI) [5], [6] and srsLTE [7] are the most common ones.
Both run on off-the-shelf hardware. The implementation of a
4G network is already available on OAI and the 5G version
is under development unlike srsLTE. It is also supported by

a relatively large and active community, which makes OAI a
promising solution for research purposes.

Our objective is to develop a tool for the analysis of the
latencies generated in a software Base Station (BS). Indeed,
though each new generation dramatically increases its bit
rate, the radio interface often remains a bottleneck. As a
consequence, queues tend to build up in the BS, thus creating
the delay we set out to minimize. In order to tackle these
delays as a whole, one needs to investigate the complex
interactions between the various layers at the radio interface.

The tool should then be able to measure the delays in each
layer entity or more generally each process in which queueing
or service time may build up. Delay values related to the same
packet should not be captured independently from each other:
what should be built is the sequence of successive latencies
across the layers.

Making measurements inside a running BS is a challenge
in itself as it requires to measure delays on the order of a
microsecond for thousands of high throughput connections and
hundreds of diverse users. Logging these large amounts of
events necessarily incurs extra delays, while we are precisely
seeking a low impact tool to preserve the BS operation.

To meet these harsh requirements, we designed a specific
tool named LatSeq1 for the analysis of latency sequences,
and developed it over OAI. This tool measures, collects and
displays various internal latencies and makes visible and
understandable the life of data packets inside the BS.

This paper presents the design choices of LatSeq together
with a preliminary performance evaluation. Section II in-
troduces the notions of internal latency, journey and data
structures. Section III presents the implementation of LatSeq
and its key design principles. In the same section, LatSeq
output designed for fine-grained analysis is also described.
The low-impact aspect and performance assessment are shown
in section IV. In section V we conclude and give some
perspectives.

1https://github.com/FlavienRJ/LatSeq



Figure 1: Latency and different possible operations on a
packet: a) linear; b) segmentation; c) concatenation; d) re-
transmission

II. ON INTERNAL LATENCY

A. Definition of internal latency and issues herewith associ-
ated

Defining the latency of a packet handled through a radio
interface is in itself difficult. A packet is processed by a
collection of layer entities and is prone to segmentation or
reassembly, concatenation and retransmission as shown in
Fig. 1. The latency can be considered either for each packet
segment or for all segments related to the same packet.

Moreover, depending on the point of view (from inside the
node, from outside the node, from software, from hardware),
all the delays introduced are not accessible and do not have
the same nature.

In this paper, we define the (e.g. downlink) internal latency
as the time between the moment when the packet is fully
received by the node (here the BS) from the wireline interface
and the moment when all the segments making up the packet
leave the software part of this node to be transmitted and
possibly retransmitted (see Fig. 1). With this definition, the
internal latency can be lower than 1 ms for 4G. It can be
due to queueing, segmentation, retransmission, etc. in different
layers of the protocol stack.

A second challenge is to track a packet or a data segment
along its journey inside the BS. In the following, we call data
unit a packet or a data segment in any layer. For both 4G and
5G radio interface, the protocol stack includes the physical
layer, Medium Access Control (MAC), Radio Link Control
(RLC) and Packet Data Convergence Protocol (PDCP). Each
layer manages some local identifiers. For example, each User
Equipment (UE) is identified at the MAC layer by the Radio
Network Temporary Identifier (RNTI). Several flows can be
transmitted to the same UE by use of different Data Radio
Bearers (DRBs). At the RLC level, each data unit is referenced
by a Sequence Number (SN) and several logical channels can
be multiplexed and identified by a Logical Channel IDentifier
(LCID). At the PDCP level, the data unit is also numbered
with the PDCP Sequence Number (PSN). A single layer-
dependent identifier (e.g. LCID, SN, etc.) does not provide
a unique identification of a data unit. However, aggregating
the identifiers from different layers makes it possible to track
a data unit along its path. Note that some identifiers can be
redundant (e.g. the DRB number and the LCID) but this does
not present a problem.

B. The packet fingerprint structure

We propose to track a data unit during its life within the
BS by creating fingerprints at different layers. A fingerprint
is generated whenever a measurement is made. It includes a
timestamp, a measurement point location and data identifiers.

The fingerprint format in the most general case is as follows:

t dir src--dest prop:globalId:localId

Where,
• t is a timestamp with a precision of one microsecond

(standard Unix format for time);
• dir is the direction of transmission of the data unit;
• src and dest refer to the points (layer entity or the

software procedure) between which the fingerprint is
generated;

• prop includes one or several properties of the packet;
• globalId includes one or several global identifiers that

remain constant along the life of the data unit within the
node;

• localId is a list of local identifiers. The number of
local identifiers and their nature may be different for the
same data unit.

In the case of OAI, the format is

t dir src--dest length:rnti:A.B.C. . .

Field dir is either D for downlink or U for uplink. The
property is just the length of the data unit; the global identifier
is the RNTI; and the local identifiers (A, B and C) are typically
indices or references at the different layer entities. An example
of a fingerprint is:

146.191802 D pdcp.in--pdcp.tx

len64:rnti513:drb1.psn10

This fingerprint means that at time t = 146.192802 s, a data
unit on the downlink for UE with RNTI 513 is processed by
the PDCP entity. This data unit is to be sent on data radio
bearer 1 with PSN 10.

The next fingerprint of the same data unit is:

146.191803 D pdcp.tx--rlc.tx.um

len66:rnti513:drb1.psn10.lcid3

We know that this second fingerprint is related to the
same data unit thanks to common identifiers and matching
source/destination fields, thus reflecting the continuity of the
packet’s life across layers.

C. Definition of packet journey

When launched, Latseq generates a trace file that includes
a list of all fingerprints captured during its execution. We
define the journey as the list of successive fingerprints for a
given packet or a given packet segment. Due to segmentation
and concatenation, a given fingerprint can be included in
several journeys as illustrated by Fig. 2. Conversely, finger-
prints related to different journeys are interleaved in the trace
file; as a consequence, journeys are not distinguishable at



Figure 2: Graph of cases for journeys. a) linear; b) segmentation; c) concatenation; d) retransmission;
Black circles represent location of measurement points. Local identifiers to rebuild journeys are in rectangles

the first glance and should be rebuilt thanks to appropriate
treatments. Analyzing the journey of a packet informs about
the processing at different layers and the associated durations.
Collecting a set of journeys gives the capacity to study the
latency at a fine grain.

D. Journeys as graphs

Each fingerprint can be seen as a vertex of a graph. When
the dest field of a fingerprint is the same as the src of
another one, there is an edge between the two vertices if
both fingerprints share the same globalID (same RNTI in
OAI) and the same localID values for each local identifier
present.

In the trace file fingerprints related to different data units
are interleaved; We are thus defining a graph that includes
a lot of disjoint sets. Latseq generates a list of subgraphs,
each one corresponding to the journey of a data unit. These
subgraphs are directed and acyclic as shown in Fig. 2. All
fingerprints generated at a given input share the same src
field. For example, the fingerprints of all downlink packet
arriving at the BS on the wired interface are characterized
by src=ip.in. Similarly, when a data unit is transmitted
on the radio interface, the dest field of its last fingerprint
(i.e. the terminal node in the tree) is dest=phy.out. When
a data unit is dropped by an intermediate layer, the terminal
node is a fingerprint with a different dest.

Fig. 2 illustrates the 4 typical graphs, each one correspond-
ing to a case of Fig. 1. Case d in Fig. 2 is particular because
a packet that has already reached the output point reappears
in the system due a retransmission.

III. IMPLEMENTATION

LatSeq is composed of two functional blocks as shown in
Fig. 3:

• A measurement part : it captures fingerprints on a running
BS and records them in a trace file. This part is itself
made of a collection of measurement points inserted
within the BS code, and a data collector module, which
gathers all fingerprints and writes them to the trace file.

• An analysis part : it rebuilds packet journeys offline by
scanning the trace file and computes data for analysis and
visualization.

Figure 3: LatSeq tool’s architecture.

The measurement part must have a limited impact on the
execution time of the BS to avoid interfering with regular oper-
ations, whereas the analysis part has no strict time constraints.

A. Measurement points

Fingerprints are captured by inserting a macroinstruc-
tion called LATSEQ_P in the code. Whenever the macro
LATSEQ_P is inserted in the code of an OAI thread, this
thread is said to be instrumented.

Mechanisms U C
Variadic macro X
Inlined measurement function X
Time in number of CPU cycles (rdtsc) X
Thread Local Storage (TLS) X X
Lockless ring buffer for temporary local storage X
Formatting by the data collector thread X
Buffered IO X

Table I: Implementation choices for LatSeq measurement
module. (U: for low CPU Usage, C: for low CPU Contention)

The format of this macroinstruction is
LATSEQ_P("dir src--dest", "data_id1%d...",
data_id1,...): the arguments contain all the necessary
information for the fingerprint to be formatted in the trace
file.

Because the macroinstruction handles a variable number of
data identifiers, we use the variadic macro mechanism. The



timestamp is not given to LATSEQ_P as an argument, but
computed internally by the quick assembly-level instruction
”rdtsc” when capturing the fingerprint.

The macroinstruction code puts the fingerprint in a lockless
ring buffer. This buffer uses static memory that is local to the
instrumented thread: it uses the Thread-Local Storage (TLS)
mechanism [8]. In other words, there are as many ring buffers
as the number of instrumented threads.

Note that writing fingerprints in a non-thread-local buffer
would have been highly inefficient, because concurrent thread
access to such a buffer would have required inter-thread
synchronization and thus would incur extra contention delays.

At this step, each fingerprint is stored in a ring buffer cell as
a ”packet fingerprint structure” (see Fig.3) for later formatting
by the data collector.

This measurement method is inspired by [9], [10], [11], [12]
solutions.

Note that OAI ships with T tracer [13], a comprehensive
logging tool for debugging purposes; however, we do not use
it because of its limited logging performance.

B. Data collector

The data collector is a low-priority LatSeq-specific thread,
low-priority so as to be conservative regarding Central Pro-
cessing Unit (CPU) utilization and minimize its impact on the
BS. This thread visits each ring buffer in a round robin fashion,
formats the current fingerprint according to the structure
described in II-B and writes it to the trace file using buffered
IO. The trace file contains one line per observed fingerprint,
providing fine-grained data for latency analysis.

The data collector is the only thread that empties the ring
buffers and it runs asynchronously. If the size of a given ring
buffer is not large enough, some fingerprints are lost. To avoid
both overflow and waste of memory, a good trade-off should
be found regarding the size of the ring buffers (see IV-A2).
The implementation choices for both the measurement part
and the data collector are summarized on Table I.

C. Overview of the rebuilder

The output of the LatSeq measurement part is the trace file
including a succession of fingerprints related to different UEs,
layers, packets, etc. The first task of the analysis module is to
rebuild the journeys of the different packets. This is done by
associating each journey with a graph as explained in II-D.

The trace file is sorted in ascending timestamp order. The
rebuilder scans the trace file and looks for root vertices.
Whenever a vertex is found, a child vertex is searched by
scanning the remaining part of the file. This process is repeated
until it reaches a vertex that corresponds to the transmission
of the packet.

The result of the rebuilding phase is a list of journeys, each
corresponding to a list of fingerprints.

D. The filter module

The LatSeq measurement part generates fingerprints for all
data units forwarded by the BS. Should we want to restrain

Figure 4: ”Waterfall” representation.

observation to a subset of them, for example to a given family
of journeys (e.g. a flow), then a filtering module is required.
Implementing this filter on the measurement side is out of
reach, as the journey to which each fingerprint belongs to is
calculated later, in the analysis part. The filter module should
necessarily be implemented after the rebuilder.

With adequate filters in the analysis module, it is possible
to investigate the behaviour of a protocol layer, a specific UE
or a mechanism (e.g. segmentation). A wide range of filters
can be defined. We give a few examples below.

• By selecting journeys with the same RNTI, the behavior
of a specific UE can be studied.

• By additionally filtering on a local identifier (e.g. an IP
packet number), the packet’s entire life can be explained
(see IV-D).

• The internal latency for a given bearer can be measured
with a filter on a DRB value.

• The behaviour of any layer can also be analyzed with a
filter on a src or dest value.

E. The statistics and visualisation module

We developed modules to compute statistics, which can
then be visualised by standard tools. Moreover, we elaborated
a visualisation tool specific to LatSeq that creates waterfall
diagrams (Fig. 4). This type of diagram enlightens latency
causality in a packet journey; it is described in IV-D.

In this article, we focus on latency but LatSeq opens the
door to a wide variety of analyses. For example, thanks to
the len field, the instantaneous throughput can be computed,
possibly at each layer or for each user. Extra information
can be added in the properties field of the fingerprint
to perform analyses based on other criteria.

IV. USE OF LATSEQ AND EVALUATION

A. Impact of fingerprint generation and collection

1) Analytical evaluation of fingerprint generation: In a
test environment2, we inserted one LatSeq measurement point

2More details on https://github.com/FlavienRJ/LatSeq/test



(a)

(b)

Figure 5: Results from LatSeq; a) Cumulative distribution
function of internal latency and latency due to RLC layer.
b) Internal latency per arrival time.

Test without LatSeq with LatSeq
µ σ µ σ

Fingerprint generation (ns) 0 0 14.13 0.273
event share of Data Collector (%) 0.0 0.0 0.21 0.03
CPU utilization by BS not loaded (%) 79 3 81 3
CPU utilization by BS loaded (%) 118 6.5 125 7.5
ping delay (ms) 4.46 0.27 4.8 0.53

Table II: LatSeq impact on BS performances results.

(with 5 arguments). From the decompiled code, we identi-
fied the LatSeq macro (see III-A) and (from the processor’s
datasheet) deduced its cost to be around 35 CPU cycles [14].
With a 2.60 GHz clock, this corresponds to a 35/2.60 =
13.5 ns. Considering that 10 fingerprints are generated for a
packet inside the BS, then LatSeq adds less than 200 ns of ex-
tra delay. We measure time with an accuracy of a microsecond,
thus, the LatSeq extra-delay is 1/5 of the minimum quantum
we measure.

2) Unitary performance evaluation of fingerprint genera-
tion: On the same simplified test environment, we measured
the execution time of the LatSeq macro on 1 million runs
from 1 to 10 arguments (e.g. data identifiers). The average
time goes from 10.98 ns with a standard deviation 0.2 ns for
1 argument to 18.56 ns (σ = 0.41 ns) for 10. For 5 arguments,
it is 14.13 ns (σ = 0.273 ns) which gives a 99% confidence
interval of [14.08, 14.19]. This value is close to the predicted
value but slightly different because of loop overhead.

3) Performance evaluation of the data collector: Remem-
ber that the collector asynchronously visits the various ring
buffers in which fingerprints are temporarily stored, then for-
mats them into a single trace file. To evaluate its contribution to
LatSeq global performance, we measure its CPU consumption
when fingerprints are generated at full speed (i.e. max disk
writing speed of 264 MBps in our setup). On our simple
testbed, we found that the collector thread is not CPU-bound
(usage < 100%). The data collector’s capacity bottleneck is
then clearly on the writing-to-file side, not on the fingerprint-
formating one. We can then roughly estimate LatSeq’s capacity
as the maximum writing speed in ring buffers, that is about
the full disk writing speed. At 264 MBps, for a fingerprint
size of 100 bytes, it corresponds to 2.64M fingerprints per
second. If we assume that each packet forwarded by the BS
generates 10 fingerprints, then the maximum throughput we
can measure accurately is 64× 2.64.106 ∗ 8/10 = 136 Mbps
in the (worst) case of 64-byte packets. Moreover, as a running
BS has no need for disk access, LatSeq does not threaten the
system’s performance even at full disk throughput.

B. Description of the testbed

The evaluation is made with OpenAirInterface LTE eNodeB
installed on a computer with a CPU Intel Xeon E5-2640
at 2.60 GHz 16 cores, 16 GB of memory. The eNodeB is
connected to an OAI Core Network (CN) and to Universal
Software Radio Peripheral (USRP) B210 for the radio inter-
face. The load is generated by one UE, which is an X52X
from manufacturer LeEco. The transmission is made in Time
Division Duplexing (TDD) with a 10-MHz bandwidth in LTE
band 7 (2.6 GHz).

The UE sends a ping request every 20 ms to a server locally
connected to the CN. Thus, the traffic is bidirectional with
short packets.

C. Study of LatSeq impact with the OAI testbed

We instrumented the OAI code with 34 carefully chosen
measurement points. Indeed, too many measurement points
would be useless, as too few would make it impossible to
rebuild journeys. On the downlink the input measurement point
is set in the PDCP layer and the output one in the PHY layer.
On the uplink, the input is set in MAC and the output in the
PDCP interface with GPRS Tunneling Protocol (GTP).

Impact of LatSeq on the BS is summarized in table II. The
perf test shows the CPU consumption of the data collector.
CPU usage for a BS under light load focuses on the idle
consumption of the data collector thread, whereas CPU usage
under higher load shows the impact of data collector plus
measurement points. A fingerprint element in the ring buffer
has a size of 96 bytes. There is an order of 15 instrumented
threads in OAI for one DRB. With this modest memory
footprint, we can dimension the ring buffers under a few
megabytes without any risk of overrun.

The ping delay denotes the (slight) impact of LatSeq in-
duced by the extra CPU instructions. Results shows a limited



impact of LatSeq on experiments in view of the quantity and
usefulness of the information it collects.

D. Studying the journey of a packet with LatSeq
The objective of the ”Waterfall” (Fig. 4) representation is

to show the journey of a packet through the protocol stack,
as well as to enlighten the causality relationships between
delays (who waits for whom ?). It is inspired by UML
timeline diagrams and [15]. This representation of internal
delays is useful to shed light on otherwise mysterious external
observations.

Time is represented by the vertical axis. Boxes show the
sojourn time in a layer or a procedure. The height of a box is
proportional to the sojourn time. The box colour is assigned
according to an identifier value (e.g. PSN). Concatenation,
segmentation and retransmission are visible in the waterfall.
In the example of Fig. 4, two RLC data units are concatenated
by the MAC layer (MAC.mux in OAI) in one MAC data unit.

E. Analysis of the latency
Thanks to the filtering capability of the LatSeq analysis part,

statistical analysis of specific latency components, e.g. for a
given layer and/or for a given UE is possible.

Fig. 5a shows the Cumulative Distribution Function (CDF)
of the total latency in the eNodeB for both uplink and
downlink. It also shows the CDF of the internal latency
contribution of the RLC layer. On the uplink, a transport block
is generated every 1 ms by the physical layer and transmitted
to the MAC layer, in which a measurement point is inserted.
In about 75% of the cases, the transport block includes only
one packet and the internal latency is very small because it
is only due to processing. In the other cases, there is some
reassembly and thus several data unit transmissions on the
radio interface for the same packet; in this case, the latency
can reach several ms. The RLC latency and the total latency
CDFs are indistinguishable, which means the latency is only
introduced by the RLC layer. On the downlink, packets arrive
asynchronously on the wired interface but can only be sent
every 1-ms. As a consequence, the cdf is more spread and
shows some steps. The RLC layer generates a latency typically
between 0.5 ms and 1.5 ms. Additional latencies between 1.5
and 4 ms are not due to RLC but to other layers since the
CDF of the RLC latency is clearly separated from the CDF
of the total latency.

CDFs as in Fig. 5a are useful to identify general trends. A
deeper investigation is possible by representing the internal
latency as a function of the packet arrival time as shown
in Fig. 5b. Vertically-aligned points represent the latencies
of a packet: when it has been segmented, each segment is
transmitted separately and thus there are several associated
latency values. For example, a segmentation in 5 data units is
visible at t = 2.04 s in Fig. 5b.

V. CONCLUSION

In this article we propose LatSeq, a new tool to measure
latencies in a software BS. This tool is composed of a low-
impact measurement extension for the OpenAirInterface BS

and a module to process and visualize the journeys of packets
and various statistics. This paves the way to a very wide range
of analyses of the latency at a fine grain. LatSeq provides for
an understanding of interactions between the different layers
in terms of delays. LatSeq can also be used to define and
tune queueing and internal traffic models. This makes LatSeq
a valuable help to optimise 4G and 5G radio interfaces.

The next step is to study in a more precise and comprehen-
sive way latencies in OpenAirInterface5g BS to confirm and
extend our first observations under different configurations.
We also plan to fine-tune measurement point locations and
improve the filter and visualization modules. It should be
noted that LatSeq is sufficiently independent from the OAI
platform’s code and structure to be generalized to a wide
variety of open-source software.

REFERENCES

[1] S. Parkvall, E. Dahlman, A. Furuskar, and M. Frenne, “Nr: The new 5g
radio access technology,” IEEE Communications Standards Magazine,
vol. 1, no. 4, pp. 24–30, 2017.

[2] M. Barreiros and P. Lundqvist, QoS-Enabled networks: Tools and
foundations. John Wiley & Sons, 2015.

[3] B. Briscoe, A. Brunstrom, A. Petlund, D. Hayes, D. Ros, I. Tsang,
S. Gjessing, G. Fairhurst, C. Griwodz, and M. Welzl, “Reducing internet
latency: A survey of techniques and their merits,” IEEE Communications
Surveys Tutorials, vol. 18, no. 3, pp. 2149–2196, thirdquarter 2016,
6967689.

[4] A. Nasrallah, A. S. Thyagaturu, Z. Alharbi, C. Wang, X. Shao,
M. Reisslein, and H. ElBakoury, “Ultra-low latency (ull) networks: The
ieee tsn and ietf detnet standards and related 5g ull research,” IEEE
Communications Surveys & Tutorials, vol. 21, no. 1, pp. 88–145, 2018.

[5] N. Nikaein, R. Knopp, F. Kaltenberger, L. Gauthier, C. Bonnet,
D. Nussbaum, and R. Ghaddab, “Demo: Openairinterface: An open lte
network in a pc,” in Proceedings of the 20th Annual International
Conference on Mobile Computing and Networking, ser. MobiCom ’14.
New York, NY, USA: Association for Computing Machinery, 2014, p.
305–308. [Online]. Available: https://doi.org/10.1145/2639108.2641745

[6] N. Nikaein, M. K. Marina, S. Manickam, A. Dawson, R. Knopp, and
C. Bonnet, “Openairinterface: A flexible platform for 5g research,” ACM
SIGCOMM Computer Communication Review, vol. 44, no. 5, pp. 33–38,
2014.

[7] I. Gomez-Miguelez, A. Garcia-Saavedra, P. D. Sutton, P. Serrano,
C. Cano, and D. J. Leith, “srslte: an open-source platform for lte
evolution and experimentation,” in Proceedings of the Tenth ACM
International Workshop on Wireless Network Testbeds, Experimental
Evaluation, and Characterization, 2016, pp. 25–32.

[8] D. P. Bovet and M. Cesati, Understanding the Linux Kernel: from I/O
ports to process management. ” O’Reilly Media, Inc.”, 2005.

[9] IBM, “Logging in multi-threaded applications effi-
ciently with ring buffer,” 2007. [Online]. Available:
https://www.ibm.com/developerworks/aix/library/au-buffer/index.html

[10] Apache, “Log4j,” 2014. [Online]. Available:
https://logging.apache.org/log4j/2.x/misc/async.html

[11] H. Simpson, “zlog.” [Online]. Available:
https://github.com/HardySimpson/zlog

[12] A. Afanasyev, “Optimize multi-threaded logging using lock-free queue
and separate thread,” 2016. [Online]. Available: https://redmine.named-
data.net/issues/2513

[13] OSA, “T tracer,” 20XX. [Online]. Available:
https://gitlab.eurecom.fr/oai/openairinterface5g/-/wikis/T

[14] A. Fog, “Instruction tables,” 2019. [Online]. Available:
https://www.agner.org/optimize/instruction tables.pdf

[15] S. Mysore, B. Mazloom, B. Agrawal, and T. Sherwood, “Understanding
and visualizing full systems with data flow tomography,” ACM SIGOPS
Operating Systems Review, vol. 42, no. 2, pp. 211–221, 2008.


