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A Relaxation-based Approach for Mining Diverse Closed Patterns

In recent years, pattern mining has moved from a slow-moving repeated three-step process to a much more agile iterative/user-centric mining model. A vital ingredient of this framework is the ability to quickly present a set of diverse patterns to the user. In this paper, we use constraint programming (wellsuited to user-centric mining due to its rich constraint language) to efficiently mine a diverse set of closed patterns. Diversity is controlled through a threshold on the Jaccard similarity of pattern occurrences. We show that the Jaccard measure has no monotonicity property, which prevents usual pruning techniques and makes classical pattern mining unworkable. This is why we propose antimonotonic lower and upper bound relaxations, which allow effective pruning, with an efficient branching rule, boosting the whole search process. We show experimentally that our approach significantly reduces the number of patterns and is very efficient in terms of running times, particularly on dense data sets.

Introduction

The original data analysis model based on pattern mining consists of three steps in a kind of multi-waterfall cycle: 1) a user chooses the values of one or several mining parameters, 2) an underlying engine extracts patterns (often taking not inconsiderable time to do so), and 3) the user sifts through a (potentially very large) set of result patterns and interprets them, using their insights to return to the first step and repeat the cycle.

Recently, this approach has been challenged by an increasing focus on user-centered, interactive, and anytime pattern mining [START_REF] Van Leeuwen | Interactive Data Exploration Using Pattern Mining[END_REF]. This new paradigm stresses that users should be presented quickly with patterns likely to be interesting to them, and typically affect later iterations of the mining process by giving feedback. A powerful framework for taking a variety of user feedback into account is pattern mining via constraint programming (CP). Much of the current focus in this domain is on user-centered/interactive mining, particularly the ability to elicit and exploit user feedback [START_REF] Dzyuba | Interactive discovery of interesting subgroup sets[END_REF][START_REF] Van Leeuwen | Interactive Data Exploration Using Pattern Mining[END_REF][START_REF] Puolamäki | Interactive visual data exploration with subjective feedback[END_REF]]. An important aspect of requesting such feedback is that the user be quickly presented with diverse results. If patterns are too similar to each other, deciding which one to prefer can become challenging, and if they appear in several successive iterations, it eventually becomes a slog. Similarly, a method that produces diverse results but takes a long time to do so, risks that the user checks out of the process. Older work on diversity either post-process patterns derived from the process described above [START_REF] Bringmann | The chosen few: On identifying valuable patterns[END_REF][START_REF] Knobbe | Pattern teams[END_REF][START_REF] Vreeken | Krimp: mining itemsets that compress[END_REF], use heuristics [START_REF] Van Leeuwen | Diverse subgroup set discovery[END_REF] or view it purely from the point of view of speeding up the extraction process [START_REF] Dzyuba | Flexible constrained sampling with guarantees for pattern mining[END_REF]. Recent work, on the other hand, pushes diversity constraints into the mining process itself [START_REF] Belfodil | Fssd-a fast and efficient algorithm for subgroup set discovery[END_REF][START_REF] Bosc | Anytime discovery of a diverse set of patterns with monte carlo tree search[END_REF]. At the algorithmic level, additional user-specified constraints often require new implementations to filter out the patterns violating or satisfying the user's constraints, which can be computationally infeasible for large databases.

In the last decade, data mining has been combined with constraint programming to model various data mining problems [START_REF] Belaid | Constraint programming for mining borders of frequent itemsets[END_REF][START_REF] De Raedt | Constraint programming for itemset mining[END_REF][START_REF] Lazaar | A global constraint for closed frequent pattern mining[END_REF][START_REF] Schaus | Coversize: A global constraint for frequency-based itemset mining[END_REF]. The main advantage of CP for pattern mining is its declarativity and flexibility, which include the ability to incorporate new user-specified constraints without the need to modify the underlying system. Moreover, CP allows to define flexible search strategies. 4 In this paper, we propose to add to the literature on explicitly taking the diversity of patterns (in terms of the data instances they describe) into account and to use an exhaustive process to find candidates for inclusion into a result set. To achieve this, we use the widely accepted Jaccard index to compare patterns and formulate a diversity constraint, which has no monotonicity property, implying limited pruning during search. To cope with this problem, we propose two anti-monotonic relaxations: (i) A lower bound relaxation, which allows to prune nondiverse items during search. This is integrated in our constraint programming based approach through a new global constraint taking into account diversity with its filtering algorithms (aka, propagators); (ii) An upper bound relaxation to find items ensuring diversity. This is exploited through a new branching rule, boosting the search process towards diverse patterns. We demonstrate the performance of our proposed method experimentally, comparing to the state-of-the-art in CP-based closed pattern mining.

Preliminaries

Itemset Mining

Let I = {1, ..., n} be a set of n items, an itemset (or pattern) P is a non-empty subset of I. The language of itemsets corresponds to L I = 2 I \∅. A transactional dataset D is a bag (or multiset) of transactions over I, where each transaction t is a subset of I, i.e., t ⊆ I; T = {1, ..., m} a set of m transaction indices. An itemset P occurs in a transaction t, iff P ⊆ t. The cover of P in D is the set of transactions in which it occurs: V D (P ) = {t ∈ D | p ⊆ t}. The support of P in D is the size of its cover: sup D (P ) = |V D (P )|. An itemset P is said to be frequent when its support exceeds a user-specified minimal threshold θ, sup D (P ) ≥ θ. Given S ⊆ D, items(S) is the set of common items belonging to all transactions in S: items(S) = {i ∈ I | ∀t ∈ S, i ∈ t}. The closure of an itemset P , denoted by Clos(P ), is the set of common items that belong to all transactions in V D (P ):

Clos(P ) = {i ∈ I | ∀t ∈ V D (P ), i ∈ t }.
An itemset P is said to be closed iff Clos(P ) = P . Constraint-based pattern mining aims at extracting all patterns P of L I satisfying a selection predicate c (called constraint) which is usually called theory [START_REF] Bringmann | The chosen few: On identifying valuable patterns[END_REF]: T h(c). A common example is the frequency measure leading to the minimal support constraint, which can be combined with the closure constraint to mine closed frequent itemsets.

Example 1. Figure 1 shows the itemset lattice derived from a toy dataset with five items and 100 transactions. As the figure shows, there exist 26 frequent closed itemsets with θ = 7.

Most constraint-based mining algorithms take advantage of monotonicity which offers pruning conditions to safely discard non-promising patterns from the search space. Several frameworks exploit this principle to mine with a monotone or an anti-monotone constraint. Other classes of constraints have also been considered [START_REF] Ng | Exploratory mining and pruning optimizations of constrained association rules[END_REF][START_REF] Pei | Mining frequent item sets with convertible constraints[END_REF]. However, for constraints that are not anti-monotone, pushing them into the discovery algorithm might lead to less effective pruning phases. Thus, we propose in this paper to exploit the witness concept introduced in [START_REF] Kifer | How to quickly find a witness[END_REF] to handle such constraints. A witness is a single itemset on which we can test whether a constraint holds and derive information about properties of other itemsets.

Definition 1 (Witness). Let P, Q itemsets, and C : I → {true, false}, then W , P ⊆ W ⊆ P ∪Q, is called a positive (negative) witness iff ∀P , P ⊆ P ⊆ P ∪Q :

C(W ) = true ⇒ C(P ) = true (C(W ) = false ⇒ C(P ) = false).

Diversity of Itemsets

The Jaccard index is a classical similarity measure on sets. We use it to quantify the overlap of the covers of itemsets.

Definition 2 (Jaccard index). Given two itemsets P and Q, the Jaccard index is the relative size of the overlap of their covers :

Jac(P, Q) = |V D (P ) ∩ V D (Q)| |V D (P ) ∪ V D (Q)| .
A lower Jaccard indicates low similarity between itemset covers, and can thus be used as a measure of diversity between pairs of itemsets.

Definition 3 (Diversity/Jaccard constraint). Let P and Q be two itemsets. Given the Jac measure and a diversity threshold J max , we say that P and Q are pairwise diverse iff Jac(P, Q) ≤ J max . We will denote this constraint by c Jac .

Our aim is to push the Jaccard constraint during pattern discovery to prune nondiverse itemsets. To achieve this, we maintain a history H of extracted pairwise diverse itemsets during search and constrain the next mined itemsets to respect a maximum Jaccard constraint with all itemsets already included in H. This problem can be formalized as follows.

Definition 4 (k diverse frequent itemsets). Given a current history H = {H 1 , . . . , H k } of k pairwise diverse frequent closed itemsets, the Jac measure and a diversity threshold J max , the task is to mine new itemsets P such that ∀ H ∈ H, Jac(P, H) ≤ J max .

Example 2. The lattice in Figure 1 depicts the set of diverse FCIs (marked with blue and green solid line circles) with J max = 0.19 and H = {BE}. ACE is a diverse FCI (i.e., Jac(ACE, BE) = 0.147 < 0.19).

Proposition 1. Let P , Q and P be three itemsets s.t. P ⊂ P . Jac(P, Q) may be smaller, equal or greater than Jac(P , Q). Based on the above proposition, the anti-monotonicity of the maximum Jaccard constraint does not hold, which disables pruning. Thus, instead of solving the problem of Definition 4 directly, we introduce bounds in Section 3 that allow us to prune the search space using a relaxation of the Jaccard constraint. The appeal of this approach is that we are able to infer monotone and anti-monotone properties from this relaxation.

Constraint Programming (CP)

Constraint programming [START_REF] Hoeve | Global constraints[END_REF] is a powerful paradigm which offers a generic and modular approach to model and solve combinatorial problems. A CP model consists of a set of variables X = {x 1 , . . . , x n }, a set of domains D mapping each variable x i ∈ X to a finite set of possible values dom(x i ), and a set of constraints C on X. A constraint c ∈ C is a relation that specifies the allowed combinations of values for its variables X(c). An assignment on a set Y ⊆ X of variables is a mapping from variables in Y to values in their domains. A solution is an assignment on X satisfying all constraints. Constraint solvers typically use backtracking search to explore the search space of partial assignments. Algorithm 1 provides a general overview of a CP solver. At each node of the search tree, procedure Constraint-Search selects an unassigned variable (line 8) according to user-defined heuristics and assigns it a value (line 9). It backtracks when a constraint cannot be satisfied, i.e. when at least one domain is empty (line 5). A solution is obtained (line 12) when each domain dom(x i ) is reduced to a singleton and all constraints are satisfied. The main concept used to speed up the search is constraint propagation by Filtering algorithms. At each assignment, constraint filtering algorithms prune the search space by enforcing local consistency properties like domain consistency. A constraint c on X(c) is domain consistent, if and only if, for every x i ∈ X(c) and every v ∈ dom(x i ), there is an assignment satisfying c such that (x i = v). Global constraints are families of constraints defined by a relation on any number of variables [START_REF] Hoeve | Global constraints[END_REF].

A CP Model for Frequent Closed Itemset Mining

The first constraint programming model for frequent closed itemset mining (FCIM) was introduced in [START_REF] De Raedt | Constraint programming for itemset mining[END_REF]. It is based on reified constraints to connect item variables to transac-Algorithm 1: Constraint-Search(D)

1 In: X : a set of decision variables; C : a set of constraints; 2 InOut: D : a set of variable domains; tion variables. The first global constraint CLOSEDPATTERNS for mining frequent closed itemsets was proposed in [START_REF] Lazaar | A global constraint for closed frequent pattern mining[END_REF]. The global constraint COVERSIZE for computing the exact size of the cover of an itemset was introduced in [START_REF] Schaus | Coversize: A global constraint for frequency-based itemset mining[END_REF]. It offers more flexibility in modeling problems. We present the global constraint CLOSEDPATTERNS. Global Constraint CLOSEDPATTERNS. Most declarative methods use a vector x of Boolean variables (x 1 , . . . , x |I| ) for representing itemsets, where x i represents the presence of the item i ∈ I in the itemset. We will use the following notations:

x + = {i ∈ I | dom(x i ) = {1}} the present items, x -= {i ∈ I | dom(x i ) = {0}} the absent items and x * = {i ∈ I | i / ∈ x + ∪ x -} the set of non assigned items.
Definition 5 (CLOSEDPATTERNS). Let x be a vector of Boolean variables, θ a support threshold and D a dataset. The global constraint CLOSEDPATTERNS D,θ (x) holds if and only if x + is a closed frequent itemset w.r.t. the threshold θ.

Definition 6 (Closure extension [START_REF] Wang | CLOSET+: searching for the best strategies for mining frequent closed itemsets[END_REF]). A non-empty itemset P is a closure extension of

Q iff V D (P ∪ Q) = V D (Q).

Filtering of CLOSEDPATTERNS.

[13] also introduced a complete filtering algorithm for CLOSEDPATTERNS based on three rules. The first rule filters 0 from dom(x i ) if {i} is a closure extension of x + (see Definition 6). The second rule filters 1 from dom(x i ) if the itemset x + ∪{i} is infrequent w.r.t. θ. Finally, the third rule filters 1 from dom(

x i ) if V D (x + ∪ {i}) is a subset of V D (x + ∪ {j})
where j is an absent item, i.e. j ∈ x -.

To show the strength and the flexibility of the CP approach in taking into account user's constraints, we formulate a CP model to extract more specific patterns using the following four global constraints :

C = {CLOSEDP D,θ (X), ATLEAST(X, lb), KNAPSACK(X, z, w), REGULAR(X, DF A)}
The ATLEAST constraint enforces that at least lb variables in X are assigned to 1; the KNAPSACK constraint restricts a weighted linear sum to be no more than a given capacity z, i.e. i w i X i ≤ z; the REGULAR constraint imposes that X is accepted by deterministic finite automaton (DF A), which recognizes a regular expression. 

A CP Model for Mining Diverse Frequent Closed Itemsets

We present our approach for computing diverse FCIs. The key idea is to compute an approximation of the set of diverse FCIs by defining two bounds on the Jaccard index that allow us to reduce the search space. All the proofs are given in the Supp. material [1].

Problem Reformulation

Proposition 1 states that the Jaccard constraint is neither monotonic nor anti-monotonic. So, we propose to approximate the theory of the original constraint c Jac by a larger collection corresponding to the solution space of its relaxation c r Jac : T h(c Jac ) ⊆ T h(c r Jac ). The key idea is to formulate a relaxed constraint having suitable monotonicity properties in order to exploit them for search space reduction. More precisely, we want to exploit upper and lower bounding operators to derive a monotone relaxation and an anti-monotone one of c Jac .

Definition 7 (Problem reformulation). Given a current history H = {H 1 , . . . , H k } of extracted k pairwise diverse frequent closed itemsets, a diversity threshold J max , a lower bound LB J and an upper bound U B J on the Jaccard index, the relaxed problem consists of mining candidate itemsets P such that ∀ H ∈ H, LB J (P, H) ≤ J max . When U B J (P, H) ≤ J max , for all H ∈ H, the Jaccard constraint is fully satisfied.

Jaccard Lower Bound

Let us now formalize how to compute the lower bound and how to exploit it. To arrive at a lower bound for the Jaccard value between two itemsets, we need to consider the situation where the overlap between them has become as small as possible, while the coverage that is proper to each itemset remains as large as possible.

Definition 8 (Proper cover). Let P and Q be two itemsets. The proper cover of P w.r.t. Q is defined as

V pr Q (P ) = V D (P )\{V D (P ) ∩ V D (Q)}.
The lowest possible Jaccard would reduce the numerator to 0, which is however not possible under the minimum support threshold θ. The denominator, on the other hand, consists of |V D (H)| (which cannot change) and the part of P 's coverage that does not overlap with H, i.e. V pr H (P ).

Proposition 2 (Lower bound). Consider a member pattern H of the history H. Let P an itemset encountered during search such that sup D (P ) ≥ θ, and V pr H (P ) be the proper cover of P w.r.t.

H. LB J (P, H) = θ -|V pr H (P )| |V D (P )| + |V D (H)| + |V pr H (P )| -θ is a lower bound of Jac(P, H).
The lower bound on the Jaccard index enables us to discard some non-diverse itemsets, i.e., those with an LB J value greater than J max are negative witnesses. Example 4. The set of all non diverse FCIs with a lower bound value greater than J max are marked in Figure 1 with orange line circles.

Proposition 3 (Monotonicity of LB J ). Let H ∈ H be an itemset. For any two itemsets P ⊆ Q, the relationship LB J (P, H) ≤ LB J (Q, H) holds.

Property 3 establishes an important result to define a pruning condition based on the monotonicity of the lower bound (cf. Section 3.4). If LB J (P, H) > J max , then no itemset Q ⊇ P will satisfy the Jaccard constraint (because LB J is a lower bound), rendering the constraint itself anti-monotone. So, we can safely prune Q.

Jaccard Upper Bound

As our relaxation approximates the theory of the Jaccard constraint, i.e. T h(c Jac ) ⊆ T h(c r Jac ), one could have itemsets P such that LB J (P, H) < J max but Jac(P, H) > J max (see itemsets marked with blue dashed line circles in Figure 1). To tackle this case, we define an upper bound on the Jaccard index to evaluate the satisfaction of the Jaccard constraint, i.e., those with U B J (P, H) ≤ J max , ∀ H ∈ H, are positive witnesses.

To derive the upper bound, we need to follow the opposite argument as for the lower bound: the highest possible Jaccard will be achieved if V D (H) ∩ V D (P ) stays unchanged but the set V pr H (P ) is reduced as much possible (under the minimum support constraint). If the intersection is greater than or equal θ, in the worst case scenario (leading to the highest Jaccard), a future P covers only transactions in the intersection. If not, the denominator needs to contain a few elements of V pr H (P ), θ -|V D (H) ∩ V D (P )|, to be exact. Example 5. The set of all diverse FCIs with U B J values less than J max are marked with green line circles in Figure 1.

Our upper bound can be exploited to evaluate the Jaccard constraint during mining. More precisely, in the enumeration procedure, if the upper bound of the current candidate itemset P is less than J max , then c Jac is fully satisfied. Moreover, if the upper bound is monotonically decreasing (or anti-monotonic), then all itemsets Q derived from P are also diverse (see Proposition 5).

Proposition 5 (Anti-monotonicity of U B J ). Let H be a member pattern of the history H. For any two itemsets P ⊆ Q, the relationship U B J (P, H) ≥ U B J (Q, H) holds.

The Global Constraint CLOSEDDIVERSITY

This section presents our new global constraint CLOSEDDIVERSITY that exploits the LB relaxation to mine pairwise diverse frequent closed itemsets. 

dom(xi) ← dom(xi) -{1}; x - Div ← x - Div ∪ {i}; x * ← x * \ {i}; continue; 12 foreach k ∈ (x - F req ∪ x - Div ) do 13 if (V D (x + ∪ {i}) ⊆ V D (x + ∪ {k})) then 14 dom(xi) ← dom(xi) -{1} 15 if k ∈ x - F req then x - F req ← x - F req ∪ {i};
(2) x + is frequent, sup D (x + ) ≥ θ; (3) x + is diverse, ∀ H ∈ H, LB J (x + , H) ≤ J max .
Initially, the history H is empty. Our global constraint allows to incrementally update H with diverse FCIs encountered during search. Condition (3) expresses a necessary condition ensuring that x + is diverse. Indeed, one could have LB J (x + , H) ≤ J max but Jac(x + , H) > J max . Thus, we propose in Section 4 to exploit our U B relaxation to guarantee the satisfaction of the Jaccard constraint.

The propagator for CLOSEDDIVERSITY exploits the filtering rules of CLOSEDPAT-TERNS (see Section 2.4). It also uses our LB relaxation to remove items i that cannot belong to a solution containing x + . We denote by x - F req the set of items filtered by the rule of infrequent items and by x - Div the set of items filtered by our LB rule.

Proposition 6 (CLOSEDDIVERSITY Filtering rule). Given a history H of pairwise diverse frequent closed itemsets, a partial assignment on x, and a free item i ∈ x * , x + ∪ {i} cannot lead to a diverse itemset if one of the two cases holds:

1) if ∃ H ∈ H s.t. LB J (x + ∪ {i}, H) > J max , then we remove 1 from dom(x i ). 2) if ∃ k ∈ x - Div s.t. V D (x + ∪ {i}) ⊆ V D (x + ∪ {k}), then LB J (x + ∪ {i}, H) > LB J (x + ∪ {k}, H) > J max , thus we remove 1 from dom(x i ).
Algorithm. The propagator for CLOSEDDIVERSITY is presented in Algorithm 2. It takes as input the variables x, the support threshold θ, the diversity threshold J max and the current history H of pairwise diverse frequent closed itemsets. It starts by computing the cover of the itemset x + and checks if x + is either infrequent or not diverse (see function PGrowth LB ), if so the constraint is violated and a fail is returned (line 4). Algorithm 2 extends the filtering rules of CLOSEDPATTERNS (see Section 2.4) by examining the diversity condition of the itemset x + ∪ {i} (see Proposition 3). For each element H ∈ H, the function PGrowth LB (x + ∪ {i}, H, J max ) computes the value of LB J (x + ∪ {i}, H) and tests if there exists an H s.t. LB J (x + ∪ {i}, H) > J max (lines [START_REF] Van Leeuwen | Diverse subgroup set discovery[END_REF][START_REF] Vreeken | Krimp: mining itemsets that compress[END_REF]. If so, we return f alse (line 21) because x + ∪ {i} cannot lead to a diverse itemset w.r.t. H, remove 1 from dom(x i ) (line 11), update x - Div and x * and we continue with the next free item. Otherwise, we return true. Second, we remove 1 from each free item variable i ∈ x * such that its cover is a superset of the cover of an absent item k ∈ (x - F req ∪ x - Div ) (lines [START_REF] Knobbe | Pattern teams[END_REF][START_REF] Lazaar | A global constraint for closed frequent pattern mining[END_REF][START_REF] Van Leeuwen | Interactive Data Exploration Using Pattern Mining[END_REF][START_REF] Ng | Exploratory mining and pruning optimizations of constrained association rules[END_REF][START_REF] Pei | Mining frequent item sets with convertible constraints[END_REF][START_REF] Prud'homme | Choco Solver Documentation[END_REF]. The LB filtering rule associated to the case k ∈ x -

Div

is a new rule taking its originality from the reasoning made on absent items.

Proposition 7 (Consistency and time complexity). Algorithm 2 enforces Generalized Arc Consistency (GAC) (a.k.a. domain consistency [START_REF] Hoeve | Global constraints[END_REF]) in O(n 2 × m).

Using witnesses and the estimated frequency within the search

In this section, we show how to exploit the witness property and the estimated frequency so as to design a more informed search algorithm. Positive Witness. During search, we compute incrementally the U B(x + ∪ {i}, H) of any extension of the partial assignment x + with a free item i. If, for each H ∈ H, this upper bound is less or equal to J max , then c Jac is fully satisfied and x + ∪ {i} is a positive witness. Moreover, thanks to the anti-monotonicity of U B J (see Proposition 5), all supersets of x + ∪ {i} will satisfy the Jaccard constraint. Estimated frequency. The frequency of an itemset can be computed as the cardinality of the intersection of its items' cover:

sup D (x + ) = | ∩ i∈x + V D (i)|
, the intersection between 2 covers being performed by a bitwise-AND. To limit the number of intersections, we use an estimation of the frequency of each item i ∈ I w.r.t the set of present items x + , denoted eSup D (i, x + ). This estimation constitutes a lower bound of

|V D (x + ∪ {i})|. Interestingly, if eSup D (i, x + ) ≥ θ then |V D (x + ∪ {i})| ≥ θ, meaning
that the intersection between covers is performed only if eSup D (i, x + ) < θ, thereby leading to performance enhancement. In addition, we argue that the estimated support is an interesting heuristic to reinforce the witness branching rule. Indeed, branching on the variable having the minimum estimated support (using the lower bound of the real support) will probably activate our filtering rules (see Algorithm 2), thus reducing the search space. It will be denoted as MINCOV variable ordering heuristic. We propose Algorithm 3 as a branching procedure (returns the next variable to branch on). When the search begins, for each item i ∈ x * , its estimated frequency is initialized to eSup D (i, ∅) = |V D (i)|. Once an item j has been added to the partial solution, the estimated frequencies of unbound items must be updated (see lines [START_REF] Bosc | Anytime discovery of a diverse set of patterns with monte carlo tree search[END_REF][START_REF] Bringmann | The chosen few: On identifying valuable patterns[END_REF][START_REF] De Raedt | Constraint programming for itemset mining[END_REF][START_REF] De Raedt | Constraint-based pattern set mining[END_REF][START_REF] Dzyuba | Flexible constrained sampling with guarantees for pattern mining[END_REF][START_REF] Dzyuba | Interactive discovery of interesting subgroup sets[END_REF]. Thus, we first find the variable x es having the minimal estimated support (line 4).

Algorithm 3: Branching for CLOSEDDIVERSITY

1 In: Jmax : diversity thresholds; H : history of solutions ; 2 Out: First witness index or x es as the item with the smallest estimated support 3 begin 4

x es ← argmin i∈x * (eSup D (i, x + )); Next, each item i ∈ x * \ {x es } may lose some support, but no more than |V D (x + )| -|V D (x + ∪ {x es })|, since some removed transactions may not contain i (line 5). Using this upper bound (denoted by diff ), the estimated frequency of i is updated and set to eSup D (i, x + )diff (lines 6-9). As indicated above, if eSup D (i, x + ) ≥ θ then |V D (x + ∪ {i})| ≥ θ. Otherwise, we have to compute the right support by performing the intersection between covers (line 9). It is important to stress that the branching variable x es will be returned (line 13) only if no positive witness is found (lines 10-12). Finally, the function PGrowth U B (x + ∪ {i}, H, J max ) allows to test whether the current instantiation x + can be extended to a witness itemset using the free item {i}. It returns true if the upper bound of the current itemset x + when adding one item {i} is less than J max for all h ∈ H (lines [START_REF] Ng | Exploratory mining and pruning optimizations of constrained association rules[END_REF][START_REF] Pei | Mining frequent item sets with convertible constraints[END_REF][START_REF] Prud'homme | Choco Solver Documentation[END_REF]. Here, the Jaccard constraint is fully satisfied and thus, we return the item {i} with the witness flag set to true. This information will be supplied to the search engine (line 12) to accelerate solutions certification. We will denote by FIRSTWITCOV, our variable ordering heuristic that branches on the first free item satisfying the witness property.

5 diff ← (|V D (x + )| -|V D (x + ∪ {x es })|); 6 foreach i ∈ x * \ {x es } do 7 eSup D (i, x + ∪ {x es }) ← eSup D (i, x + ) -diff; 8 if (eSup D (i, x + ∪ {x es }) < θ) then 9 eSup D (i, x + ∪ {x es }) ← |V D (x + ∪ {x es }) ∩ V D (i)|; 10 foreach i ∈ x * do 11 if (PGrowth U B (x + ∪
Exploring the witness subtree. Let N be the node associated to the current itemset x + extended to a free item {i}. When the node N is detected as a positive witness during the branching, all supersets derived from N will also satisfy the Jaccard constraint. As these patterns are more likely to have similar covers, so a rather high Jaccard between them, we propose a simple strategy which avoids a complete exploration of the witness sub-tree rooted at N . Thus, we generate the first closed diverse itemset from N , add it to the current history and continue the exploration of the remaining search space using the new history. With a such strategy we have no guarantee that the closed itemset added to the history have the best Jaccard. But this strategy is fast.

Related work

The question of mining sets of diverse patterns has been addressed in the recent literature, both to offer more interesting results and to speed up the mining process. Van Leeuwen et al. propose populating the beam for subgroup discovery not purely with the best partial patterns to be extended but to take coverage overlap into account [START_REF] Van Leeuwen | Diverse subgroup set discovery[END_REF]. Beam search is heuristic, as opposed to our exhaustive approach and since they mine all patterns at the same time, diverse partial patterns can still lead to a less diverse final result. Dzyuba et al. propose using XOR constraints to partition the transaction set into disjoint subsets that are small enough to be efficiently mined using either a CP approach or a dedicated itemset miner [START_REF] Dzyuba | Flexible constrained sampling with guarantees for pattern mining[END_REF]. Their focus is on efficiency, which they demonstrate by approximating the result set of an exhaustive operation. While they discuss pattern sets, they limit themselves to a strict non-overlap constraint on coverages. In [START_REF] Bosc | Anytime discovery of a diverse set of patterns with monte carlo tree search[END_REF], the authors propose using Monte Carlo Tree Search and upper confidence bounds to direct the search towards interesting regions in the lattice given the already explored space. While MCTS is necessarily randomized, it allows for anytime mining. The authors of [START_REF] Belfodil | Fssd-a fast and efficient algorithm for subgroup set discovery[END_REF] consider sets of subgroup descriptions as disjunctions of such patterns. Using a greedy algorithm exploiting upper bounds, the authors propose to iteratively extract up to k subgroup descriptions (similarly to our work). Notably, this approach requires a target attribute and a target value to focus on while our approach allows for unsupervised mining.

Earlier work has treated reducing redundancy as a post-processing step, e.g. [START_REF] Knobbe | Pattern teams[END_REF] where a number of redundancy measures such as entropy are exploited in exhaustive search and the number of patterns in the set limited, [START_REF] De Raedt | Constraint-based pattern set mining[END_REF] where the constraint-based itemset mining constraint is adapted to the pattern set settings, [START_REF] Bringmann | The chosen few: On identifying valuable patterns[END_REF], which exploit bounds on predicting the presence of patterns from the patterns already included in H in a heuristic algorithm, or [START_REF] Vreeken | Krimp: mining itemsets that compress[END_REF], which exploits the MDL principle to minimize redundancy among itemsets (and, in later work, sequential patterns). All of those methods require a potentially rather costly first mining step, and none exploits the Jaccard measure. As discussed in Section 2.1, there exist a number of constraint properties that allow for pruning, and Kifer et al.'s witness concept unifies them and discusses how to deal with constraints that do not have monotonicity properties [START_REF] Kifer | How to quickly find a witness[END_REF]. The way to proceed in such a case is establishing positive and negative witnesses for the constraint, something we have done for the maximum pairwise Jaccard constraint. A rarely discussed aspect is that witnesses are closely related to CP since every witness enforces/forbids the inclusion of certain domain values.

Experiments and Results

The experimental evaluation is designed to address the following questions: (1) How (in terms of CPU-times and # of patterns) does our global constraint (denoted CLOSED-DIV) compare to the CLOSEDPATTERNS global constraint (denoted CLOSEDP) and the approach of Dzyuba et al. [START_REF] Dzyuba | Flexible constrained sampling with guarantees for pattern mining[END_REF] (denoted FLEXICS)? (2) How do the resulting diverse FCIs compare qualitatively with those resulting from CLOSEDP and FLEXICS? (3) How far is the distance between the Jaccard index and the upper/lower bounds. ). The only exception are the very large and sparse data sets Retail and Pumsb, where we do not find a large number of solutions. We used the CLOSEDP CP model as a baseline to determine suitable thresholds used with the CLOSEDDIV CP model. To evaluate the quality of a set of patterns in terms of diversity, we measured the average ratio of exclusive pattern coverages: ECR(P1, ..., P k ) = avg 1≤i≤k (

Dataset θ(%) #Patterns Time (s) #Nodes |I| × |T | (1) (2) (1) (2) (2) 
sup D (P i )-|V D (P i ) ∩ j =i V D (P j )| sup D (P i )
).

(a) Comparing CLOSEDDIV with CLOSEDP and FLEXICS. Table 1 compares the performance of the two CP models for various values of θ on different data sets. Here, we report the CPU time (in seconds), the number of extracted patterns, and the number of nodes explored during search. This enables to evaluate the amount of inconsistent values pruned by each approach (filtering algorithm). We use MINCOV as variable ordering heuristic. The maximum diversity threshold J max is set to 0.05. First, the results highlight the great discrepancy between the two models with a distinctly lower number of patterns generated by CLOSEDDIV (in the thousands) in comparison to CLOSEDP (in the millions). On dense and moderately dense data sets (from CHESS to MUSHROOM), the discrepancy is greatly amplified, especially for small values of θ. For instance, on CHESS, the number of patterns for CLOSEDDIV is reduced by 99% (from ∼ 50 • 10 6 solutions to 393) for θ equal to 15%. The density of the data sets provides an appropriate explanation for the good performance of CLOSEDDIV. As the number of closed patterns increases with the density, redundancy among these patterns increases as well.

On very sparse data sets, CLOSEDDIV still outputs fewer solutions than CLOSEDP but the difference is less pronounced. This is explainable by the fact that on these data sets, where we have few solutions, almost all patterns are diverse.

Second, regarding runtime, CLOSEDDIV exhibits different behaviours. On dense data sets (ρ ≥ 30%), CLOSEDDIV is more efficient than CLOSEDP and up to an order of magnitude faster. On CHESS (resp. CONNECT), the speed-up is 1455 (resp. 112) for θ = 30%. For instances resulting in between 500 and 5000 diverse FCIs, the speedup is up to 5. This good performance of CLOSEDDIV is mainly due to the strength of the LB filtering rule that provides the CP solving process with more propagation to remove more inconsistent values in the search space. In addition, the number of nodes explored by CLOSEDDIV is always small comparing to CLOSEDP. These results support our previous observations. The only exception is HEART-CLEVELAND for which CLOSEDDIV is slower (especially for values of θ ≤ 8%). This is mainly due to the relative large number of diverse patterns (≥ 12000), which induces higher lower bound computational overhead. We observe the same behaviour on the two moderately dense data sets SPLICE1 and MUSHROOM. On sparse data sets, CLOSEDDIV can take significantly more time to extract all diverse FCIs. This can be explained by the fact that on these instances almost all FCIs are diverse w.r.t. lower bound (on average about 70% for RETAIL and 39% for BMS1, see Table 1). Thus, non-solutions are rarely filtered, while the lower bound overhead greatly penalizes the CP solving process. On the very large PUMSB data set, finally, our approach is very efficient while CLOSEDP fails to complete the extraction.

Finally, Figure 2a compares CLOSEDDIV with FLEXICS (two variants) for various values of θ on different data sets: GFLEXICS, which uses CP4IM [START_REF] De Raedt | Constraint programming for itemset mining[END_REF] as an oracle to enumerate the solutions, and EFLEXICS, a specialized variant, based on ECLAT [START_REF] Zaki | New algorithms for fast discovery of association rules[END_REF]. We run WEIGHTGEN with values of κ ∈ {0.1, 0.5, 0.9} [START_REF] Dzyuba | Interactive discovery of interesting subgroup sets[END_REF]. For each instance, we fixed the number of samples to the number of solutions returned by CLOSEDDIV. We report results corresponding to the best setting of parameter κ. First, CLOSEDDIV largely dominates GFLEXICS, being more than an order of magnitude faster. Second, while EFLEXICS is faster than GFLEXICS, our approach is almost always ranked first, illustrating its usefulness for mining diverse patterns in an anytime manner.

(b) Impact of varying J max . We varied J max from 0.1 to 0.7. The minimum support θ is fixed for each data set (indicated after '-'). Figure 2 shows detailed results. As expected, the greater J max , the longer the CPU time. In fact, the size of the history H grows rapidly with the increase of J max . This induces significant additional costs in the lower and upper bound computations. Moreover, when J max becomes sufficiently large, the LB filtering of CLOSEDDIV occurs rarely since the lower bound is almost always below the J max value (see Figure 3). Despite the hardness of some instances (i.e., J max ≥ 0.35), our CP approach is able to complete the extraction for almost all values of J max . The only exception are the large and dense data sets, where CLOSEDDIV fails to complete the extraction within the time limit for J max ≥ 0.45. However, in practice, the user will only be interested in small values of J max because the diversity of patterns is maximal and the number of patterns returned becomes manageable. Figures 2b and2c also compare the resolution time of our CP model using the two variable ordering heuristics MINCOV and FIRSTWITCOV. First, on dense data sets, both heuristics perform similarly, with a slight advantage for FIRSTWITCOV. On these data sets, the number of witness patterns mined remains very low (≤ 100), thus the benefits of FIRSTWITCOV is limited (see Supp. material). On moderately dense data sets (MUSHROOM and SPLICE1), FIRSTWITCOV is very effective; on MUSHROOM it is up 10 times faster than MINCOV for J max equal to 0.7. On these data sets, the number of witness patterns extracted is relatively high compared to dense ones. In this case, FIRSTWITCOV enables to guide the search to find diverse patterns more quickly. On sparse data sets, no heuristic clearly dominates the other. When regarding the number of diverse patterns generated (see Supp. material), we observe that FIRSTWITCOV returns less patterns on moderately dense and sparse data sets, while on dense data sets the number of diverse patterns extracted remains comparable. (c) Qualitative analysis of the proposed relaxation. In this section, we shed light on the quality of the relaxation of the Jaccard constraint. Figure 3a shows, for a particular instance SPLICE1 with J max = 0.3, the evolution of the LB J and U B J of the solutions found during search. Here, the solutions are sorted according to their U B J . Concerning the lower bound, one can observe that the LB J values are always below the J max value. This shows how frequently the LB filtering rule of CLOSEDDIV occurs. This also supports the suitability of the LB filtering rule for pruning non-diverse FCIs. With regard to the upper bound, it is interesting to see that it gets very close to the Jaccard value, meaning that our Jaccard upper bounding provides a tight relaxation. Moreover, a large number of solutions have U B J values either below or very close to J max . This is indicative of the quality of the patterns found in terms of diversity. We recall that when U B J < J max , all partial assignments can immediately be extended to diverse itemsets, thanks to the anti-monotonicity property of our U B (see Proposition 5). We observe the same behaviour on MUSHROOM with J max = 0.7 (see Figure ECR penalises overlap, and thus having two similar patterns is undesirable. According to ECR, leveraging Jaccard in CLOSEDDIV clearly leads to pattern sets with more diversity among the patterns. This is indicative of patterns whose coverage are (approximately) mutually exclusive. This should be desirable for an end-user tasked with exploring and interpreting the set of returned patterns.

Conclusions

In this paper, we showed that mining diverse patterns using a maximum Jaccard constraint cannot be modeled using an anti-monotonic constraint. Thus, we have proposed (anti-)monotonic lower and upper bound relaxations, which allow to make pruning effective, with an efficient branching rule, boosting the whole search process. The proposed approach is introduced as a global constraint called CLOSEDDIV where diversity is controlled through a threshold on the Jaccard similarity of pattern occurrences. Experimental results on UCI datasets demonstrate that our approach significantly reduces the number of patterns, the set of patterns is diverse and the computation time is lower compared to CLOSEDP global constraint, particularly on dense data sets.
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 1 Fig. 1: The powerset lattice of frequent closed itemsets (θ = 7) for the dataset D of Example 1.
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 3 Let us consider the example of Figure 1 using lb = 2, w = 8, 7, 5, 14, 16 , z = 20, θ = 7 and the regular expression 0 * 1 + 0 * ensuring items' contiguity. Solving this CP model provides the solution: T h(C) = {{AB}, {BC}, {CD},{ABC}}.
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  (a) Comparing # of diverse closed patterns. (b) Moderately dense and sparse dat sets. (c) Dense data sets.
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 2 Fig. 2: CPU-time analysis (MINCOV vs FIRSTWITCOV and CLOSEDDIV vs FLEXICS) and patterns discrepancy analysis.
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 3 Fig. 3: Qualitative analysis of the LB and U B relaxations.

  3b). Finally, we can see that FIRSTWITCOV allows to quickly discover solutions of better quality in terms of U B J and Jaccard values compared to MINCOV. This demonstrates the interest and the strength of our U B J branching rule to get diverse patterns. (d) Qualitative analysis of patterns. Figure 2d compares CLOSEDDIV with CLOSEDP and EFLEXICS in terms of the ECR measure, which should be as high as possible. Due to the huge number of patterns generated by CLOSEDP, a random sample of k = 10 solutions of all patterns is considered. Reported values are the average over 100 trials.

Table 1 :

 1 CLOSEDDIV (Jmax = 0.05) vs CLOSEDP. For columns #Patterns and #Nodes, the values in bold indicate a reduction more than 20% of the total number of patterns and nodes." -" is shown when time limit is exceeded. OOM : Out Of Memory. (1): CLOSEDP (2): CLOSEDDIV Experimental protocol. Experiments were carried out on classic UCI data sets, available at the FIMI repository (fimi.ua.ac.be/data). We selected several real-world data sets, their characteristics (name, number of items |I|, number of transactions |T |, density ρ) are shown in the first column of Table1. We selected data sets of various size and density. Some data sets, such as Hepatitis and Chess, are very dense (resp. 50% and 49%). Others, such as T10 and Retail, are very sparse (resp. 1% and 0.06%). The implementation of the different global constraints and their constraint propagators were carried out in the Choco solver[START_REF] Prud'homme | Choco Solver Documentation[END_REF] version 4.0.3, a Java library for constraint programming. The source code is publicly available.5 Experiments were conducted on AMD Opteron 6174, 2.2 GHz with a RAM of 256 GB and a time limit of 24 hours. The default maximum heap size allowed by the JVM is 30 GB. We have selected for every data set frequency thresholds to have different numbers of frequent closed itemsets (|T h(c)| ≤ 15000, 30000 ≤ |T h(c)| ≤ 10 6 , and |T h(c)| > 10 6

									Dataset		#Patterns	Time (s)	#Nodes	
	ρ(%)							(2)	|I| × |T | ρ(%)	θ(%)	(1)	(2)	(1)	(2)	(2)	(2)
	CHESS	20 22,808,625	96 2838.30	5.87 45,617,249	436	MUSHROOM	5	8,977	727	10.02	60.70 17,953 1,704
	75 × 3196	15 50,723,131	393 5666.03	75.40 101,446,261 1,855	112 × 8124	1 40,368 12,139	34.76 12532.95 80,735 25,154
	49.33%	10	OOM 4,204	OOM 3825.29	OOM 18,270	18.75%	0.5 62,334 27,768	50.05 64829.06 124,667 56,873
	HEPATITIS	30	83,048	12	9.64	0.09	166,095	29	T40I10D100K 8	138	127	75.91 447.20	275	253
	68 × 137	20	410,318	57	42.00	0.57	820,635	162	942 × 100000 5	317	288	331.47 1561.34	633	575
	50.00%	10 1,827,264 2,270 169.59	76.91	3,654,527 5,256	4.20%	1 65,237 7,402 5574.31 58613.88 130,473 14,887
	KR-VS-KP	30 5,219,727	17 682.94	0.74 10,439,453	82	PUMSB	40	-	4	-	57.33	-	16
	73 × 3196	20 21,676,719	96 2100.79	5.64 43,353,437	448	2113 × 49046 30	-	15	-267.72	-	64
	49.32%	10	OOM 4,120	OOM 3035.49	OOM 17,861	3.50%	20	-	52	-852.39	-	250
	CONNECT	30	460,357	18 1666.14	14.81	920,713	77	T10I4D100K 5	11	11	1.73	6.31	21	21
	129 × 67557	18 2,005,476	197 5975.44 573.66	4,010,951	900	870 × 100000 1	386	361	434.25 3125.06	771	722
	33.33%	15 3,254,780	509 9534.07 1989.35	6,509,559 2,188	1.16%	0.5 1,074	617	881.31 7078.90	2,147 1,257
	HEART-CLEVELAND 10 12,774,456 3,496 1308.63 257.39 25,548,911 7,977	BMS1	0.15 1,426 609 11362.71 68312.38	2,851 1,220
	95 × 296	8 23,278,687 12,842 2278.97 2527.38 46,557,373 28,221	497 × 59602 0.14 1,683 668 11464.93 68049.00	3,365 1,339
	47.37%	6 43,588,346 58,240 4126.84 46163.06 87,176,691 124,705	0.51%	0.12 2,374 823 13255.79 79704.88	4,747 1,651
	SPLICE1	10	1,606	422	6.55	25.25	3,211	843	RETAIL	5	17	13	10.74	33.44	33	25
	287 × 3190	5	31,441 8,781 117.15 5616.47	62,881 17,594	16470 × 88162 1	160	111	297.21 1625.73	319	227
	20.91%	2	589,588	-1179.55	-	1,179,175	-	0.06%	0.4	832	528 6073.53 31353.23	1,663 1,093

Opposed to more rigid search in classical pattern mining algorithms, which often rely on exploiting the properties of a particular constraint.

Algorithm 2: Filtering for CLOSEDDIVERSITY 1 In: θ, Jmax : frequency and diversity thresholds; H : history of solutions encountered during search; 2 InOut: x = {x1 . . . xn} : Boolean item variables;