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a b s t r a c t 

In recent years, there has been a growing research interest in integrating machine learning techniques 

into meta-heuristics for solving combinatorial optimization problems. This integration aims to lead meta- 

heuristics toward an efficient, effective, and robust search and improve their performance in terms of 

solution quality, convergence rate, and robustness. 

Since various integration methods with different purposes have been developed, there is a need to re- 

view the recent advances in using machine learning techniques to improve meta-heuristics. To the best 

of our knowledge, the literature is deprived of having a comprehensive yet technical review. To fill this 

gap, this paper provides such a review on the use of machine learning techniques in the design of dif- 

ferent elements of meta-heuristics for different purposes including algorithm selection , fitness evaluation , 

initialization , evolution , parameter setting , and cooperation . First, we describe the key concepts and prelim- 

inaries of each of these ways of integration. Then, the recent advances in each way of integration are 

reviewed and classified based on a proposed unified taxonomy. Finally, we provide a technical discussion 

on the advantages, limitations, requirements, and challenges of implementing each of these integration 

ways, followed by promising future research directions. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1

p

p

&

l

M

t

p

c

a

T

i

m

a

g

m

b

t

o

P

a

t

c

(

q

t

t

b

h

0

. Introduction 

Meta-heuristics (MHs) are computational intelligence 

aradigms widely used for solving complex optimization problems, 

articularly Combinatorial Optimization Problems (COPs) ( Osman 

 Laporte, 1996 ). COPs are a complex class of optimization prob- 

ems with discrete decision variables and a finite search space. 

any COPs belong to the NP-Hard class of optimization problems 

hat require exponential time to be solved to optimality. For these 

roblems, MHs can provide acceptable solutions in reasonable 

omputational time, and as a result are good substitutes for exact 

lgorithms ( Hertz & de Werra, 1990; Osman & Laporte, 1996; 

albi, 2009 ). It is the main reason behind the significant growth of 

nterest in MH domain in the past two decades. 
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From a technical point of view, MHs are a family of approxi- 

ate optimization methods that arrange and pilot an interaction 

etween local improvement procedures and higher-level strategies 

o create an iterative search process capable to escape from local 

ptima and perform a robust search of a search space ( Gendreau & 

otvin, 2010 ). During such an iterative search process, a consider- 

ble number of solutions are generated, evaluated, and evolved un- 

il a promising solution is obtained. Indeed, during the search pro- 

ess, MHs generate a considerable volume of data including good 

elite) or bad solutions in terms of their fitness values, the se- 

uence of search operators from beginning to the end, evolution 

rajectories of different solutions, local optima, etc. These data po- 

entially carry useful knowledge such as the properties of good and 

ad solutions, the performance of different operators in different 

tages of the search process, precedence of search operators, etc.; 

owever, classical MHs do not use any form of knowledge hidden 

n these data. 

Machine Learning (ML) techniques can serve MHs by extract- 

ng useful knowledge from the generated data throughout the 

earch process. Incorporating such knowledge within the search 
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rocess guides MHs toward making better decisions and conse- 

uently makes MHs more intelligent and significantly improves 

heir performance in terms of solution quality, convergence rate, 

nd robustness. ML is a sub-field of artificial intelligence (AI) that 

nvolves learning algorithms to infer from data to learn new tasks 

 Song, Triguero, & Özcan, 2019 ). The integration of ML techniques 

nd MHs has attracted intense attention in recent years ( Song 

t al., 2019; Talbi, 2016 ). 

There are recent review papers on the use of MHs in ML tasks 

 Calvet, de Armas, Masip, & Juan, 2017; Dhaenens & Jourdan, 2016; 

ambella, Ghaddar, & Naoum-Sawaya, 2020; Song et al., 2019; Sra, 

owozin, & Wright, 2012; Wagner & Affenzeller, 2005; Xue, Zhang, 

rowne, & Yao, 2015 ), the use of ML techniques for solving COPs 

ith the focus on exact optimization methods ( Bengio, Lodi, & 

rouvost, 2021 ) as well as the integration of ML techniques into 

Hs ( Song et al., 2019; Talbi, 2016; 2020 ). The latter has received

ignificant attention in recent years. In this paper, the focus is on 

he integration of ML techniques into MHs. To the best of our 

nowledge, the literature is deprived of having a comprehensive 

et technical review on how ML techniques can serve MHs and for 

hich specific purpose. In the past few years, several review pa- 

ers have been published on the ways of integrating ML techniques 

or a particular purpose (e.g., algorithm selection ( Kerschke, Hoos, 

eumann, & Trautmann, 2019; Kotthoff, 2014 ), parameter tuning 

 Aleti & Moser, 2016 ), etc.). Few papers provide a general review 

n the integration of ML techniques for different purposes within 

Hs ( Song et al., 2019; Talbi, 2016; 2020 ). 

Different from the literature, this paper provides a compre- 

ensive and technical review on the integration of ML techniques 

nto MHs for different purposes including algorithm selection , fit- 

ess evaluation , initialization , evolution , parameter setting , and coop- 

ration . Among different optimization problems, the focus of this 

aper is on solving COPs. This paper is not only a pedagogical pa- 

er that describes the main concepts and preliminaries, but also 

 technical paper that classifies the literature’s papers to identify 

he research gaps and provides a technical discussion on the ad- 

antages/limitations, requirements, and challenges of implement- 

ng each way of integration. Furthermore, a taxonomy is also pro- 

osed to provide a common terminology and classification. We be- 

ieve that this paper is indispensable not only for non-experts in 

he field of MHs desiring to use ML techniques, but also for senior 

esearchers that aim to provide a pedagogical lesson for junior stu- 

ents, particularly Ph.D. students in both Operational Research and 

omputer Science. 

. Background 

.1. Combinatorial optimization problems 

Combinatorial optimization problems (COPs) are a class of op- 

imization problems with discrete decision variables and a finite 

earch space, although still too large for an exhaustive search to be 

 realistic option ( Korte, Vygen, Korte, & Vygen, 2012 ). The formal 

epresentation of a COP is as follows: 

minimize c(x ) 
subject to: g(x ) ≥ b 

x ≥ 0 , x ∈ f 
(1) 

here the inequalities g(x ) ≥ b and x ≥ 0 are the constraints that 

pecify a convex polytope over which the objective function c(x ) 

s to be minimized, and f is the finite set of feasible solutions x 

hat satisfy the constraints. There are many real-life problems (e.g., 

ehicle routing problem, scheduling problem, etc.) that can be for- 

ulated as COPs. A large part of COPs belong to the NP-Hard class 

f optimization problems, which require exponential time to be 
2 
olved to optimality ( Talbi, 2009 ). Table A.1 in Appendix A provides 

 list of COPs that are referred to throughout this paper. 

.2. Meta-heuristics 

Solving a large number of real-life COPs in an exact manner is 

ntractable within a reasonable amount of computational time. Ap- 

roximate algorithms are alternatives to solve these problems. Al- 

hough approximate algorithms do not guarantee the optimality, 

heir goal is to obtain solutions as close as possible to the optimal 

olution in a reasonable amount of computational time, at most 

olynomial ( Talbi, 2009 ). 

Approximate algorithms are categorized into problem-dependent 

euristics and meta-heuristics . The former, as its name implies, de- 

cribes a group of algorithms which are designed for and apply to 

articular optimization problems. However, MHs are more general 

lgorithms applicable to a large variety of optimization problems, 

articularly COPs, if well tailored. 

MHs can be classified in different ways. They can be nature- 

nspired or non-nature inspired ( Talbi, 2009 ). Many MHs are in- 

pired by natural phenomena. Evolutionary Algorithms (EAs) such 

s Genetic Algorithm (GA) ( Holland et al., 1992 ), Memetic Algo- 

ithm (MA) ( Moscato et al., 1989 ), and Differential Evolution (DE) 

 Storn & Price, 1997 ) are inspired by biology; Artificial Bee Colony 

ABC) ( Karaboga, 2005 ), Ant Colony Optimization (ACO) ( Dorigo 

 Blum, 2005 ), and Particle Swarm Optimization (PSO) ( Kennedy, 

006 ) are inspired by swarm intelligence. There are also MHs in- 

pired by non-natural phenomena; Imperialist Competitive Algo- 

ithm (ICA) ( Atashpaz-Gargari & Lucas, 2007 ) by society, Simulated 

nnealing (SA) ( Kirkpatrick, Gelatt, & Vecchi, 1983 ) by physics, and 

armony Search (HS) ( Geem, Kim, & Loganathan, 2001 ) by musics. 

rom another perspective, MHs can be memoryless or they may use 

emory during the search process ( Talbi, 2009 ). Memoryless MHs 

e.g., GA , SA , etc.) do not use the historical information dynami- 

ally during the search process. However, MHs with memory, such 

s Tabu Search (TS) ( Glover & Laguna, 1998 ), memorize historical 

nformation during the search process, and this memory helps to 

void making repetitive decisions. 

Furthermore, MHs can make deterministic or stochastic decisions 

uring the search process to solve optimization problems ( Talbi, 

009 ). MHs with deterministic rules (e.g., TS) always obtain the 

ame final solution when starting from the same initial solution, 

hile stochastic MHs (e.g., SA, GA) apply random rules to solve the 

roblem and obtain different final solutions when starting from 

he same initial solution. Moreover, in terms of their starting point, 

Hs are divided into single-solution based or population-based MHs 

 Talbi, 2009 ). Single-solution based MHs, also known as trajectory 

ethods, such as Iterated Local Search (ILS) ( Lourenço, Martin, & 

tützle, 2003 ), Breakout Local Search (BLS) ( Benlic, Epitropakis, & 

urke, 2017 ), Descent-based Local Search (DLS) ( Zhou, Hao, & Du- 

al, 2016 ), Guided Local Search (GLS) ( Voudouris & Tsang, 1999 ), 

ariable Neighborhood Search (VNS) ( Mladenovi ́c & Hansen, 1997 ), 

ill Climbing (HC) ( Johnson, Papadimitriou, & Yannakakis, 1988 ), 

arge Neighborhood Search (LNS) ( Shaw, 1998 ), Great Deluge (GD) 

 Dueck, 1993 ), TS, SA, etc., manipulate and transform a single so- 

ution to reach the (near-) optimal solution. Population-based MHs 

uch as Water Wave Optimization (WWO) ( Zheng, 2015 ), GA, PSO, 

CO, etc., try to find the optimal solution by evolving a popula- 

ion of solutions. Because of this nature, population-based MHs are 

ore exploration search algorithms, and they allow a better diver- 

ification in the entire search space. Single-solution based MHs are 

ore exploitation search algorithms, and they have the power to 

ntensify the search in local regions. 

Finally, depending on their search mechanism, MHs can be iter- 

tive or greedy ( Talbi, 2009 ). The former (e.g., ILS, GA) starts with

 complete solution and manipulates it at each iteration using a 
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et of search operators. The latter, also called constructive algo- 

ithm, starts from an empty solution and constructs the solution 

tep by step until a complete solution is obtained. Classical ex- 

mples of greedy algorithms are Nearest Neighbor (NN), Greedy 

euristic (GH), Greedy Randomized Heuristic (GRH), and Greedy 

andomized Adaptive Search Procedure (GRASP) ( Feo & Resende, 

995 ). 

.3. Machine learning 

Machine learning (ML) is a sub-field of artificial intelligence 

hat uses algorithmic and statistical approaches to give computers 

he ability to “learn” from data, i.e., to improve their performance 

n solving tasks without being explicitly programmed for each one 

 Bishop, 2006 ). These systems improve their learning over time au- 

onomously, using extracted knowledge from data and information 

n the form of observations and real-world interactions. The ac- 

uired knowledge allows these systems to correctly generalize to 

ew settings. According to ( Bishop, 2006 ), ML algorithms can be 

lassified into: 

• Supervised learning algorithms – In supervised learning, the 

values of input variables and the corresponding values of the 

output variables (labels) are known a priori. A supervised learn- 

ing algorithm attempts to automatically figure out the relation- 

ship between input variables and output labels and use it to 

predict the output for new input variables. Depending on the 

aim of learning, supervised learning algorithms can be classi- 

fied into classification and regression algorithms. Classical super- 

vised learning algorithms include Linear Regression (LR), Logis- 

tic Regression (LogR), Linear Discriminant Analysis (LDA), Sup- 

port Vector Machine (SVM), Naive Bayes (NB), Gradient Boost- 

ing (GB), Decision Tree (DT), Random Forest (RF), k -Nearest 

Neighbor ( k -NN), Artificial Neural Network (ANN), etc. 
• Unsupervised learning algorithms – They are used when the 

training data is neither classified nor labeled. In unsupervised 

learning, the values of input variables are known while there 

are no associated value for the output variables. The learning 

task is therefore to figure out and describe the patterns hid- 

den in the input data. Clustering and Association Rules (ARs) 

are two tasks of unsupervised learning. Classical unsupervised 

learning algorithms include k -means clustering, Shared Nearest 

Neighbor Clustering (SNNC), Self-Organizing Map (SOM), Princi- 

pal Component Analysis (PCA), Multiple Correspondence Analy- 

sis (MCA), and Apriori algorithms for ARs. 
• Reinforcement learning (RL) algorithms – In these algorithms, 

an agent iteratively learns from interactions with its environ- 

ment to take actions that would maximize the reward or min- 

imize the risk. At each iteration, the agent automatically de- 

termines the ideal behavior (action) within a specific context 

to maximize its performance based on a reward feedback. RL 

algorithms include Q-Learning (QL), Learning Automata (LA), 

Opposition-based RL (OPRL), Monte Carlo RL, SARSA, Deep Re- 

inforcement Learning (DRL), etc. 

. Taxonomy and review methodology 

This section aims first at elaborating the major contributions 

hat distinguish our paper from the literature. Next, we present a 

axonomy to provide a common terminology and classification on 

he subject of this paper. Finally, the search methodology describ- 

ng the procedure of searching and obtaining the relevant papers 

s presented. 
3 
.1. Contributions 

To the best of our knowledge, there is no comprehensive re- 

iew paper on integrating ML techniques into MHs that investi- 

ates the integration from a technical point of view. Jourdan, Dhae- 

ens, and Talbi (2006) provided a short survey on how ML tech- 

iques can help MHs with no detailed discussion on how such 

ntegration occurs. Another survey has been done by Zhang et al. 

2011) on how ML techniques can improve the performance of evo- 

utionary computation algorithms. Corne, Dhaenens, and Jourdan 

2012) investigated the synergy between operations research and 

ata mining with a focus on multi-objective approaches. With the 

apid advances in the use of new ML techniques in MHs for even 

ew purposes, as well as the increasing trend in the number of 

nnually published papers in the area, there is a need to update 

he outdated review papers. In this regard, Talbi (2016) studied 

ifferent ways of hybridization between different MHs as well as 

ybridizing MHs with mathematical programming, constraint pro- 

ramming, and ML. Although the author provides a good overview 

n how to hybridize MHs, it is less focused on the integration of 

L into MHs. Calvet et al. (2017) reviewed the integration of ML 

nd MH for solving optimization problems with dynamic inputs. 

he authors enumerate different ways of integrating ML into MH 

nd vice versa; however, their work lacks a technical discussion on 

he requirements, challenges, and future works of each way of in- 

egration. 

More recently, more general and comprehensive studies have 

een done by Song et al. (2019) and Talbi (2020) on integrat- 

ng ML and MH. Song et al. (2019) studied the integration of ML 

nd optimization in general and not particularly MHs. The au- 

hors review all four optimization-in-ML, ML-in-optimization, ML- 

n-ML, and optimization-in-optimization ways of integration. How- 

ver, Song et al. (2019) provided less details on the integration of 

L in MHs compared to Talbi (2020) . Merely providing general 

esearch directions, their work lacks a comprehensive discussion 

n the research gaps and future research directions for the ML- 

n-optimization way of integration. Talbi (2020) provided a more 

omplete and unified taxonomy on the integration of ML into MHs. 

he author identifies the integration of ML in MHs in three levels: 

) problem level integration, where ML is used, for example, to de- 

ompose the solution space or to reformulate the objectives and 

onstraints of an optimization problem, 2) high-level integration 

etween MHs, where ML techniques are used to make a link be- 

ween different MHs, and 3) low-level integration in a MH, where 

L techniques are used in the components of MHs (e.g., initial- 

zation, operator selection, population management, etc.). Although 

he work by Talbi (2020) is a good comprehensive and pedagogical 

eview paper explaining different general ways (i.e., levels) that ML 

echniques can be integrated into MHs, it does not go into the de- 

ails on the requirements, challenges, and possible future research 

irections on the use of ML techniques in each level of integration. 

To the best of our knowledge, the literature is deprived of hav- 

ng a comprehensive and technical review on how ML techniques 

an be integrated into MHs and for which specific purposes. Dif- 

erent from the literature, this paper provides a review on the use 

f ML techniques in the design of different elements of MHs for 

ifferent purposes including algorithm selection , fitness evaluation , 

nitialization , evolution , parameter setting , and cooperation . In a ped- 

gogical way, we describe the key concepts and preliminaries of 

ach way of integration. In addition, this paper reviews the re- 

ent advances on each topic and classifies the literature’s papers to 

dentify the research gaps. We also propose a taxonomy to provide 

 common terminology and classification. As an important part, we 

hen provide a technical discussion on the advantages/limitations, 

equirements, and challenges of implementing each way of inte- 

ration. Finally, promising future research directions are identified 
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Fig. 1. Taxonomy on the use of ML in MHs (ML-in-MH). 
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epending on the way of integrating ML into MHs. We believe that 

his paper is indispensable not only for non-experts in the field of 

Hs desiring to use ML techniques, but also for senior researchers 

hat aim to provide a pedagogical lesson for junior students, par- 

icularly Ph.D. students in both Operations Research and Computer 

cience. 

.2. Taxonomy 

Although MHs and ML techniques have been initially devel- 

ped for different purposes, they may perform common tasks such 

s feature selection or solving optimization problems. MHs and 

L techniques frequently interact to improve their search and/or 

earning abilities. MHs have been widely employed in ML tasks 

MH-in-ML) for decades ( Wagner & Affenzeller, 2005; Xue et al., 

015 ). For Instance, MHs can be used for feature selection, param- 

ter setting of ML techniques ( Oliveira, Braga, Lima, & Cornélio, 

010 ), or pattern recognition ( Kiranyaz, Ince, & Gabbouj, 2014 ). ML 

echniques are being extensively integrated into MHs (ML-in-MH) 

o make the search process intelligent and more autonomous. For 

nstance, RL can help to select the most efficient operators of MHs 

uring the search process ( dos Santos, de Melo, Neto, & Aloise, 

014 ). 

The purpose of this paper is to review the studies wherein 

L techniques have been integrated into MHs for solving COPs. 

e propose a taxonomy on integrating ML techniques into MHs, 

L-in-MH branch of Fig. 1 . Discovering the MH-in-ML branch of 

ig. 1 is out of the scope of this paper, and we refer interested

eaders to the latest literature reviews on the use of MHs in ML 

asks and the references cited therein ( Calvet et al., 2017; Gambella 

t al., 2020; Song et al., 2019 ). 

We propose to classify different types of integration according 

o the taxonomy presented on Fig. 1 . According to this classifica- 

ion, ML techniques can be integrated into MHs for the following 

urposes: 

• Algorithm selection – When solving an optimization problem 

with MHs, the first decision is to select one or a set of MHs 

for solving the problem. ML techniques can predict the perfor- 

mance of MHs in solving optimization problems. 
• Fitness evaluation – The success of any MH in achieving a spe- 

cific goal (objective) is evaluated by fitness evaluation of the so- 

lutions during the search process. ML techniques can speed up 

the search process by approximating computationally expensive 

fitness functions. 
4 
• Initialization – Any MH starts its search process from an initial 

solution or a population of solutions. ML techniques can help to 

generate good initial solutions by using the knowledge of good 

solutions on similar instances or speeding up the initialization 

by decomposing the input data space into smaller sub-spaces. 
• Evolution – It represents the entire search process starting from 

the initial solution (population) toward the final solution (pop- 

ulation). ML techniques can intelligently select the search op- 

erators (i.e., Operator selection ), evolve a population of solu- 

tions using the knowledge of good and bad solutions during the 

search (i.e., Learnable evolution model ), and to guide the neigh- 

bor generation process using the knowledge obtained during 

the search process (i.e., Neighbor generation ). 
• Parameter setting – Any MH, depending on its nature, has a set 

of parameters which need to be set before the search process 

starts. ML techniques can help to set or control the values of 

the parameters before or during the search process. 
• Cooperation – Several MHs can cooperate with each other to 

solve optimization problems in parallel or sequentially. ML 

techniques can improve the performance of cooperative MHs by 

adjusting their behavior during the search process. 

Each type of integration in Fig. 1 can be also classified from an- 

ther viewpoint into: problem-level , high-level , and low-level inte- 

ration ( Talbi, 2020 ). Algorithm selection and fitness evaluation rep- 

esent a high-level and problem-level integration of ML into MHs, 

espectively. Depending on the strategy to generate initial solu- 

ions (see Section 6 ), initialization belongs to either problem-level 

r low-level integration. Evolution and parameter setting fall in the 

ategory of low-level integration. Finally, cooperation may belong 

o either high-level or low-level integration depending on the level 

f cooperation. 

.3. Search methodology 

To conduct the literature review, first, well-known scientific 

atabases including Scopus, Google Scholar, IEEE Explore, Science 

irect, Springer, ACM Digital Library, and Emerald have been care- 

ully searched to find the relevant papers in both scientific jour- 

als and international conferences. To do that, we have identified 

 set of particular keywords for each type of integration. Then, the 

earch process is conducted using the following search rule: 

{ keyword1 AND keyword2 AND keyword3 AND keyword4 } 
keyword1 is an element of a set of keywords related to the 

ntegration types of ML techniques into MHs, as explained in 
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Fig. 2. Number of papers per year and per each type of integration of ML techniques in MHs for solving COPs. 
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ection 3.2 and Fig. 1 . More precisely, keyword1 belongs to the 

nion of the sets {algorithm selection, algorithm recommendation, 

utonomous algorithm selection, performance prediction, meta- 

earning, meta-feature} (for the algorithm selection), {fitness ap- 

roximation, surrogate model, meta-model, fitness reduction} (for 

he fitness evaluation), {initialization, initial solution generation} 

for the initialization), {adaptive operator selection, autonomous 

perator selection, learnable evolution model, non-Darwinian evo- 

ution, pattern extraction, rule extraction, rule injection} (for the 

volution), {parameter setting, parameter tuning, parameter con- 

rol} (for the parameter setting), and {cooperation, cooperative 

Hs, parallel MHs, Hybrid MHs, sequential MHs} (for the cooper- 

tion of algorithms). keyword2 stands for the ML techniques ex- 

racted from Section 2.3 . keyword3 accounts for different MHs, 

anging from single-solution to population-based MHs, extracted 

rom Section 2.2 . Finally, keyword4 is dedicated to the COP un- 

er study. We provide a complete list of COPs in Table A.1 in 

ppendix A . 

After filtering the obtained papers, a total number of 136 pa- 

ers are kept, which are relevant to the scope of this paper. All 

hese papers are reviewed and classified in details in this paper. 

ig. 2 shows the number of reviewed papers per year (from 20 0 0 

o early 2021) and for each type of integration illustrated in Fig. 1 .

ooking at the whole number of papers regardless of which type 

f integration they belong to, Fig. 2 shows a significant increase in 

he number of papers integrating ML techniques into MHs for dif- 

erent purposes throughout the last two decades, which illustrates 

 meaningful growth in the knowledge and popularity of the topic. 

mong all types of integration, studies on evolution contribute the 

ost to the total number of papers over time, and an increasing 

rend can be seen for the last decade. Algorithm selection and ini- 

ialization have been at the second place of attention, and they 

ave gained significant attention throughout the last two decades. 

ooperation , parameter setting , and fitness evaluation are also the 

ypes of integration with semi-constant trend of attention. In sum- 

ary, Fig. 2 illustrates that algorithm selection , evolution , and initial- 

zation are being studied attentively, and fitness evaluation , parame- 

er setting , and cooperation are less-studied directions and they are 

orthy to be explored more in the future. 

The rest of this paper is structured as follows. Each section ex- 

lains in details each way of integrating ML techniques into MHs 

nd starts with an introduction to the corresponding type of in- 

egration. Then, relevant papers are reviewed, classified, and ana- 

yzed. Finally, the section ends with a comprehensive discussion on 

he corresponding guidelines, requirements, challenges, and future 

esearch directions. To be more precise, Sections 4 –9 are respec- 

ively dedicated to algorithm selection, fitness evaluation, initial- 
h

5 
zation, evolution, parameter setting, and cooperation. Finally, con- 

lusions and perspectives are given in Section 10 . 

. Algorithm selection 

There are many studies in the literature developing high- 

erformance MHs for well-known COPs. However, there is no 

ingle MH that dominates all other MHs in solving all prob- 

em instances. Instead, different MHs perform well on different 

roblem instances (i.e., performance complementarity phenomena) 

 Kerschke et al., 2019 ). Therefore, there is always an unsolved ques- 

ion as “Which algorithm is likely to perform best for a given 

OP?” ( Rice et al., 1976 ). The ideal way to find the best algo-

ithm to solve a COP, when the computational resources are un- 

imited, is to exhaustively run all available algorithms and choose 

he best solution, no matter by which algorithm it has been ob- 

ained. However, because of the limited computational resources, it 

s practically impossible to test all available algorithms on a partic- 

lar problem instance. In this situation, a major question arises as 

Among the existing algorithms, how to select the most appropri- 

te one for solving a particular problem instance?”. ML techniques 

elp to answer this question by selecting the most appropriate al- 

orithm(s). This is where the Algorithm Selection Problem (ASP) 

teps in. 

ASP aims at automatically selecting the most appropriate al- 

orithm(s) for solving a problem instance using ML techniques 

 Kerschke et al., 2019; Kotthoff, 2014 ). The original framework of 

SP was developed by Rice et al. (1976) based on four principal 

omponents: 1) the problem space, including a set of problem in- 

tances, 2) the feature space, including a set of quantitative charac- 

eristics of the problem instances, 3) the algorithm space, including 

 set of all available algorithms for solving the problem instances, 

nd 4) the performance space that maps each algorithm from the 

lgorithm space to a set of performance metrics such as the Ob- 

ective Function Value (OFV), CPU Time (CT), etc. The final goal is 

o find the problem-algorithm mapping with the highest perfor- 

ance. 

To find the best problem-algorithm mapping, ASP employs 

eta-learning, a sub-field of ML, that learns the problem-algorithm 

apping on a set of training instances and creates a meta-model. 

he meta-model is then used to predict the appropriate map- 

ing for new problem instances ( Kotthoff, 2014 ). In solving COPs, 

tudying ASP has enabled researchers to take advantage of var- 

ous MHs by systematically selecting the most appropriate algo- 

ithm(s) among the existing ones, and has resulted in significant 

erformance improvements ( Kotthoff, 2016 ). In the literature, ASP 

as been referred to as algorithm selection ( Kanda, de Carvalho, 
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Table 1 

Classification of papers studying ASP. 

Ref. Prob. space Alg. space Portfolio Perf. space Learning Task ML tech. Size 

Hutter, Hamadi, Hoos, and 

Leyton-Brown (2006) 

SAT ILS Static CT Offline Reg. LR 30,000 

Smith-Miles (2008) QAP ILS, TS, ACO Static OFV Offline SLC ANN 644 

Kanda et al. (2011a) TSP TS, GRASP, SA, GA Static OFV Offline MLC k -NN, ANN, NB 2500 

Kanda, de Carvalho, Hruschka, and 

Soares (2011b) 

TSP TS, GRASP, SA, GA Static OFV Offline LRC ANN 2000 

Kanda, Soares, Hruschka, and 

De Carvalho (2012) 

TSP TS, SA, GA, ACO Static OFV Offline LRC ANN 300 

Pitzer, Beham, and Affenzeller (2013) QAP TS, VNS Static OFV Offline SLC LR, SVM, AR 137 

Messelis and De Causmaecker (2014) PSP TS, GA Static OFV Offline SLC DT 3140 

Smith-Miles et al. (2014) GCP HC, TS, ACO Static OFV Offline MLC SVM, NB 675 

Kanda et al. (2016) TSP TS, SA, GA, ACO Static OFV Offline LRC ANN, k -NN, DT 600 

Beham et al. (2017) QAP TS, VNS, GA, MA Static OFV, CT Offline SLC k -NN 94 

de León, Lalla-Ruiz, Melián-Batista, 

and Moreno-Vega (2017a) 

BAP LNS Static OFV Offline LRC k -NN 720 

de León, Lalla-Ruiz, Melián-Batista, 

and Moreno-Vega (2017b) 

TSP, VRP GRASP, SA, LNS Static OFV Offline LRC k -NN 130 

Miranda et al. (2018) MAX-SAT GA, PSO Static OFV Offline SLC ANN, SVM, DT 555 

Pavelski, Kessaci, and Delgado (2018b) FSP HC, SA, TS, ILS Static OFV Offline MLC GB 27,000 

Pavelski, Delgado, and Kessaci (2018a) FSP HC, SA, TS, ILS Static OFV Offline SLC DT 12,000 

Dantas and Pozo (2018) QAP BLS, ACO, TS Static OFV Offline SLC RF 135 

Degroote, González-Velarde, and 

De Causmaecker (2018) 

AP TS Static OFV Offline SLC RF 286 

Gutierrez-Rodríguez, Conant-Pablos, 

Ortiz-Bayliss, and Terashima-Marín 

(2019) 

VRP EA , GA , PSO Static OFV Offline SLC ANN 56 

Dantas and Pozo (2020) QAP BLS, ACO, MA Static OFV Offline MLC RF 5000 

Wawrzyniak et al. (2020) BAP HC, GRASP, ILS Static OFV, CT Offline SLC k -NN 2100 

Sadeg, Hamdad, Kada, Benatchba, and 

Habbas (2020) 

MAX-SAT GA, GRASP Static OFV, CT Offline SLC k -NN, RF, ANN 1534 

de la Rosa-Rivera, Nunez-Varela, 

Ortiz-Bayliss, and Terashima-Marín 

(2021) 

TTP ILS, SA, VNS Static OFV Offline Reg. LR 6000 

Fig. 3. Procedure of ASP. 
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ruschka, Soares, & Brazdil, 2016 ), per-instance algorithm selection 

 Kerschke et al., 2019 ), algorithm recommendation model ( Chu et al., 

019 ), and automated algorithm selection ( Dantas & Pozo, 2018 ). 

owever, they all share the same goal of automatically select- 

ng the most appropriate algorithm(s) for a particular problem in- 

tance. 

We illustrate the procedure of ASP in Fig. 3 . As it can be seen in

ig. 3 , ASP involves two main steps: 1) meta-data extraction, and 

) meta-learning and meta-model creation. 

• Meta-data extraction – Given the problem and algorithm 

spaces, the goal is to determine the feature and performance 

spaces called meta-data. Meta-data is classified into two cat- 

egories: meta-features and meta-target features ( Kanda et al., 

2016 ). Meta-features are a set of quantitative features that rep- 

resent the properties of a problem instance, while meta-target 

features are a set of performance data that describe the perfor- 
6 
mance of each algorithm on a particular problem instance. Con- 

sidering the importance of defining appropriate meta-features, 

there are several works in the literature which aim to identify 

good meta-features for different COPs, including SAT ( Kerschke 

et al., 2019 ), TSP ( Kerschke et al., 2019; Mersmann et al., 

2013; Smith-Miles & Lopes, 2012 ), AP ( Angel & Zissimopou- 

los, 2002; Smith-Miles & Lopes, 2012 ), OP ( Bossek, Grimme, 

Meisel, Rudolph, & Trautmann, 2018 ), KP ( Smith-Miles & Lopes, 

2012 ), BPP ( Smith-Miles & Lopes, 2012 ), and GCP ( Smith-Miles 

& Lopes, 2012 ). 
• Meta-learning and meta-model creation – Using the meta- 

data, a meta-model is created which can predict the perfor- 

mance of each algorithm for each problem instance and deter- 

mine the problem-algorithm mapping. Depending on the type 

of prediction expected from the meta-model, different ML tech- 

niques can be used for meta-learning and creating the meta- 
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model. Different types of prediction include selecting the best 

algorithm ( Smith-Miles, 2008 ), selecting a set of most appro- 

priate algorithms ( Kanda, Carvalho, Hruschka, & Soares, 2011a ), 

and ranking a set of appropriate algorithms ( Kanda et al., 

2016 ) for solving a problem instance. Depending on the type 

of prediction, the task of meta-learning could be Single-label 

Classification (SLC), Multi-label Classification (MLC), and Label- 

ranking Classification (LRC), respectively. Besides classification 

techniques, regression techniques such as LR can also be used 

to predict the performance of each algorithm. Using regression 

techniques, the meta-learning problem is a multiple regression 

problem wherein one target variable is considered for each al- 

gorithm. 

Considering the way to create the meta-model, ASP can be ei- 

her online or offline . In offline ASP, the meta-model is constructed 

sing a particular set of training instances with the aim to predict 

he problem-algorithm mapping for new problem instances ( Kanda 

t al., 2016; Miranda, Fabris, Nascimento, Freitas, & Oliveira, 2018; 

mith-Miles, 2008 ). However, in online ASP, the meta-model is 

onstructed and employed dynamically while solving a set of prob- 

em instances ( Armstrong, Christen, McCreath, & Rendell, 2006; 

egroote, Bischl, Kotthoff, & De Causmaecker, 2016; Gagliolo & 

chmidhuber, 2010; Kerschke et al., 2019 ). Furthermore, the algo- 

ithm space, commonly known as algorithm portfolio, is classified 

s static or dynamic . Static portfolios contain a set of fixed algo- 

ithms which are included into the portfolio before solving a prob- 

em instance and the composition of the portfolio along with the 

lgorithms within the portfolio do not change during solving an in- 

tance, while dynamic portfolios contain a set of algorithms whose 

omposition and configuration may change while solving a prob- 

em instance ( Kotthoff, 2014 ). 

In the rest of this section, the research papers studying ASP for 

OPs are reviewed and classified, followed by a detailed discussion 

n the corresponding guidelines, requirements, challenges, and fu- 

ure research directions. 

.1. Literature classification & analysis 

Inspired from Fig. 3 , Table 1 classifies the papers studying ASP 

or COPs based on different characteristics such as problem space , 

lgorithm space , algorithm portfolio type, performance space , learn- 

ng mechanism, meta-learning task , the employed ML technique , 

nd the size of the training set. To the best of our knowledge, 

able 1 lists all relevant papers, including the most recent papers 

n the literature that study ASP for selecting MHs to solve COPs us- 

ng ML techniques. Other papers which miss at least one of these 

hree main components (i.e., MHs, ML techniques, or COPs) are out 

f the scope of this paper and are not reviewed in this paper. 

Regarding the problem space, TSP and QAP are the most stud- 

ed problems compared to the other COPs. Also, Table 1 shows that 

 majority of the studied COPs have a common characteristic; they 

ither have permutation-based representation (e.g., TSP, VRP, FSP) 

r discrete value based representation (e.g., AP, QAP). One of the 

ajor reasons for such an observation is the availability of various 

owerful MHs for these representations, as well as the simplic- 

ty of manipulating these types of representations ( Abdel-Basset, 

anogaran, Rashad, & Zaied, 2018; Arora & Agarwal, 2016; Koç, 

ekta ̧s , Jabali, & Laporte, 2016 ). 

Considering the algorithm space, Table 1 reveals that the algo- 

ithm portfolio in most of the studies is composed of MHs with 

ifferent mechanisms, varying from single-solution to population- 

ased, from memory-less MHs (e.g., ILS) to MHs with memory 

e.g., TS), from MHs with accepting only better solutions (e.g., ILS) 

o MHs with accepting worse solutions (e.g., SA), and from MHs 

ith fixed neighborhood size (e.g., TS and SA) to MHs with vari- 
7 
ble neighborhood size (e.g., VNS). The utilization of such differ- 

nt algorithms in a portfolio highlights the fact that different MHs 

ith different search mechanisms perform differently for different 

nstances of COPs ( dos Santos et al., 2014 ). 

Table 1 also shows that all reviewed papers use a static portfo- 

io. Since the algorithms and their configurations do not change in 

tatic portfolios, their selection becomes more crucial for the over- 

ll success of the resolution process. An efficient way to construct 

he portfolio is to involve algorithms that complement each other 

uch that good performance can be achieved on a wide range of 

ifferent problem instances. There has been a debate on the com- 

osition and characteristics of the algorithms within the portfolio 

mong the reviewed papers. The first and the most straightforward 

anner to construct the portfolio is to randomly select algorithms 

rom a large pool of diverse MHs. The second manner is to in- 

orporate MHs with the best overall performance in the portfolio. 

owever, the third and the most promising manner is to construct 

 portfolio with algorithms of complementary strengths. An ASP 

ith a portfolio composed of MHs with complementary strengths 

ogically seems to be more efficient comparing to an ASP with 

 portfolio composed of MHs with the best overall performance. 

owever, most research papers construct the portfolio less explic- 

tly using the MHs that have performed well in the literature when 

olving particular instances of the COP at hand, regardless of their 

trengths and weaknesses when facing new problem instances. 

Considering the performance space , we can see that most of the 

apers evaluate the performance of an algorithm based on the 

FV of the obtained solutions. Although considering the quality 

f solutions in terms of their OFV is the most common criterion 

o compare algorithms, there are other criteria that play an im- 

ortant role when selecting an algorithm, among which the CT 

nd robustness have a high importance, especially for solving COPs 

 Choong, Wong, & Lim, 2019; Mosadegh, Ghomi, & Süer, 2020; dos 

antos et al., 2014 ). Therefore, OFV, CT, and robustness are the 

hree most important criteria by which the algorithms could be 

ompared. Although there is a trade-off between these measures, 

nd usually no algorithm performs best in all criteria, taking into 

ccount these criteria provides more efficient algorithm selection 

hen solving COPs ( Beham, Affenzeller, & Wagner, 2017; Wawrzy- 

iak, Drozdowski, & Sanlaville, 2020 ). The multiple criteria ASP can 

e modeled through a multi-objective perspective ( Kerschke et al., 

019 ). 

Table 1 shows that all reviewed papers have created the meta- 

odel in an offline manner and none of them studies the online 

SP for solving COPs. A big disadvantage of ASP in an offline man- 

er is that in this way, the performance of the selected algorithms 

s not monitored to confirm whether they satisfy the expectations 

hat led them being selected or not. Accordingly, offline ASP is in- 

erently vulnerable to bad choices of MHs; however, the advantage 

f an offline ASP is its lower computational effort since the meta- 

odel is created once based on a set of training instances. On the 

ontrary, the major advantage of an online ASP is the more jus- 

ified decisions that can be made during the algorithm selection 

rocess, which also reduces the negative impact of a bad choice. 

owever, adding such flexibility imposes an extra effort, as the 

eta-model is created and employed dynamically while solving 

 set of problem instances and thus decisions on algorithm se- 

ection need to be made more frequently throughout the resolu- 

ion of the new problem instances. Broadly speaking, there is no 

vidence to show the superiority of one method over the other, 

nd both methods have led to performance improvements ( Kanda 

t al., 2016; Wawrzyniak et al., 2020 ). Hence, the choice of whether 

o create the meta-model in an offline or an online manner de- 

ends highly on the specific application. 

Another studied characteristic in Table 1 is the meta-learning 

ask. The most common output of ASP is a single best algorithm 
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rom the portfolio and using it to solve the problem instance (i.e., 

he result of SLC task). A disadvantage of selecting a single best 

lgorithm is having no way of compensating a wrong selection. In- 

eed, if a single algorithm is selected and shows unsatisfying per- 

ormance on a new problem instance, there are no other recom- 

ended algorithms to replace such an inefficient algorithm. An al- 

ernative approach is selecting multiple algorithms (i.e., the result 

f MLC and RLC tasks). However, there is no report to show that 

ne of these approaches is superior to another. 

.2. Discussion & future research directions 

In this section, first, a guideline is provided for researchers on 

hen to study ASP and which requirements to meet to study ASP. 

econd, a set of technical challenges of studying ASP are discussed. 

inally, several future research directions are provided based on 

he research gaps extracted from Table 1 . 

.2.1. Guideline & requirements 

The aim of providing a guideline for studying ASP is to help 

esearchers to understand that although studying ASP may provide 

he most appropriate MH(s) to solve COPs, it is not always the best 

hoice. In the following, we first describe the situations where ASP 

s useful; then, the requirements of using ASP are elaborated. 

Studying ASP is useful when the computational resources (i.e., 

vailable time and the number of available cores) for solving a 

roblem instance are limited. This is the case for optimization 

roblems at an operational level where limited time is available, 

nd the problems should be solved more frequently. On the other 

and, for the optimization problems at the strategic level (e.g., 

LP), where there is enough time, the best choice is to execute all 

lgorithms and select the most appropriate one, since in the strate- 

ic level, finding better solutions outweighs the computational cost 

f executing all algorithms. Furthermore, another moment when 

tudying ASP becomes indispensable is when there are several ef- 

cient competitive algorithms for the problem at hand and none 

f them could be definitely selected for solving the problem in- 

tance. In addition, ASP can help non-experts to select appropri- 

te algorithm(s) for solving optimization problems. In other words, 

SP can be replaced by the traditional trial-and-error optimization 

asks, especially when the number of candidate algorithms is large 

nd little prior knowledge of the problem is available. 

Once the use of ASP is justified, a set of requirements should be 

ulfilled before applying ASP. The first requirement for using ASP is 

ffordability of the selection procedure in terms of computational 

esources. In fact, if studying ASP for a problem instance is more 

xpensive than solving the problem instance with all algorithms 

nd selecting the best one, there is no need at all to study ASP. 

he next important requirement that could be also a challenge for 

SP is data availability . When creating the meta-model, it is nec- 

ssary to provide a pool of sufficient training instances that well 

epresent new instances. It should be noted that having a pool of 

ufficient instances does not guarantee the efficiency of ASP, and 

nstance dissimilarity and algorithmic discrimination are two other 

equirements that need to be satisfied ( Smith-Miles, Baatar, Wre- 

ord, & Lewis, 2014 ). The former denotes the necessity of providing 

nstances which are as diverse as possible and spread out over dif- 

erent regions. The latter denotes the necessity to provide instances 

hat show different behaviors while being solved by different algo- 

ithms in the portfolio. Indeed, some instances should be easy for 

ome algorithms and hard for others. Algorithmic discrimination re- 

uirement helps to learn the strengths and weaknesses of different 

lgorithms when solving different instances with different charac- 

eristics. 
8 
.2.2. Challenges & future research directions 

Despite the effectiveness of ASP in solving COPs, the implemen- 

ation of an algorithm selection procedure is not always straight- 

orward, and researchers may face several challenges throughout 

he ASP procedure, from the design to its implementation. 

The first challenge to deal with is called data generation chal- 

enge. As mentioned earlier, two important requirements of ASP 

re instance dissimilarity and algorithmic discrimination that allow 

enerating a rich data set of instances with different characteris- 

ics that leads to a more efficient meta-model creation. To gener- 

te such a rich data set, the algorithms need to be provided with 

 wide range of instances. This challenge is twofold: 1) Finding or 

enerating a set of sufficient instances that ensure the data avail- 

bility requirements, particularly instance dissimilarity and algorith- 

ic discrimination , is a complicated task and 2) Executing all can- 

idate algorithms on the generated instances might be very time 

onsuming if the number of instances is large. This makes the 

eta-model creation computationally expensive. This first chal- 

enge becomes more and more complicated if little knowledge is 

vailable for the COPs at hand. On the other hand, it would be less 

hallenging to generate a set of sufficient instances that fulfils the 

entioned requirements for classical COPs for which there exists 

everal instance libraries (e.g., TSPLIB for TSP ( Reinelt, 1991 ) and 

aillard for FSP ( Taillard, 1993 )). 

Apart from the data generation challenge, the second challenge 

s instance characterization . A major issue in creating a meta-model 

s the characterization of the problem instances through a set of 

ppropriate measures, called meta-features ( Smith-Miles & Lopes, 

012 ). Meta-features must reveal instance properties that affect 

he performance of the algorithm. More informative and appropri- 

te features lead to a better mapping between the meta-features 

nd algorithm performance and consequently a high-quality meta- 

odel. The instance characterization challenge has two aspects; 

rst, the type of meta-features to extract and, second, the com- 

utational time associated with the meta-feature extraction. The 

ype of meta-features varies from the most basic ones such as de- 

criptive statistics (e.g., minimum, maximum, mean, and median 

f input parameters) to more complex ones such as landscape fea- 

ures of COPs. Taking TSP as an example, the basic meta-features 

nclude “Edge and vertex measures” such as number of vertices , 

he lowest/highest vertex cost , and the lowest/highest edge cost , and 

he more complex meta-features could be “complex network mea- 

ures” such as average geodesic distance , network vulnerability , and 

arget entropy ( Kanda et al., 2016 ). Depending on the type of meta-

eatures, feature extraction can be a computationally cheap task 

or basic features and expensive for more complex ones. There- 

ore, in selecting the meta-features, one should consider both the 

evel of information they provide and their corresponding compu- 

ational time. The optimal way is to select a set of features that are 

s informative as possible while computationally affordable. To put 

he issue into perspective, creating a high-quality meta-model is a 

omplicated interplay between using a set of diverse training in- 

tances with different behavior over different algorithms and using 

 subset of informative meta-features whose extraction is compu- 

ationally cheap. 

There is always an unanswered question on the trade-off be- 

ween the performance of the algorithm selection and its com- 

lexity, particularly on the extraction of meta-features. An impor- 

ant direction for future research is moving from problem-specific 

eatures toward more general and simple features which are com- 

utationally cheaper to be extracted when studying ASP. There is 

vidence that shows for particular optimization problems, a small 

umber of simple meta-features suffice for achieving excellent per- 

ormance of ASP ( Hoos, Peitl, Slivovsky, & Szeider, 2018 ). 

In the reviewed studies, the focus has been on heterogeneous 

ortfolios composed of different MHs with different characteristics, 
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hile different configurations of a single MH in a homogeneous 

ortfolio also show different behavior in solving a COP. Another in- 

riguing future research direction could be studying ASP for COPs 

ith a homogeneous portfolio, to select a particular configuration 

f a single MH among a set of particular configurations, which is 

ven less challenging compared to dealing with a portfolio of dif- 

erent algorithms. 

As explained in Section 4.2.1 , instance dissimilarity and algorith- 

ic discrimination are two requirements and also two challenges of 

SP. An interesting research direction could be the idea of evolving 

nstances using EAs ( Bossek & Trautmann, 2016; van Hemert, 2006; 

ersmann et al., 2013; Smith-Miles, van Hemert, & Lim, 2010 ). In- 

eed, the idea is to use EAs to evolve instances of COPs as distinct 

s possible to ensure instance dissimilarity. In this way, a set of 

iverse instances are obtained, improving the performance of the 

eta-model. 

Developing an online ASP is another promising future research 

irection. As shown in Section 4.1 , all papers have studied offline 

SP, where the meta-model is created using a set of training in- 

tances. However, it might be possible to get even better results 

sing online ASP, which adapts the algorithm selection mecha- 

ism while solving a set of problem instances. Although the on- 

ine ASP imposes an extra computational overhead, it increases 

he robustness, as adjustments (if required) can be applied to the 

lgorithm selection mechanism during the resolution of COP in- 

tances. It is worth mentioning that the extra overhead can be alle- 

iated by using computationally cheap meta-features. Another way 

o cope with the extra overhead is using incremental or online ac- 

ive learning techniques where an already trained model is used 

nd improved incrementally during the search process ( Lughofer, 

017 ). 

When the output of ASP is multiple selected algorithms, one 

an study how multiple selected algorithms are scheduled to solve 

 problem instance. The key idea of scheduling is to execute a se- 

uence of algorithms from a given set, one after another, each for 

 given (maximum) time ( Kotthoff, 2014 ). Most of the research 

apers in Table 1 proposing multiple algorithms have not stud- 

ed the algorithm schedule. However, more flexibility is obtained 

hroughout the search process when an algorithm with particu- 

ar strength (i.e., exploration and exploitation) is employed when- 

ver needed. Accordingly, one future research direction could be 

cheduling multiple recommended algorithms to solve a problem 

nstance. The schedule of algorithms can be either static or dynamic 

 Kadioglu, Malitsky, Sabharwal, Samulowitz, & Sellmann, 2011 ). In 

 static algorithm schedule, algorithms are executed based on a 

iven order. In a dynamic schedule, the sequence of algorithms 

ay change based on their historical performance, and certain al- 

orithms may not be used at all. 

Another interesting future research direction could be taking 

nto account multiple performance criteria by which the algo- 

ithms are evaluated when studying ASP. The multiple criteria ASP 

an be modeled through a multi-objective perspective ( Kerschke 

t al., 2019 ). Last but not least, Table 1 reveals that the focus has

een mostly on COPs with permutation-based and discrete value 

ased representations. As a future research direction, ASP can be 

xtended to other COPs such as different types of scheduling prob- 

ems for which a lot of efficient MHs have been developed in re- 

ent years ( Allahverdi, 2015 ). 

. Fitness evaluation 

Fitness evaluation is one of the key components of MHs to 

uide the search process towards the promising regions of the 

earch space. For some optimization problems, there is no analyti- 

al fitness function by which the solutions are evaluated, or even if 

t exists, it is computationally expensive to evaluate. ML techniques 
9 
an be integrated into MHs to reduce the computational effort for 

olving such optimization problems either through fitness approxi- 

ation ( Díaz-Manríquez, Toscano, & Coello, 2017; Jin, 2005; 2011 ) 

r fitness reduction ( Saxena, Duro, Tiwari, Deb, & Zhang, 2012 ). 

itness approximation is categorized into functional approximation 

nd evolutionary approximation ( Jin, 2005 ): 

• Functional approximation – It is used when evaluating the 

solutions using the original fitness function is computationally 

expensive. In this condition, the computationally expensive fit- 

ness function is replaced with an approximate model that im- 

itates the behavior of the original fitness function as closely 

as possible, while being computationally cheaper to evaluate. 

These approximate models are built using ML techniques such 

as polynomial regression ( Singh, Ray, & Smith, 2010 ), RF ( Zhou, 

Ong, Nguyen, & Lim, 2005 ), ANN ( Jin & Sendhoff, 2004; Park 

& Kim, 2017 ), SVM ( González-Juarez & Andrés-Pérez, 2019; 

Loshchilov, Schoenauer, & Sebag, 2010 ), Radial Basis Functions 

(RBFs) ( Qasem, Shamsuddin, Hashim, Darus, & Al-Shammari, 

2013 ), and Gaussian process models also referred to as Krig- 

ing ( Knowles, 2006 ). These ML techniques are trained using 

a set of training data, wherein the input variable is a set of 

features extracted from the solution instances and the output 

variable is the original fitness value of each solution instance. 

The aim is then to approximate the fitness value of the new 

generated solutions. The approximate model can be created ei- 

ther offline or online . A particular use of functional approxima- 

tion in MHs is known as surrogate-assisted MHs ( Jin, 2011 ), 

wherein the approximate (surrogate) model is iteratively re- 

fined (i.e., online refining) during the search process. The first 

surrogate-assisted MHs were developed for continuous opti- 

mization problems, and there are numerous efficient surrogate 

modeling techniques for continuous functions ( Pelamatti, Bre- 

vault, Balesdent, Talbi, & Guerin, 2020 ). In recent years, they 

have also gained attraction for discrete optimization problems 

( Bartz-Beielstein & Zaefferer, 2017 ). Surrogate models are cate- 

gorized into single, multi-fidelity, and ensemble surrogate mod- 

els ( Bartz-Beielstein & Zaefferer, 2017 ). 
• Evolutionary approximation – It is specifically developed to 

deal with EAs. Instead of approximating the fitness function, 

the evolutionary approximation aims at reducing the compu- 

tational effort by approximating the elements of the EAs. There 

are two main sub-categories of evolutionary approximation: 

– Fitness inheritance in which the fitness value of an individ- 

ual is calculated based on the fitness values of its parents. 

For instance, the fitness value of an offspring can be the 

(weighted) average of the fitness values of its parents. 

– Fitness imitation in which the fitness value of an individ- 

ual is calculated using the fitness value of its siblings. Us- 

ing ML techniques such as clustering techniques, the popu- 

lation is divided into several clusters, and only the represen- 

tative individuals of each cluster are evaluated. Afterward, 

the fitness values of other individuals are calculated based 

on their corresponding representatives in the clusters. Clus- 

tering techniques have been widely used for fitness imita- 

tion in the literature ( Xiang, Tian, Xiao, & Zhang, 2020; Yu, 

Tan, Sun, & Zeng, 2017 ). 

Apart from fitness approximation, fitness reduction is another 

pproach for dealing with computationally expensive fitness func- 

ions in multi-objective optimization problems ( Saxena et al., 

012 ). Instead of approximating the fitness function, fitness reduc- 

ion aims at reducing the number of fitness functions using ML 

echniques such as PCA ( Saxena et al., 2012 ) and Feature Selec- 

ion (FS) techniques ( López Jaimes, Coello Coello, & Chakraborty, 

008 ) as well as reducing the number of fitness function evalua- 
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Table 2 

Classification of papers studying fitness evaluation. 

Ref. Fitness evaluation Single/ Multi obj. ML tech. MH COP 

Pathak, Srivastava, and Srivastava (2008) Functional approximation Multi ANN GA PSP 

López Jaimes et al. (2008) Fitness reduction Multi FS GA KP 

Moraglio, Kim, and Yoon (2011) Functional approximation Single RBF GA QAP 

Horng et al. (2013) Functional approximation Single ANN MA ATOP 

Nguyen, Zhang, Johnston, and Tan (2014) Evolutionary approximation Single k -NN GA JSP 

Hao et al. (2016) Functional approximation Single ANN DE SMSP 

Wang and Jin (2018) ; Zheng, Fu, and Xuan (2019) Functional approximation Multi RF GA KP 

Lucas et al. (2020) Functional approximation Single DT VNS VRP 
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ions by using clustering techniques ( Sun, Zhang, Zhou, Zhang, & 

hang, 2019; Zhang et al., 2016 ). 

In the following, first, we review, classify, and analyze the rele- 

ant papers, and then the corresponding challenges and future re- 

earch directions are provided. 

.1. Literature classification & analysis 

Table 2 classifies the papers using ML techniques for fitness 

valuation of COPs based on different characteristics such as the 

tness evaluation approach, the type of the problem ( single/ multi 

bjective ), the employed ML technique , the MH algorithm, and the 

OP under study. 

Considering Table 2 , it can be seen that there are few stud- 

es applying fitness approximation/reduction to COPs. The reason 

s twofold; first, for most COPs, there exists an analytical fitness 

unction whose evaluation is not computationally expensive ( Hao 

 Liu, 2014 ), and second, constructing surrogate models for COPs 

s a complicated task and several additional issues should be over- 

ome to create an accurate and reliable surrogate model for COPs 

 Pelamatti et al., 2020 ). 

It can be seen from Table 2 that fitness approximation is mostly 

sed for single-objective COPs whose original fitness function is 

alculated by a time-consuming simulation ( Hao, Liu, Lin, & Wu, 

016; Horng, Lin, Lee, & Chen, 2013 ), or an approximate fitness 

unction is used to help the search to escape from the local optima 

 Lucas, Billot, Sevaux, & Sörensen, 2020 ). There are also studies that 

pply fitness approximation to multi-objective COPs. Indeed, it is 

ore computationally expensive for a MH to evaluate solutions us- 

ng multiple fitness functions compared to a single fitness function, 

specially when there are too many objective functions. 

Table 2 shows that fitness approximation/reduction is mostly 

sed for EAs (e.g., GA and MA). The main reason is that EAs gen-

rate and evolve a population of solutions at each iteration and it 

ight be therefore very time-consuming to evaluate every new so- 

ution at each iteration of the algorithm. Using fitness approxima- 

ion especially becomes crucial when the evaluation of each new 

olution is computationally expensive (e.g., using time-consuming 

imulation to evaluate a solution ( Horng et al., 2013 )). This ne- 

essity has led to the development of new EAs called surrogate- 

ssisted EAs. 

.2. Discussion & future research directions 

As all MHs do an iterative process to reach the (near-) optimal 

olution, many fitness evaluations are needed to find an accept- 

ble solution. Fitness approximation may help MHs to significantly 

educe their computational effort for computing the fitness value 

 Jin, 2005 ). However, using fitness approximation in MHs is not as 

traightforward as one may expect, and it has its own challenges. 

One of the major challenges is the accuracy of the approxi- 

ate function and its functionality over the global search space 
10 
 Jin, 2005 ). To replace the original fitness function of a MH with

n approximate function, it has to be ensured that the MH with 

he approximate function converges to the (near-) optimal solu- 

ion of the original function. However, due to some issues such as 

ew training data and high dimensionality of the search space, it 

s difficult to construct such an approximate function. Therefore, to 

vercome this issue, one way is to use both the original and the 

pproximate fitness function during the resolution of the problem. 

his is addressed as model management or evolution control in the 

iterature ( Jin, 2005 ). 

An open question in fitness approximation is choosing the best 

uited technique for fitness approximation in COPs. The answer 

ainly depends on the COP under study and the user’s prefer- 

nces; however, due to numerous approximation techniques, se- 

ecting the best suited technique a priori is often impossible. In 

his regard, the first try could be using the simplest technique. 

f the performance of the approximate function obtained by the 

implest technique is unsatisfactory or degrades over time, more 

ophisticated techniques can be used. A future research direction 

ould provide a comparative study on the performance of dif- 

erent techniques for approximating the fitness function of COPs. 

hese techniques may differ from simple techniques such as fit- 

ess inheritance or k -NN to more sophisticated ones such as poly- 

omial regression, Kriging, RBF, and clustering/classification tech- 

iques ( Shi & Rasheed, 2010 ). Usually more complex methods pro- 

ide better fitting accuracy but need more construction time. An- 

ther way to answer this open question is using ensemble surrogate 

odeling that aggregates several surrogate models. 

Apart from fitness approximation, another aspect that deserves 

o be explored more in the future is online fitness generation, 

herein new objectives are targeted depending on the status of 

he search process. The new fitness function is generated based on 

ome knowledge of the optimization problem at hand, as well as 

he features extracted from the visited regions during the search 

rocess. For instance, a set of representative features of the good 

olutions for the COP at hand can be extracted during the search 

rocess to form a new objective, and once the MH gets trapped 

n a local optimum, the original fitness function is replaced by the 

ew one. During the search process, the original and the new fit- 

ess function can interchange to guide the MH toward promising 

olutions ( Lucas et al., 2020 ). Another example of online fitness 

eneration in MHs can be found in GLS that modifies the origi- 

al fitness function when trapped in a local optimum ( Voudouris 

 Tsang, 2003 ). Such a modification is done by adding a set of 

enalty terms to the original fitness function. Whenever the GLS 

ets stuck in a local optimum, the penalties are modified and the 

earch process continues to optimize the transformed fitness func- 

ion. 

Real-time COPs are those COPs that need to be solved regularly 

e.g., every hour or every day) under a time limitation. For these 

roblems, the computational time spent even in one iteration of 

Hs, especially population-based MHs, may be too long for real- 
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ime applications. Therefore, to cope with real-time COPs, espe- 

ially large-scale COPs, one future research direction is to employ 

tness approximation to lower the computational effort of fitness 

valuation. 

. Initialization 

There are three main strategies for generating initial solutions 

or MHs: random , greedy , and hybrid strategies ( Talbi, 2009 ). In the

andom strategy, an initial solution is generated randomly, regard- 

ess of the quality of the solution. In the greedy strategy, a solution 

s initialized with a good-enough quality. Finally, the hybrid strat- 

gy combines two random and greedy strategies. There is always 

 trade-off between the use of these strategies in terms of explo- 

ation and exploitation. Indeed, the way of initializing a MH has a 

rofound impact on its exploration and exploitation abilities. If the 

nitial solutions are not well diversified, a premature convergence 

ay occur, and the MH gets stuck in local optima. On the other 

and, starting from low quality solutions may take a larger number 

f iterations to converge. In this regard, ML techniques can be used 

ot only to maintain the diversity of solutions but also to produce 

nitial solutions with good quality. ML techniques can contribute to 

he initialization through three major strategies: 

• Complete generation – As a low-level integration, ML tech- 

niques can replace the solution generation strategies to con- 

struct the initial solution on their own. Indeed, ML techniques 

are used to construct a complete solution from an empty so- 

lution. The main ML techniques used in this category are RL- 

based techniques such as QL ( Khalil, Dai, Zhang, Dilkina, & 

Song, 2017; dos Santos et al., 2014 ), ANN ( Bengio, Frejinger, 

Lodi, Patel, & Sankaranarayanan, 2020 ), and Opposition-based 

Learning ( Rahnamayan, Tizhoosh, & Salama, 2008 ). 
• Partial generation – As a low-level integration, ML techniques 

are used to generate partial initial solutions using the apriori 

knowledge of good solutions. Then, the remaining part of the 

solution can be generated using any of the initialization strate- 

gies. ML techniques extract knowledge from previous good so- 

lutions and inject it into the new initial solutions ( Li & Olaf- 

sson, 2005; Nasiri, Salesi, Rahbari, Meydani, & Abdollai, 2019 ). 

This knowledge is mostly in the form of ARs, which characterize 

the properties of good solutions. Apriori algorithms are widely 

used to extract the rules in ARs ( Li, Chu, Chen, & Xing, 2016 ).

Another example is case-based initialization strategy ( Louis & 

McDonnell, 2004 ) derived from the idea of Case-Based Reason- 

ing (CBR), in which the initial solutions are generated based on 

the solutions of already solved similar instances. 
• Decomposition – As a problem-level integration, the decompo- 

sition is done either in the data space or in the search space. In

data space decomposition, ML techniques are used to decom- 

pose the data space into several sub-spaces and consequently 

facilitate generating initial solutions by reducing the required 

computational effort. In this regard, an initial solution is gener- 

ated for each sub-space using any of the initialization strategies, 

and finally a complete solution is constructed from the par- 

tial solutions of the sub-spaces ( Ali, Essam, & Kasmarik, 2020; 

Chang, 2017; Min, Jin, & Lu, 2019 ). In search space decompo- 

sition, ML techniques are used to diversify the initial solutions 

over the search space, where different solutions represent dif- 

ferent regions of the search space. For example, the problem 

of selecting the sub-regions of the search space to explore can 

be formulated using the Multi-armed Bandit (MAB) technique, 

wherein each arm represents a region of the search space, and 

the technique learns which regions worth exploring further and 
which are not ( Catteeuw, Drugan, & Manderick, 2014 ). w

11 
Depending on how ML techniques are employed in generating 

he initial solutions, learning can occur either offline or online . In 

ffline learning, knowledge is gathered from the initial solutions 

enerated for a set of training instances with the aim to gener- 

te initial solution(s) for a new problem instance. The properties 

f those good initial solutions that led to a better performance 

re extracted and used to generate promising initial solution(s) 

or a new problem instance. Although an offline learning can pro- 

ide rich knowledge, it might be very time-consuming, and the ex- 

racted knowledge might not be useful enough when applied to a 

ew problem instance with completely different properties com- 

ared to the training instances. On the contrary, in online learning, 

nowledge is extracted and employed dynamically while generat- 

ng the initial solution(s) for a problem instance. Although the ex- 

racted knowledge might not be that rich, it completely suites the 

nstance at hand. In the rest of this section, the relevant papers 

re reviewed and analyzed and the corresponding challenges along 

ith future research directions are provided. 

.1. Literature classification & analysis 

Table 3 classifies the papers generating initial solutions for COPs 

sing ML techniques based on different characteristics such as the 

nitialization strategy , learning mechanism, the used ML technique , 

he MH algorithm for which the initialization is performed, the COP 

nder study, and the size of the training set in case of offline learn- 

ng. 

Considering Table 3 , RL, particularly QL is a widely used tech- 

ique to generate complete initial solutions. QL can be counted 

s a hybrid initialization strategy that balances exploration and 

xploitation abilities of a MH through its parameters. QL con- 

tructs the solutions successively by exploiting the knowledge of 

he search space using the reward matrix. Taking TSP as an exam- 

le, QL starts construction with a random city and proceeds with 

he cities which bring the maximum reward, where the reward is 

epresentative of the problem’s objective function (e.g., the reward 

s inversely related to the distance from the current selected city 

o the next potential city). The superiority of QL over other typical 

nitialization strategies in terms of the quality of the solutions and 

onvergence rate of the algorithm has been illustrated for TSP by 

os Santos et al. (2014) . 

Table 3 shows that the decomposition strategy is mostly used 

or routing-based COPs including VRP and TSP. Clustering algo- 

ithms such as k -means are the widely used ML techniques in 

hese studies, where the cities are clustered into several groups, 

nd an initial solution is obtained by using a greedy strategy for 

ach group. Finally, a complete path connecting different groups is 

reated. 

.2. Discussion & future research directions 

In the integration of ML techniques into MHs for generating ini- 

ial solutions, the simplicity of the classical random and greedy 

trategies is sacrificed to gain better performance in terms of the 

rade-off between exploration and exploitation through more ad- 

anced initialization strategies (i.e., complete generation, partial 

eneration and decomposition). The integration of ML techniques 

nto initialization of MHs has been reported to lead to an improve- 

ent in the convergence rate of MHs when better solutions have 

een found in less computational efforts compared to classical ran- 

om and greedy strategies ( Ali et al., 2020; Hassanat, Prasath, Ab- 

adi, Abu-Qdari, & Faris, 2018; Louis & McDonnell, 2004; dos San- 

os et al., 2014 ). These improvements have been more expressive 

hen solving larger instances of COPs as MHs start with already 



M. Karimi-Mamaghan, M. Mohammadi, P. Meyer et al. European Journal of Operational Research xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EOR [m5G; May 27, 2021;0:12 ] 

Table 3 

Classification of papers studying initialization. 

Ref. Strategy Learning ML tech. MH COP Size 

Louis and McDonnell (2004) Partial generation Offline Apriori GA JSP 50 

Li and Olafsson (2005) Partial generation Offline DT MHs JSP 19,900 

de Lima Junior, de Melo, and Neto (2007) ; Complete generation Online QL GRASP, GA TSP –

De Lima, De Melo, and Neto (2008) ; 

dos Santos, de Lima Júnior, Magalhães, de Melo, and Neto (2010) 

Díaz-Parra, Ruiz-Vanoye, and Zavala-Díaz (2010) ; Decomposition Online k -means GA VRP –

Haghighi, Zahedi, and Ghazizadeh (2010) 

dos Santos et al. (2014) Complete generation Online QL VNS TSP –

Catteeuw et al. (2014) Decomposition Online MAB HC QAP –

Deng, Liu, and Zhou (2015) Decomposition Online k -means GA TSP –

Zhou et al. (2016) Complete generation Online RL DLS GCP –

Li et al. (2016) Partial generation Online Apriori GA TSP –

Xiang and Pan (2016) ; Decomposition Online k -means ACO VRP –

Zhang (2017) 

Gao, Wang, Cheng, Inazumi, and Tang (2016) Decomposition Online k -means ACO LRP –

Khalil et al. (2017) Complete generation Online QL MHs TSP –

Chang (2017) Decomposition Online k -means ACO TSP –

Hassanat et al. (2018) Decomposition Online LR GA TSP –

López-Santana, Rodríguez-Vásquez, and Méndez-Giraldo (2018) Decomposition Online k -means ACO WSRP –

Alipour, Razavi, Derakhshi, and Balafar (2018) Complete generation Online RL GA TSP –

Miki, Yamamoto, and Ebara (2018) Partial generation Offline DRL MHs TSP 2,000,00 

Ali, Essam, and Kasmarik (2019) Decomposition Online k -means GA, DE TSP –

Gocken and Yaktubay (2019) Decomposition Online k -means GA VRP –

Min et al. (2019) Decomposition Online k -means TS VRP –

Nasiri et al. (2019) Partial generation Offline Apriori GA, PSO JSP 35 

Bengio et al. (2020) Complete generation Offline LR, ANN MHs FLP 45,000 

Lodi, Mossina, and Rachelson (2020) Partial generation Offline LogR, ANN, NB MHs FLP 7145 

Ali et al. (2020) Decomposition Online k -means DE TSP –

Cheng, Pourhejazy, Ying, and Lin (2021) Decomposition Online k -means ABC JSP –
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 (set of) good initial solution(s) ( Hassanat et al., 2018; dos Santos 

t al., 2014 ). This phenomenon saves the computational effort to- 

ard exploring/exploiting more promising regions in the solution 

pace instead of spending extensive effort s to find primary good 

local) solutions during the search process. 

These advanced initialization strategies bring their own chal- 

enges. An important challenge is the complexity of using such 

dvanced techniques with additional parameters that need to be 

arefully tuned to get the highest performance. A set of other chal- 

enges arises depending on the way solutions are initialized. For 

nstance, a big challenge when using QL is how to define the set of 

tates and actions so that they satisfy the properties of a Markov 

ecision process. One of the main requirements is to define a set 

f states such that it is sufficient to characterize the system with- 

ut the need for the history of information achieved so far. Taking 

SP as an example, if one considers the state as the currently se- 

ected city and the action as the next city to be added to the tour,

he state is not sufficient to characterize the system, and an action 

epends on the information on the history of the states. 

As a new concept in ML and inspired from the opposite re- 

ationship among entities, Opposition-based Learning can provide 

fficient strategies to generate the initial population. Using this 

oncept, the initial population is approximated from two opposite 

ides ( Rahnamayan et al., 2008 ), wherein an initial population is 

rst generated randomly. Next, an opposite population in terms of 

alues of the solution vector is generated to the randomly gener- 

ted population. The MH then merges the two populations and se- 

ects half of the best solutions to form the initial population. The 

ain aim of opposition-based learning is keeping the diversity be- 

ween the initial solutions to increase the exploration ability of 

he MHs. In addition to opposition-based learning, an interpolation 

echnique can be also used to generate the initial population. This 

echnique attempts to provide good solutions by interpolating a 

et of randomly generated solutions. The interpolated solutions are 

hen used to form the initial population. Neither opposition-based 
l

12 
earning nor interpolation have been applied to COPs. Therefore, 

sing these techniques and other advanced ML techniques such as 

NNs ( Yalcinoz & Altun, 2001 ) to generate the initial solutions of 

OPs could be a future research direction. 

. Evolution 

ML techniques can be integrated into the evolution process in 

hree major ways: 

• ML techniques help to use feedback information on the perfor- 

mance of the operators during the search process to select the 

most appropriate operator (see Section 7.1 ). 
• ML techniques provide a learning mode to generate new popu- 

lations in EAs (see Section 7.2 ). 
• ML techniques help to extract the properties of good solutions 

to generate new solutions (see Section 7.3 ). 

.1. Operator selection 

Operator selection has its roots in hyper-heuristics . The term 

yper-heuristic can be defined as a high-level automated search 

ethodology which explores a search space of low-level heuristics 

i.e., neighborhood or search operators) or heuristic components, 

o solve optimization problems ( Burke et al., 2013 ). Regarding the 

ature of the heuristic search space, hyper-heuristics are classi- 

ed into heuristic selection and heuristic generation methodologies 

 Drake, Kheiri, Özcan, & Burke, 2019 ). The former aims at select- 

ng among a set of heuristics, while the latter aims at generating 

ew heuristics. Operator selection inherently belongs to heuristic 

election methodologies in hyper-heuristics; however, it has been 

lso used in designing MHs ( Mosadegh et al., 2020; dos Santos 

t al., 2014 ). Accordingly, it has led to a certain level of confu- 

ion in the literature in distinguishing MHs involving operator se- 

ection from hyper-heuristics. Despite the differences between the 
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esign and performance of hyper-heuristics and MHs, operator se- 

ection in both methods targets the same goal as selecting and ap- 

lying (an) appropriate operator(s) during the search process. In 

his paper, the focus is on MHs involving operator selection. In 

his regard, a MH called adaptive large neighborhood search, an 

xtension to the classical large neighborhood search, has been de- 

eloped with the particular aim of selecting operators during its 

earch process. A meta-analysis on adaptive large neighborhood 

earch MHs has been provided by Turkeš, Sörensen, and Hvattum 

2020) . Apart from adaptive large neighborhood search, this paper 

ocuses on operator selection in all other types of MHs. 

The main motivation of operator selection comes from the fact 

hat individual operators may be particularly effective at certain 

tages of the search process, but perform poorly at others. In- 

eed, the search space of COPs is a non-stationary environment 

ncluding different search regions with dissimilar characteristics, in 

hich different operators (or different configurations of the same 

perator) show different behavior, and only a set of them works 

ell in each region ( Fialho, 2010 ). Therefore, solving COPs using 

 single operator does not guarantee the highest performance in 

nding (near-) optimal solutions. Hence, it is reasonable to ex- 

ect that employing different operators combined in an appropri- 

te way during the search process will produce better solutions. 

Through designing hyper-heuristics or MHs with multiple 

earch operators, we can take advantage of several operators with 

ifferent performances by switching between them during the 

earch process. In addition, an appropriate implementation of dif- 

erent operators significantly affects the exploration and exploita- 

ion abilities of a MH and provides an Exploration-Exploitation bal- 

nce during the search process. In designing such algorithms, there 

re two important decisions to make: 1) which operator (among 

ultiple operators), and 2) which settings to select and apply at 

ach stage of the search process. The former is discussed in this 

ection while the latter will be explained in Section 8 . 

Search operators are divided into four Mutational/Perturbation 

perators (MPOs), Ruin-Recreate Operators (RROs), Local Search or 

ill-Climbing Operators (LSOs), and Crossover or Recombination 

perators (XROs) categories ( Ochoa & Burke, 2014; Talbi, 2009 ). 

ML techniques help the operator selection to use feedback in- 

ormation on the performance of the operators. In this situation, 

perators are selected based on a credit assigned to each operator 

i.e., feedback from their historical performance). Considering the 

ature of the feedback, the learning can be offline or online . In of- 

ine learning, ML techniques such as case-based reasoning ( Burke, 

etrovic, & Qu, 2006 ) help to gather knowledge in the form of rules

rom a set of training instances with the aim to select operators in 

ew problem instances. However, in online learning, knowledge is 

xtracted and employed dynamically while solving a problem in- 

tance ( Burke et al., 2019; Talbi, 2016 ). The use of online feedback

rom the search environment to dynamically select and apply the 

ost appropriate operator during the search process is referred to 

s Adaptive Operator Selection (AOS) ( Fialho, 2010 ). AOS aims at se- 

ecting the most appropriate operator at each stage of the search 

rocess while solving a problem instance. AOS gives the chance to 

dapt MHs behavior to the characteristics of the search space by 

electing their operators during the search process based on their 

istorical performance. AOS consists of five main steps: 

• Performance criteria identification – Whenever an operator 

is selected and applied to a problem instance, a set of feed- 

back information can be collected that represents the perfor- 

mance of the operator. This feedback can be different perfor- 

mance criteria such as OFV, Diversity of Solutions (DOS), CT, 

and Depth of the Local Optima (DLP). The credit of an opera- 

tor highly depends on how the performance criteria are iden- 

tified and assessed. This makes performance criteria identifica- 
13 
tion an important step in AOS. Therefore, in solving COPs, the 

performance criteria should be efficiently identified and inte- 

grated (in case of multiple criteria) to lead the MH toward the 

optimal solution. 
• Reward computation – Once the performance criteria are iden- 

tified, this step computes how much the application of each op- 

erator improves/deteriorates the performance criteria. 
• Credit assignment (CA) – In this step, a credit is assigned 

to an operator based on the rewards calculated in the re- 

ward computation step. There are different credit assignment 

methods including Score-based CA (SCA) ( Peng, Zhang, Gaj- 

pal, & Chen, 2019 ), Q-Learning based CA (QLCA) ( Wauters, Ver- 

beeck, De Causmaecker, & Berghe, 2013 ), Compass CA (CCA) 

( Maturana, Fialho, Saubion, Schoenauer, & Sebag, 2009 ), Learn- 

ing Automata based CA (LACA) ( Gunawan, Lau, & Lu, 2018 ), 

Average CA (ACA) ( Fialho, 2010 ), and Extreme Value-based CA 

(EVCA) ( Fialho, 2010 ) presented in Table 4 . 
• Selection – Once a credit has been assigned to each opera- 

tor, AOS selects the operator to apply in the next iteration. 

Different selection methods including Random selection (RS), 

Max-Credit Selection (MCS), Roulette-wheel Selection (RWS) 

( Gunawan et al., 2018 ), Probability Matching Selection (PMS) 

( Fialho, Da Costa, Schoenauer, & Sebag, 2008 ), Adaptive Pur- 

suit Selection (APS) ( Fialho et al., 2008 ), Soft-Max Selection 

(SMS) ( Gretsista & Burke, 2017 ), Upper Confidence Bound Multi- 

Armed Bandit Selection (UCB-MABS) ( Fialho et al., 2008 ), Dy- 

namic Multi-Armed Bandit Selection (D-MABS) ( Maturana et al., 

2009 ), Epsilon Greedy Selection (EGS) ( dos Santos et al., 2014 ), 

and Heuristic-based Selection (HS) ( Choong, Wong, & Lim, 

2018 ) are presented in Table 5 . 
• Move acceptance – After the application of an operator, AOS 

decides whether to accept the move provided by the opera- 

tor or not. Different move acceptance methods including All 

Moves Acceptance (AMA), Only Improvement Acceptance (OIA), 

Naive Acceptance (NA), Threshold Acceptance (TA), Metropolis 

Acceptance (MA) ( Metropolis, Rosenbluth, Rosenbluth, Teller, & 

Teller, 1953 ), Probabilistic Worse Acceptance (PWA), Simulated 

Annealing Acceptance (SAA) ( Mosadegh et al., 2020 ), and Late 

Acceptance (LTA) are listed in Table 6 . 

.1.1. Literature classification & analysis 

Table 7 classifies the papers studying AOS for COPs based on 

ifferent characteristics such as performance criteria , credit assign- 

ent method, selection method, move acceptance method, the MH 

lgorithm, type of the operator s to be selected, and the COP under 

tudy. 

Considering the performance criteria, Table 7 indicates that all 

eviewed papers rely on OFV as the criterion used for evaluat- 

ng the operators. In the meantime, only few papers have incor- 

orated other criteria such as CT and DOS into their evaluation 

rocess ( Di Tollo, Lardeux, Maturana, & Saubion, 2015; Maturana 

t al., 2009; Maturana & Saubion, 2008; Sakurai, Takada, Kawabe, & 

suruta, 2010; Sakurai & Tsuruta, 2012 ). Although OFV is the most 

traightforward criterion by which the operators can be evaluated, 

OS is also needed to avoid premature convergence ( Di Tollo et al., 

015 ). 

By looking at Table 7 , it can be seen that among the credit as-

ignment methods, RL-based methods (e.g., simple SCA and QLCA) 

ave been mostly studied. Among the studied credit assignment 

ethods, the ACA method is biased toward conservative strategies. 

ndeed, using this method, the operators with frequent small im- 

rovements are preferred over operators with rare but high im- 

rovements. Despite the ACA method, the EVCA method assumes 

hat rare but high improvements are even more important than 

requent but moderate ones ( Fialho et al., 2008 ). Using the EVCA 

ethod, the operators are credited based on the maximum im- 
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Table 4 

Credit assignment methods. 

Method Description 

SCA As a simple version of RL, it assigns an initial score (credit) to each operator and updates their credits based on their performance at 

each step of the search process. Generally, initial credits are set to a same value, typically zero. 

C i,t+1 = C i,t + r i,t 
where C i,t and r i,t are the credit and the reward of operator i at time (step) t . 

QLCA It assigns a Q-value (credit) to an operator (action) at each state of the search process based on its previous performance. 

Q(s t , a ) = Q(s t , a ) + α[ r t + γ max a ′ Q(s t+1 , a 
′ ) − Q(s t , a )] 

where s t is the state at time t, s t+1 is the new state at time t + 1 , a is the operator selected in state s, a ′ is a possible operator in state 

s t+1 , r t is the reward (punishment) received after selecting operator a at time t, α is the learning rate, and γ is the discount factor 

which indicates the importance of future rewards. 

CCA It integrates three measures at every application of an operator: population diversity variation, mean fitness variation, and execution 

time. A sliding window stores the last W changes in terms of diversity and fitness . A compromised value is then calculated between the 

diversity and fitness measures. Finally, the compromised value is divided by the operator’s execution time to obtain the final credit of 

each operator. 

LACA It assigns a probability value to each operator based on its previous performance. The following formulations show the selection 

probabilities (credits) of successful and unsuccessful operators, respectively. 

p i,t+1 = p i,t + λ1 r i,t (1 − p i,t ) − λ2 (1 − r i,t ) p i,t 
p i,t+1 = p i,t − λ1 r i,t p i,t + λ2 (1 − r i,t )[(K − 1) −1 − p i,t ] 

where p i,t is the selection probability of operator i at time t, λ1 and λ2 refer to the learning rates used to update the selection 

probabilities, and K is the number of operators. 

ACA It assigns credit to each operator according to its performance achieved by its last W applications (Instantaneous credit assignment if 

W = 1). Using W as the size of the sliding window for each operator, the performance of an operator is aggregated over a given time 

period. 

EVCA It follows the principle that infrequent, yet large improvements in the performance criteria are likely to be more effective than 

frequent but moderate improvements. At each application of an operator, the changes in the performance criteria are added to a 

sliding window of size W following a FIFO rule and the maximum value within the window is assigned as a credit to that operator. 

Despite the ACA, this method emphasizes on rewards to the operators with recent large improvements even once throughout their last 

W applications. 

C i,t = max t ′ = t−W, ... ,t { r i,t ′ } 

Table 5 

Selection methods. 

Method Description 

RS It uniformly selects an operator at random, ignoring the credit values. 

p i,t = 

1 
K 

where K is the number of operators. 

MCS It selects an operator with the maximum credit. 

RWS It assigns a selection probability p i,t to operator i at time t based on its proportional credit, and selects an operator randomly based on 

these probabilities. The more the credit of an operator, the more the chance to be selected. 

p i,t+1 = 

C i,t ∑ K 
j=1 C j,t 

where C i,t is the assigned credit of operator i at time t, and K is the number of operators. 

PMS It assigns a selection probability to each operator based on its proportional credit, while keeping a minimum selection probability for 

all operators to give them a chance to be selected regardless of their credit. 

p i,t+1 = p min + (1 − K × p min ) 
C i,t ∑ K 
j=1 C j,t 

where p min is the minimum selection probability of each operator, K is the number of operators, and C i,t is the assigned credit of 

operator i at time t . 

APS Instead of proportionally assigning probabilities to all operators, it selects the operator with the maximum credit, increases its 

probability, and reduces the probabilities of all other operators. Operator i ∗ is selected as follow: {
p i,t+1 = p i,t + β(1 − (K − 1) p min − p i,t )(β > 0) i ∗ = arg max { C i,t } 
p i,t+1 = p i,t + β(p min − p i,t ) otherwise 

where the notations are similar to PMS and β is the learning rate. 

SMS It uses a Boltzmann distribution to transform the credit of each operator to a probability, and involves a temperature parameter τ to 

amplify or condense the differences between the operator probabilities. It uniformly selects an operator based on the probability 

values. As long as the temperature decreases, this method becomes more greedy towards selecting the best available operator. 

p i,t+1 = 

e 
(C i,t /τ ) 

∑ K 
j=1 e 

(C j,t /τ ) 

UCB-MABS It assigns a cumulative credit to each operator and selects the operator with the maximum value of: 

C i,t + G 

√ 

log 
∑ K 

j=1 n j,t 
n i,t 

where n i,t denotes the number of times the i th arm has been played up to time t and G is the Scaling factor used to properly balance 

rewards and application frequency (Exploration-Exploitation balance) while still maintaining a small selection probability of other 

operators for exploration purposes. 

D-MABS It adapts the classical multi-armed bandit scenario to a dynamic context where the reward probability of each arm is neither 

independent nor fixed. To address the dynamic context, the classical UCB ( Auer, Cesa-Bianchi, & Fischer, 2002 ) algorithm is combined 

with a Page Hinkley test ( Page, 1954 ), to identify the change of reward probabilities. 

EGS It selects the operator with the highest credit with probability of (1 − ε) ; otherwise, it selects an operator randomly. 

i ∗ = 

{
arg max j C j,t with probability 1 − ε

any other operator with probability ε

HS It uses either heuristic rules or optimization algorithms to select the operators. A heuristic rule can be a tabu list of operators to 

exclude them from being selected during a certain number of iterations. On the other hand, the sequence of operators can be defined 

as a decision variable and optimization algorithms (e.g., MHs) are employed to find the optimal sequence. 

14 
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Table 6 

Move acceptance methods. 

Method Description 

AMA It always accepts the applied move regardless of whether the move improves the solution or not. 

OIA It only accepts the moves that improve the solution. 

NA It always accepts the moves that improve the solution and considers an acceptance probability of 0.5 for moves that deteriorate the 

solution. 

TA It always accepts the moves that improve the solution and accepts the moves that deteriorate the solution less than a prefixed 

threshold (in terms of the solution quality). 

MA It accepts each move with a probability of e 
� f 
T , 

where � f is the difference between the fitness values before and after applying that move, and T denotes the temperature. The higher 

the value of T, the higher the chance to accept worse moves and vice versa. 

PWA As a variant of Metropolis acceptance, it accepts each move with a probability of e 
� f 

T∗μimpr , 

where μimpr is the average of previous improvements on the solution quality. 

SAA As a variant of Metropolis acceptance, it accepts each move with a probability e 
( � f 

T∗μimpr 
× t max 

t max −t current 
) 
, 

wherein the temperature T decreases gradually over time. In addition, t max denotes the maximum time allowed to execute the 

algorithm, and t current denotes the current elapsed time. 

LTA It accepts a move that provides a solution with better or equal quality compared to the obtained solutions in the last n iterations. 

During the initial n iterations, any move that provides a better solution compared to the initial solution is accepted. 

Table 7 

Classification of papers studying AOS. 

Ref. Perf. criteria Credit asnt. Selection Move acpt. MH Operator COP 

Pettinger and Everson (2002) OFV SCA MS OIA GA MPO, XRO TSP 

Maturana and Saubion (2008) OFV, DOS, CT CCA PMS OIA GA MPO, XRO SAT 

Maturana et al. (2009) OFV, DOS, CT CCA, EVCA D-MABS OIA GA MPO, XRO SAT 

Sakurai et al. (2010) ; OFV, CT QLCA SMS OIA GA MPO, XRO TSP 

Sakurai and Tsuruta (2012) 

Francesca, Pellegrini, Stützle, and Birattari (2011) OFV EVCA APS, PMS OIA MA XRO QAP 

Burke, Gendreau, Ochoa, and Walker (2011) OFV,FT EVCA APS, RWS AMA ILS MPO, XRO, RRO, LSO FSP 

Walker, Ochoa, Gendreau, and Burke (2012) OFV EVCA APS AMA-OIA ILS MPO, XRO, RRO, LSO VRP 

Handoko, Nguyen, Yuan, and Lau (2014) OFV QLCA PMS, APS OIA MA XRO QAP 

dos Santos et al. (2014) OFV QLCA EGS OIA VNS LSO TSP 

Consoli and Yao (2014) OFV, DOS CCA D-MABS OIA MA XRO ARP 

Buzdalova, Kononov, and Buzdalov (2014) OFV QLCA EGS, SMS OIA EA MPO, XRO TSP 

Yuan, Handoko, Nguyen, and Lau (2014) OFV SCA APS, D-MABS OIA MA XRO QAP 

Di Tollo et al. (2015) OFV, DOS, CT CCA PMS OIA EA XRO SAT 

Li, Pardalos, Sun, Pei, and Zhang (2015) OFV ACA RWS OIA, AMA ILS MPO, LSO VRP 

Li and Tian (2016) OFV SCA RWS OIA VNS LSO VRP 

da Silva, Freire, and Honório (2016) OFV QLCA APS OIA EA MPO, XRO TEPP 

Mohammadi, Tavakkoli-Moghaddam, Siadat, and 

Dantan (2016) 

OFV SCA RWS OIA ICA XRO HLP 

Chen et al. (2016) OFV SCA UCB-MABS OIA VNS LSO VRP 

Zhalechian, Tavakkoli-Moghaddam, Zahiri, and 

Mohammadi (2016) 

OFV SCA RWS OIA GA MPO, XRO LRP 

Gretsista and Burke (2017) OFV ACA UCB-MABS SAA ILS MPO NRP 

Gunawan et al. (2018) OFV LACA RS, RWS OIA, SAA ILS LSO OP 

Ahmadi et al. (2018) OFV, DOS QLCA EEGS OIA GA MPO, XRO SSP 

Mohammadi, Jula, and Tavakkoli-Moghaddam 

(2019) 

OFV SCA RWS OIA GA MPO, XRO HLP 

Peng et al. (2019) OFV SCA RWS OIA MA LSO VRP 

Lu, Zhang, and Yang (2019) OFV SCA RWS OIA ILS MPO, LSO VRP 

Mosadegh et al. (2020) OFV QLCA EGS SAA SA LSO MASP 

Zhao et al. (2021) OFV QLCA EGS OIA WWO MPO FSP 
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rovement during their last W applications. In order to avoid the 

remature convergence, the CCA method has incorporated DOS 

nto its evaluation process. This method takes into consideration 

oth the OFV and DOS, which are related to the exploitation and 

xploration abilities of MHs, respectively. The ACA, EVCA, and CCA 

ethods assign credit to the operators based on their immediate 

erformance (through the last W applications). This may rise the 

ossibility that the optimization is short sighted. 

On the other hand, RL-based methods including the SCA, QLCA, 

nd LACA methods assign credit to the operators based on their 

erformance from their very first application. Indeed, they are able 

o learn a policy to maximize the rewards in a long-term prospect, 

hich makes it possible to gain optimal operator selection poli- 

ies. In addition to a long-term prospect, some RL-based meth- 

ds such as QL are model-free that do not require the complete 
15 
odel of the system including the matrix of transition probabil- 

ties and the expected value of the reward for each state-action 

air. This is especially useful for COPs since generally, a complete 

odel is not available for COPs ( Wauters et al., 2013 ). Furthermore, 

any RL-based methods are able to converge to the optimal state- 

ction pair under several conditions. Among these methods, QL has 

roven to converge to the optimal state-action pair under three 

onditions: the system model is a Markov decision process, each 

tate-action pair is visited many times, and the immediate reward 

iven to each action is not unbounded (i.e., limited to some con- 

tant) ( Watkins, 1989 ). Among the RL-based methods in Table 7 , 

he techniques based on Temporal Differences such as QL take ad- 

antage of the concept of delayed reward. They are based on the 

ssumption that there might be a delay before the effect of an ac- 

ion appears. Accordingly, they consider a delayed reward in addi- 
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Fig. 4. Exploration vs. Exploitation of selection methods. 
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ion to an immediate reward. On the other hand, the LACA method 

 Gunawan et al., 2018 ) and the SCA method ( Chen, Cowling, Polack,

 Mourdjis, 2016 ) work in a single state environment and merely 

ake into account an immediate reward. 

The selection step decides which operator to apply in the next 

teration. This step can also be seen as an exploration and exploita- 

ion dilemma, where there is a need to be a trade-off between se- 

ecting the best operator with the best performance so far (i.e., ex- 

loitation), and giving a chance to the other operators which may 

ring the best performance from then (i.e., exploration). Fig. 4 il- 

ustrates how different selection methods balance exploration and 

xploitation abilities of a MH. For each selection method, the re- 

ponsible parameters and their corresponding effects for making 

uch balance have been also identified. For example, in the APS 

ethod, increasing the parameters p min and β augments the ex- 

loration ability of the method, while decreasing p min and β in- 

reases the exploitation ability of the method. 

As it can be seen in Fig. 4 , the MCS method is a purely

xploitation-based method where there is no chance for exploring 

ther operators. In other words, the MCS method selects the oper- 

tor with the maximum credit at each iteration, giving no chance 

o other lower quality operators to be selected. 

The RWS method selects the operators based on their propor- 

ional credit, where there is also a chance for all operators to be 

elected. However, using the RWS method, operators which do not 

how good performance during a long time, have very low or even 

ero chance to be selected, while they might perform well in the 

atter stages of the search process. To tackle this issue, the PMS 

ethod assigns a minimum selection probability to each opera- 

or, p min , regardless of its performance. This preserves the balance 

etween exploration and exploitation thorough a minimal level of 

xploration that is kept fixed during the search process. Indeed, 

he selection probability of operators with zero credit slowly con- 

erges to p min . In this way, the operators with even moderate per- 

ormance keep being selected, and this degrades the performance 

f this method ( Maturana et al., 2009 ). To address this drawback, 

he proposed APS method updates the selection probabilities using 

he winner-takes-all strategy. Indeed, instead of updating the prob- 

bilities based on operators’ proportional credit, the APS method 

ncreases the selection probability of the best operator while de- 

reasing the selection probability of all other operators. This aims 

t quickly enhancing the application probability of the current best 

perator ( Fialho, 2010 ). Considering the trade-off between explo- 

ation and exploitation, this method keeps a minimal level of ex- 

loration through p min , which is fixed throughout the search pro- 

ess. 

In the SMS method, the balance between exploration and ex- 

loitation is controlled through a temperature parameter, τ . As 
16 
he temperature increases, the selection probabilities tend to be 

qual for all operators. While decreasing the temperature leads to 

 larger difference between selection probabilities. In an extreme 

iewpoint, when the temperature goes to zero, SMS becomes a 

urely exploitation-based method where only the best operator is 

elected. The UCB-MABS method also makes a trade-off between 

he exploration and exploitation abilities of a MH by keeping a 

inimum selection probability for each operator to be selected 

hrough G 

√ 

log 
∑ K 

j=1 n j,t 
n i,t 

, where G is a scaling factor to balance the 

rade-off. Similarly, the EGS method controls the trade-off between 

xploration and exploitation using the predefined parameter ε. In- 

reasing ε increases the exploration ability of the algorithm by 

iving a chance to the other operators to be selected, while de- 

reasing ε favors the selection of the best operator. Accordingly, 

hen ε = 1 , the EGS method becomes a purely exploration-based 

ethod. Finally, the HS method uses a heuristic rule to select op- 

rators. For instance, the rule could be a tabu list of operators that 

xcludes successful operators from being selected during a certain 

umber of iterations. The size of the tabu list makes a balance be- 

ween exploration and exploitation. As the tabu size increases, the 

uccessful operators remain longer in the tabu list, giving a chance 

o other operators to be selected, which leads the method toward 

xploration. 

Table 7 indicates that AOS is mostly applied to EAs (e.g., GA and 

A) to select the mutational and crossover operators. The reason 

ay rely on the popularity of EAs for solving COPs and the avail- 

bility of a variety of problem-specific mutational and crossover 

perators, which needs to be carefully selected during the search 

rocess since the performance of EAs is highly affected by its op- 

rators. In the meanwhile, AOS is also applied to select the local 

earch operators in ILS and VNS. 

.1.2. Discussion & future research directions 

In this section, first, a guideline is provided for researchers on 

hen to use AOS, and the fundamental requirements of using AOS 

re identified. Next, challenges and future research directions are 

iscussed. 

There is a rise in the number and variety of problem-specific 

perators (heuristics) for efficiently solving optimization problems. 

electing and applying these operators within a MH requires much 

xpertise in the domain. That is especially the case for COPs with 

lenty of proposed problem-specific operators where the classi- 

al operators are not as competent as problem-specific ones. In- 

eed, for COPs with standard representations (e.g., permutation- 

ased representations), users can make the use of classical non- 

pecialized operators, which does not necessarily require much ex- 

ertise. However, for COPs out of this standard framework, one 

ust have knowledge over the problem-specific operators to ef- 

ciently select the operators. This issue highlights the necessity of 

n automatic approach to select the most appropriate operator(s) 

ased on their performance without having an expertise in the do- 

ain. In this way, even inexperienced users are able to select ap- 

ropriate operators for solving COPs. In addition, AOS is most use- 

ul when dealing with several competitive state-of-the-art opera- 

ors for solving a COP such that none of them can be preferred 

ver the others a priori, and choosing the best operator exhaus- 

ively is computationally expensive. In this condition, there is a 

eed for automatic operator selection. 

There are a set of specific requirements for the QLCA method as 

he most common RL-based method used in AOS. Before applying 

he QLCA method in AOS, one needs to define the set of possible 

tates and actions. In defining the states, the following precondi- 

ions should be checked: 
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• The states should be completely descriptive of the problem sta- 

tus to allow selecting the correct action. There are three ways 

to define the states. The states could be 1) search-dependent 

that reflect the properties of the search process such as the 

number of non-improving iterations, 2) problem-dependent 

that reflect the properties of the problem through generic fea- 

tures, or 3) instance-dependent that reflect the properties of 

the problem instance such as the number of bins in a bin pack- 

ing problem ( Wauters et al., 2013 ). 
• The states should be defined in such a way that do not grow 

exponentially and allow the algorithm to visit each state-action 

pair many times. This is one of the main conditions of QLCA 

method convergence. For instance, if the number of states 

grows exponentially with the size of the problem, the algorithm 

might need to be executed more times to satisfy the conver- 

gence condition. 

The integration of ML techniques into AOS has led to an im- 

rovement in terms of both solution quality and even computa- 

ional time. Using advanced ML techniques in AOS such as QLCA 

 Ahmadi, Goldengorin, Süer, & Mosadegh, 2018; Mosadegh et al., 

020; Zhao, Zhang, Cao, & Tang, 2021 ) and LACA ( Gunawan et al.,

018 ) has brought significant improvements compared to the non- 

earning version of MHs. Besides, even new best-known solutions 

ave been obtained for certain COPs ( Ahmadi et al., 2018; Gu- 

awan et al., 2018 ). More interestingly, such integration has been 

eported to be more efficient as the size of the problem instances 

ncreases, and the proposed MHs have shown more stable behav- 

or when solving larger COP instances ( dos Santos et al., 2014; Zhao 

t al., 2021 ). 

Apart from the advantages that AOS brings into application, a 

et of important challenges arises in this regard. The first challenge 

s related to the computational overhead of learning in the MHs. 

lthough AOS gives the user the flexibility to adapt the MH’s be- 

avior to the characteristics of the search space by selecting its op- 

rators during the search process, achieving such flexibility adds an 

xtra computational overhead. Keeping track of the performance of 

he operators during the search process, assigning credits to them, 

nd updating their selection probabilities all impose an extra com- 

utational overhead. This overhead can be compensated by an op- 

imal design of the AOS mechanism wherein the MH converges 

ooner to the (near-) optimal solution, and consequently the saved 

omputational time compensates the extra overhead. 

Another challenge is related to the tuning of the parameters of 

OS. Most credit assignment and selection methods introduce new 

arameters that need to be tuned before applying AOS. Tuning the 

alues of these parameters can significantly affect the performance 

f AOS; thus they need to be carefully tuned. For example, in the 

LCA method, there are two new parameters, the learning rate ( α) 

nd the discount factor ( γ ). The former controls the ratio of ac- 

epting the newly learned information while the latter controls 

he impact of the future reward. Higher levels of α tend to the 

eplacement of the old information by new information. On the 

ther hand, lower values of α emphasize on the existing informa- 

ion. Furthermore, as γ increases, more emphasis is given to future 

eward compared to the immediate reward. 

This challenge becomes more critical when tuning a set of pa- 

ameters responsible for making a balance between the exploration 

nd exploitation abilities of MHs since they directly control the 

ehavior of MHs and influence the performance of AOS. One way 

o overcome this challenge is to use the parameter setting meth- 

ds explained in Section 8 , wherein the parameters of the MHs 

re tuned offline or controlled in an online manner. In almost all 

apers so far, these parameters are considered fixed during the 

earch process, while they can be dynamically adjusted based on 

he characteristics of the search space. Accordingly, employing an 
17 
nline parameter control method (see Section 8 ) within AOS can 

e a promising future research direction. 

Another challenge in AOS is related to the number of operators 

nvolved in AOS. Increasing the number of operators may reduce 

he performance of AOS. As the number of operators increases, 

ore effort is required to perform AOS, and consequently a higher 

evel of overhead is imposed on AOS. In addition, the performance 

f AOS may degrade if some operators do not perform well, and 

hey will be selected fewer and fewer in the long term. The pres- 

nce of such operators increases the computational overhead with 

o significant gain. One way to overcome this challenge is to use 

daptive Operator Management (AOM) that aims to manage oper- 

tors during the search process by excluding inefficient operators 

nd including other operators in AOS ( Maturana et al., 2011 ). The 

se of AOM in AOS could be further investigated as a future re- 

earch direction. 

Another promising research direction could be employing AOS 

n multi-objective COPs where several objectives are evaluated si- 

ultaneously. An issue in this regard is how to assign a reward 

o an operator that improves one objective function but degrades 

he other objectives. In addition, integrating multiple rewards into 

 single credit value to be assigned to each operator is another 

ssue to be addressed. One way to cope with these issues could 

e incorporating the crowding distance as well as the rank of the 

on-dominated fronts to calculate the reward/credit. 

.2. Learnable evolution model 

Darwinian-type EAs (e.g., GA) are inspired from the principles 

f Darwin’s theory of evolution. They apply usual genetic opera- 

ors like mutation, crossover, and selection to generate new popu- 

ations. These semi-random operators, which govern the evolution 

rocess, do not consider the experiences of individual solutions, 

he experience of an entire population, or a collection of popu- 

ations. Therefore, new solutions are generated through a parallel 

rial-and-error process, so the lessons learned from the past gen- 

rations are not used in these types of MHs. To overcome some 

f these inefficiencies, a new class of EAs has been proposed as 

earnable Evolution Models (LEMs) ( Michalski, 20 0 0 ). In opposition 

o Darwinian-type EAs that contain a Darwinian evolution mode, 

EM contains a learning mode wherein ML techniques are em- 

loyed to generate new populations. In the learning mode, a learn- 

ng system seeks reasons (rules) by particular ML techniques (e.g., 

Q18 & AQ21 rule learning, C4.5 decision tree, etc.) on why certain 

olutions in a population (or a collection of past populations) are 

uperior to others in performing a designated class of tasks. 

Specifically, the learning mode of LEM consists of two processes 

 Michalski, 20 0 0; Wojtusiak, Warden, & Herzog, 2011 ): 

• Hypothesis generation – It determines a set of hypotheses that 

characterizes the differences between high-fitness and low- 

fitness solutions in recent or previous populations. 
• Hypothesis instantiation – It generates new solutions on the 

basis of the learned hypotheses obtained in the hypothesis gen- 

eration process. The learning mode thus produces new solu- 

tions not through semi-random Darwinian-type operations, but 

through a deliberate reasoning process involving the generation 

and instantiation of hypotheses about populations of solutions. 

The new populations are normally generated by injecting the 

extracted rules (i.e., rule injection ) into the new solutions. 

For the hypothesis generation process, two groups (sets) of in- 

ividuals are selected from the population at each iteration: the 

igh performance group , briefly H-group , and the low performance 

roup , briefly L-group , based on the values of the fitness function. 

he collection of H-group and L-group solutions can be a subset 

f the population, or they can encompass the whole population 
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Table 8 

Classification of papers studying LEM. 

Ref. Hypothesis gen. Hypothesis inst. Group frmt. uni/duoLEM MH COP 

Kaufman and Michalski (2000) ; AQ18 Sequence injection FBF duoLEM EA HEDP 

Domanski et al. (2004) 

Jourdan et al. (2005) C4.5 Rule injection FBF uniLEM EA WDSDP 

Wojtusiak et al. (2011) AQ21 Rule injection FBF duoLEM GA VRP 

Wojtusiak et al. (2012) AQ21 Rule injection FBF duoLEM MA VRP 

Wu and Tseng (2017) Edge-intersection Rule injection PBF duoLEM GA TSP 

Jung et al. (2018) C4.5 Rule injection FBF duoLEM HS WDSDP 

Moradi (2019) AQ18 Sequence injection FBF uniLEM EA VRP 
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 Michalski, 20 0 0 ). The H-group and L-group can be formed using

wo methods ( Michalski, 20 0 0 ): 

• Fitness-based formation (FBF) - In this method, the population 

is partitioned according to two fitness thresholds, high fitness 

threshold and low fitness threshold . These thresholds are pre- 

sented as a percentage and determine the high and low por- 

tions of the total fitness value range in the population. These 

portions are then used to form the H-group and L-group of so- 

lutions. Indeed, the solutions whose fitness value is not worse 

than the high fitness threshold% of the best fitness value in the 

population form H-group, and those whose fitness value is bet- 

ter than the low fitness threshold% of the worst fitness value 

in the population form L-group. When using fitness-based for- 

mation method, the size of the H-group and L-group will vary 

from population to population since it depends on the range of 

solutions’ fitness values at each iteration. 
• Population-based formation (PBF) - In this method, the H- 

group and L-group are formed according to two thresholds ex- 

pressed as the percentage of the number of solutions in the 

population. These thresholds are called high population thresh- 

old and low population threshold . The high population thresh- 

old% of the best solutions form H-group and the low population 

threshold% of the worst solutions form L-group. 

The above two methods can be applied to the entire population 

s a global approach or they can be applied to different subsets 

f the population as a local approach. The idea behind a local ap- 

roach is that different solutions of the population may carry dif- 

erent information, and there would be no global information that 

an characterize the whole population. 

Once H-group and L-group are formed, a ML technique is em- 

loyed to generate qualitative descriptions that discriminate be- 

ween these two groups ( Michalski, 20 0 0 ). The description of an

-group represents a hypothesis that the landscape covered by H- 

roup contains the solutions with higher fitness values compared 

o the landscape of L-group. Therefore, the H-group’s qualitative 

escription can be interpreted as the search direction toward the 

romising areas. LEMs account for such qualitative descriptions 

o guide the evolution process, rather than relying on semi-blind 

arwinian-type evolutionary operators. Such an intelligent evolu- 

ion in LEMs leads to the detection of the right directions for evo- 

ution; hence, making large improvements in the individuals’ fit- 

ess values. 

Two versions of LEM are introduced in the literature ( Michalski, 

0 0 0 ): the uniLEM and duoLEM . In uniLEM version, the evolution

rocess is solely conducted through the learning mode, while in 

uoLEM version both Darwinian and learning evolution processes 

re coupled. 

.2.1. Literature classification & analysis 

This section classifies and analyzes the relevant papers wherein 

EM has been used to solve COPs. Table 8 classifies the relevant 

tudies based on different characteristics related to the design and 
18 
mplementation of LEM including hypothesis generation , hypothe- 

is instantiation , group formation , uniLEM/duoLEM evolution version, 

he MH algorithm and the COP under study. 

A set of insights can be extracted from Table 8 . In terms of hy-

othesis generation , the learning mode of LEM can potentially em- 

loy different learning techniques that can generate descriptions 

iscriminating between classes of individuals in a population (i.e., 

-group versus L-group). If individuals are described by a vector 

f values (e.g., a permutation of a number of cities in TSP or a 

umber of jobs in FSP), the rule learning techniques such as AQ 

earners ( Domanski, Yashar, Kaufman, & Michalski, 2004; Kaufman 

 Michalski, 20 0 0; Moradi, 2019; Wojtusiak et al., 2011; 2012 ), de-

ision tree learners such as C4.5 ( Jourdan, Corne, Savic, & Walters, 

005; Jung, Kang, & Kim, 2018 ), or ANN can be utilized. It can be

tated from Table 8 that AQ learners, in which the learning sys- 

ems employ some form of AQ algorithms, are particularly suitable 

or implementing LEM. 

Regarding the hypothesis instantiation , it can be seen that the 

ajority of the studies have used a rule injection mechanism, 

herein H-group and L-group of individuals are investigated and 

heir strengths and weaknesses are described in terms of rules. 

aking TSP as an example, a partial sequence of cities that fre- 

uently appears in H-group individuals could be a rule, and such 

ules can be used to evolve the population by injecting frequent 

equences to create new solutions. However, due to the complexity 

f the COP at hand in terms of prior knowledge on the structure 

f the solutions and descriptive characteristics of H-group and L- 

roup of individuals, the learning program uses an abstract, rather 

han precise, specification of different individuals ( Jourdan et al., 

005; Jung et al., 2018 ). Consequently, the learned rules are also 

eferred to as an abstraction of individuals. The system is then 

ble to instantiate these abstract rules in many ways to generate 

ew solutions in further populations. The rule instantiation pro- 

ess must, however, follow the constraints of the COP at hand. 

.2.2. Discussion & future research directions 

This section identifies the challenges of implementing LEM for 

olving optimization problems, particularly COPs. Throughout the 

iscussion, future research directions are also elaborated. 

Considering the group formation in Table 8 , there is a require- 

ent for implementing LEM as well as an important challenge 

hen employing fitness-based formation to create H-group and L- 

roup. Indeed, the fundamental assumption underlying LEM is that 

here is a method for evaluating the performance of individuals in 

volving populations. Consequently the ability to determine the fit- 

ess value of an individual, or an approximation of this value, is 

 precondition for the LEM application. Therefore, LEM cannot be 

mplemented for COPs for which defining or even approximating 

he fitness function is not possible. 

A challenge related to the fitness-based formation that may 

appen in particular COPs is that in some evolutionary processes, 

he fitness function may not be constant throughout the entire 

rocess and change over time. It happens for particular COPs 

herein the parameters change in a piece-wise manner depend- 
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ng on the level of the decision variables. A change in the fitness 

unction may be gradual (i.e., fitness function drift) or abrupt (i.e., 

tness function shift) ( Michalski, 20 0 0 ). Indeed, if the fitness func-

ion is changing during the evolution process, some high-fitness 

ndividuals (i.e., H-group) in a previous population may become 

ow-fitness individuals (L-group) in a future population and vice 

ersa. 

One way to overcome this challenge is keeping a record of the 

-groups determined in past populations and not only the cur- 

ent population. Therefore, a set of past L-groups plus L-group in 

he current population become the actual L-group supplied to the 

earning mode. The number of past L-groups to be taken into con- 

ideration is controlled by a parameter. It is worth mentioning that 

here is no significant need to store past H-groups because the cur- 

ent H-group inherently contains the best individuals until now. 

enerally, the formation of H-group and L-group from the current 

opulation in the evolution process ignores the history of evolu- 

ion ( Michalski, 20 0 0 ). 

An issue that may happen when using population-based for- 

ation is the possibility of an intersection between H-group and 

-group. This issue should be resolved before hypothesis genera- 

ion. Simple methods can be used for handling this issue such as 

gnoring inconsistent solutions, including inconsistent solutions in 

-group or L-group, or employing statistical methods to solve the 

nconsistencies ( Michalski, 20 0 0 ). 

Regarding the way of coupling LEM and Darwinian evolution 

odes, there are research papers ( Domanski et al., 2004; Wu & 

seng, 2017 ) that place the learning mode before Darwinian Evo- 

ution mode. On the other hand, LEM can start with Darwinian 

volution mode ( Wojtusiak, Warden, & Herzog, 2012 ), and then 

he two modes can alternate until the LEM termination criterion 

s met. 

It has been regularly mentioned that involving discriminant de- 

criptions provided by ML techniques in EAs significantly acceler- 

tes the search process toward promising solutions. Such acceler- 

tions have been shown as frequent quantum leaps of the fitness 

unction that signify the discovery of the correct direction of the 

volution process. However, such an evolutionary acceleration im- 

oses a higher computational complexity on the search process. 

his extra complexity mostly depends on the ML technique used. 

herefore, employing efficient ML techniques and a parallel imple- 

entation of the AQ algorithm can reduce the complexity. Among 

hem, the latter can reduce the complexity from linear to logarith- 

ic. 

Although the initial results from employing LEM to solve COPs 

re promising, there are still plenty of unsolved questions that re- 

uire further research. The first attempt for future research direc- 

ion should be doing numerous systematic theoretical and experi- 

ental implementations of LEM to better understand the trade-off

etween LEM and Darwinian evolution modes. 

Among COPs, LEM has been mostly implemented on routing 

e.g., TSP, VRP) and design (e.g., HEDP, WDSDP) problems. There- 

ore, the second important future research direction for the inter- 

sted researchers is implementing LEM on other COPs to figure out 

he strengths, weaknesses, and limitations of both LEM and Dar- 

inian evolution modes and to identify the most appropriate areas 

or their application. 

.3. Neighbor generation 

After selecting the most appropriate operator in Section 7.1 , it is 

he time to generate the neighbors from the current solution(s) us- 

ng the selected operator(s). One naive way to generate neighbors 

s to generate all possible neighbors and select the ones with the 

est OFV. Another way is to generate neighbors randomly. How- 

ver, considering the computational time and the goal to lead the 
19 
earch process towards promising areas of the search space, both 

trategies might not be very efficient. To be as efficient as possi- 

le, ML techniques can be used to leverage the generation of good 

eighbors by extracting knowledge from the generated good solu- 

ions so far. 

Indeed, using ML techniques, we can extract the common char- 

cteristics that are often present in good solutions during or before 

he search, and use this knowledge to generate new solutions with 

he same characteristics by fixing or prohibiting specific solution 

haracteristics. In this way, we can lead the search towards promis- 

ng areas of the search space and accelerate the process of finding 

 good solution. Usually, this knowledge is in the form of a set 

f rules or patterns that are discovered in good solutions ( Arnold, 

antana, Sörensen, & Vidal, 2021 ). This process is composed of two 

hases: knowledge extraction and knowledge injection ( Arnold et al., 

021 ). In knowledge extraction, the common characteristics found 

n good solutions are extracted. Then, in knowledge injection, the 

xtracted knowledge is used to generate the neighbors. When the 

nowledge appears as a set of patterns, the most frequent patterns 

f good solutions are injected into the new solutions to generate 

he neighbors. 

The knowledge extraction phase can occur either offline or on- 

ine . In offline extraction, knowledge is extracted from a set of 

raining instances with the aim to generate good solutions for new 

nstances. However, in online extraction, knowledge is extracted 

rom good solutions obtained during the search process, while 

olving the problem instance. The most common ML techniques in 

eighbor generation are Apriori algorithms for ARs, RL, and DT. 

.3.1. Literature classification & analysis 

Table 9 classifies the papers using ML techniques for neigh- 

or generation based on different characteristics such as learning 

echanism, the ML technique used to extract knowledge, the MH 

lgorithm that conducts the search process, the operator to gen- 

rate new neighborhood, the COP under study, and the size of the 

raining set for studies that have used offline knowledge extraction. 

As can be seen in Table 9 , almost all reviewed papers have used 

he online manner to extract knowledge in the form of patterns. 

ndeed, when dealing with a new instance with unknown charac- 

eristics, the most efficient way to extract patterns is online. An 

dvantage of online pattern extraction is avoiding the misleading 

atterns extracted in an offline manner that may not correctly rep- 

esent the properties of the good solutions of the new problem 

nstance; however, the computational overhead of online pattern 

xtraction should not be ignored. 

.3.2. Discussion & future research directions 

In this section, the requirements and challenges of applying ML 

echniques for neighbor generation are discussed. Then, some di- 

ections for future research are presented. 

One of the most important requirements of using ARs is data 

vailability . In fact, when extracting patterns, it is indispensable to 

ave a sufficient pool of good solutions, since the accuracy of the 

xtracted patterns directly depends on the availability of sufficient 

ata. The higher the availability of data, the higher the precision 

nd usefulness of the extracted patterns. 

The first challenge of neighbor generation is to determine the 

tage of the search process at which the knowledge should be 

xtracted to generate new neighbors. This challenge is twofold; 

rst, in the beginning of the search process, the improvements 

re larger, and the set of good solutions frequently change, and no 

recise pattern can be extracted from the pool of good solutions. 

herefore, the knowledge should be extracted after some iterations 

re passed. Second, if the knowledge is injected into the neighbor 

eneration process in the earlier stages of the search process, it 
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Table 9 

Classification of papers studying neighbor generation. 

Ref. Learning ML tech. MH Operator COP Size 

Santos, Ochi, Marinho, and Drummond (2006) Online Apriori GA XRO VRP –

Barbalho, Rosseti, Martins, and Plastino (2013) ; Ribeiro, Plastino, and Martins (2006) Online Apriori GRASP RRO SPP –

Zhou et al. (2016) Online RL LS RRO GCP –

Arnold et al. (2021) Online Apriori GA, GLS LSO VRP –

Thevenin and Zufferey (2019) Online Apriori VNS LSO SMSP –

Sadeg et al. (2019) Online Apriori ABC LSO MAX-SAT –

Arnold and Sörensen (2019) Offline DT, SVM, RF GLS LSO VRP 192,000 

Fairee, Khompatraporn, Prom-on, and Sirinaovakul (2019) Online RL ABC LSO TSP –

Wang, Pan, Li, and Yin (2020a) Online RL LS RRO WIDP –

Zhou, Hao, and Duval (2020) Online Apriori EAs MPO QAP –

Al-Duoli, Rabadi, Seck, and Handley (2018) Online Apriori GRASP LSO VRP –
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revents the MH to explore different areas of the search space, and 

t may cause a premature convergence to a local optimum. 

The second challenge is related to the frequency at which 

he extracted pattern should be updated and injected to create 

ew neighbors. Indeed, one may identify the patterns once and 

se them for neighbor generation throughout the search process 

r update the patterns frequently based on the characteristics of 

he newest good solutions. Pattern extraction may be a time- 

onsuming process which increases the computational cost of the 

earch process. Therefore, there is a trade-off between the accuracy 

f patterns based on the latest information from the search process 

nd the computational overhead of pattern extraction process. 

Another challenge arises when several pieces of patterns are 

vailable in good solutions and there might be plenty of possibil- 

ties to inject them into new solutions (i.e., separate or combined 

njection of patterns). There is no guarantee that the combination 

f pieces of patterns also provides good solutions ( Arnold et al., 

021 ). In other words, although several single patterns may appear 

n a large number of good solutions, their combination does not 

ecessarily generate better or even good solutions. For instance, 

n permutation-based representations, edges A − B and C − D may 

eparately appear in good solutions, however; there is no guaran- 

ee that edges A − B and C − D simultaneously lead to a good solu- 

ion. 

Along with all the previously mentioned challenges, last but not 

east is making decision about the ratio by which new solutions 

re generated using the extracted knowledge. The level of such ra- 

io affects the behavior of the MH in terms of its exploration and 

xploitation abilities. If almost all solutions are generated based 

n the previous knowledge, the MH tends to mostly exploit the 

urrently observed area. On the other hand, if a small ratio of so- 

utions are generated based on the previous knowledge, the algo- 

ithm has an opportunity to explore new areas of the search space. 

herefore, the user has to consider the exploration and exploita- 

ion abilities of the algorithm while deciding about the ratio of the 

olutions to generate based on the extracted knowledge. 

Considering Table 9 , most of the studies that used ARs attempt 

o identify the characteristics of the good solutions. One research 

irection could be using ARs to identify the characteristics of bad 

olutions which have to be removed from the new solutions. Then, 

his knowledge could be used merely to avoid bad solutions, or it 

ould be used besides the knowledge obtained from good solutions 

o complement the patterns of good solutions. 

In addition, most of the papers in the literature have used the 

nowledge of good solutions to exploit the most promising areas 

f the search space, while the exploration aspect of the search pro- 

ess should be also taken into consideration. One way of doing that 

s extracting the rare patterns from the visited solutions and in- 

ecting them into new solutions to generate solutions far from the 

olutions visited so far. 
20 
. Parameter setting 

The success of any MH significantly depends on the values of 

ts parameters ( Talbi, 2009 ). As the parameters control the behav- 

or of the algorithm during the search process, the values of pa- 

ameters should be properly set to obtain the highest performance. 

lthough there are several suggestions on the values of parame- 

ers for a similar group of problem instances in the literature, they 

re not necessarily the most appropriate settings when solving the 

roblem instances at hand ( Wolpert & Macready, 1997 ). Indeed, 

arameter setting is not a onetime task, and researchers need to 

et the algorithm’s parameters whenever they solve new problem 

nstances ( Huang, Li, & Yao, 2019 ). Parameter setting, also known 

s algorithm configuration ( Hoos, 2011 ), is divided into two cate- 

ories, parameter tuning and parameter control ( Eiben, Hinterding, 

 Michalewicz, 1999 ). 

• Parameter tuning – Also known as offline parameter setting, 

identifies appropriate parameter levels before employing the al- 

gorithm to solve the problem instances at hand. In this case, 

the levels of parameters remain unchanged during the exe- 

cution of the algorithm. Parameter tuning can be done using 

different methods such as brute force experiments ( Phan, Ellis, 

Barca, & Dorin, 2019 ), Design of Experiments (DOE) ( Talbi, 2009 ), 

racing procedures ( Huang et al., 2019 ), and meta-optimization 

( Talbi, 2009 ). 
• Parameter control – Also known as online parameter setting, 

focuses on adjusting the levels of parameters of an algorithm 

during its execution, rather than using initially fine-tuned pa- 

rameters that remain unchanged during the whole execution. 

Parameter control methods have been developed based on the 

observation that tuning the parameters does not necessarily 

guarantee the optimal performance of a MH, since different 

settings of a parameter may be appropriate at different stages 

of the search process ( Aleti, 2012 ). The reason is attributed to 

the non-stationary search space of optimization problems that 

results in a dynamic behavior of MHs, which should evolve 

regularly from a global search mode, requiring parameter val- 

ues suited for the exploration of the search space, to a local 

search mode, requiring parameter values suitable for exploit- 

ing the neighborhood. Parameter control can be performed in 

three manners ( Karafotias, Hoogendoorn, & Eiben, 2014 ); deter- 

ministic manner in which the levels of parameters are adjusted 

using given schedules (e.g., pre-defined iterations) without no 

feedback from the search process, adaptive manner in which 

the levels of parameters are adjusted using a feedback from 

the search process, where a credit is assigned to the parame- 

ters levels based on their performance, and self-adaptive man- 

ner in which the parameters levels are encoded into solution 
chromosomes and evolved during the search process. 
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Table 10 

Classification of papers studying parameter setting. 

Ref. Tuning/ control ML tech. Credit ast. Selection MH Parameter COP Size 

Hong, Wang, Lin, and Lee (2002) Control RL SCA MCS GA Crossover & mutation rates KP –

Ramos et al. (2005) Tuning LogR – – EA Population size TSP 25 

Maturana and Riff (2007) Control RL SCA MCS GA Crossover & mutation rates JSP –

Caserta and Rico (2009) Tuning LR – – GH Population size CLSP 4992 

Zennaki and Ech-Cherif (2010) Tuning SVM – – TS Intensification rate TSP, VRP 25000 

Lessmann et al. (2011) Tuning SVM, LR – – PSO Learning rates WDSDP 5284 

Liao and Ting (2012) Control RL SCA MCS EA Mutation rate PDP –

Aleti, Moser, Meedeniya, and Grunske (2014) Control LR – – EA Crossover & mutation rates QAP –

André and Parpinelli (2014) Control RL SCA PMS DE Perturbation & Mutation rates KP –

Segredo et al. (2016) Control RL SCA MCS, PMS MA Mutation rate AP –

Benlic et al. (2017) Control RL QLCA SMS BLS Number & probability of perturbation VSP –

Chen, Yang, Li, and Wang (2020) Control RL QLCA EGS GA Crossover & mutation rates FSP –

Öztop, Tasgetiren, Kandiller, and Pan (2020) Control RL QLCA EGS VNS Acceptance & QL parameters FSP –
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ML techniques can be employed in both parameter tuning and 

arameter control. In parameter tuning, ML techniques such as 

ogR ( Ramos, Goldbarg, Goldbarg, & Neto, 2005 ), LR ( Caserta & 

ico, 2009 ), SVM ( Lessmann, Caserta, & Arango, 2011 ), and ANN 

 Dobslaw, 2010 ) are used to predict the performance of a given 

et of parameters based on a set of training instances. In param- 

ter control, ML techniques can be involved in adaptive parame- 

er control to help control the parameters levels by using feedback 

nformation on the performance of the parameters levels during 

he search process. The integration of ML techniques into adaptive 

arameter control is similar to that of AOS ( Section 7.1 ), where 

 feedback is used to adapt the parameters levels to the search 

pace. It similarly involves four main steps (except Move Accep- 

ance step): 1) performance criteria identification, 2) reward com- 

utation, 3) credit assignment, and 4) selection which have been 

xplained in detail in Section 7.1 . 

.1. Literature classification & analysis 

This section aims at classifying, reviewing, and analyzing the 

tudies on the use of ML techniques in the parameter setting of 

Hs. In this regard, Table 10 classifies the papers based on dif- 

erent characteristics including parameter tuning/control , the em- 

loyed ML technique , credit assignment and selection methods, the 

H for which the parameters are set, the parameters to set, the 

OP under study, and finally the size of the training set for the pa-

ers that have studied parameter tuning . 

As can be seen from Table 10 , parameter control has attracted 

uch more attention compared to parameter tuning when solving 

OPs. Indeed, the main reason is that fixed values of the param- 

ters do not necessarily guarantee the best performance of a MH 

uring the whole search process. The underlying cause is the non- 

tationarity of the search space as explained at the beginning of 

his section. From a general point of view, the performance of a 

H significantly depends on its capability to explore and exploit 

he promising areas of the search space, and the exploration and 

xploitation abilities of a MH depend on the levels of its param- 

ters. Taking the GA as an example, the crossover and mutation 

ates should change depending on the performance of the algo- 

ithm and the properties of the search space. For example, once a 

romising solution is explored, that solution should be exploited 

arefully. Therefore, the mutation and crossover rates should be 

ecreased and increased, respectively. On the other hand, when the 

lgorithm gets stuck in local optima, the mutation rate can be in- 

reased to help the solution to escape from the local optima. 

Based on Table 10 , ML techniques based on RL have been 

ostly employed when controlling the parameters during the 

earch process. The underlying reason is that a RL agent iteratively 

earns from interactions with its environment to take the actions 
21 
hat would maximize the reward. In the context of parameter set- 

ing, a list of different configurations can be defined as a set of ac- 

ions and each time a configuration set provides better solutions, a 

eward is assigned to that set of configurations. Indeed, at the be- 

inning of the search process, all possible configuration sets have 

he same probability to be selected. During the search process, 

hese probabilities can change according to their success in creat- 

ng better solutions ( André & Parpinelli, 2014 ). It has been reported 

n the literature that in the earlier stages of the search process, 

he selection probability of each configuration set changes more 

ften compared to the latter stages of the search process. It has 

een explained by the diversity loss that occurs during the search 

rocess ( André & Parpinelli, 2014; Benlic et al., 2017; Liao & Ting, 

012; Segredo, Paechter, Hart, & González-Vila, 2016 ). In addition, 

here is evidence that the levels of exploration representative pa- 

ameters (e.g., mutation rate in GA and DE, size of Tabu list in TS) 

hange more frequently at the earlier stages of the search process 

hen the MH is exploring the search space. On the other hand, 

he exploitation representative parameters get more attention in 

he latter stages of the search process when the MH needs to ex- 

loit promising solutions found so far ( André & Parpinelli, 2014; 

enlic et al., 2017; Liao & Ting, 2012; Zennaki & Ech-Cherif, 2010 ). 

Another insight from Table 10 is that most of the papers have 

one parameter setting for population-based MHs. Population- 

ased MHs possess both exploration and exploitation representa- 

ive parameters, and a balance between these abilities should be 

ell established. If not, the search process either gets stuck in lo- 

al optima or performs a random search. 

.2. Discussion & future research directions 

The first challenge when performing parameter setting is to de- 

ide whether to tune or control the parameters. Each mode of set- 

ing has its own advantages/disadvantages. There are experimental 

vidence revealing that the optimal parameter settings are differ- 

nt not only for different problem instances, but also for differ- 

nt stages of the search process of the same problem instance. In 

his situation, it is recommended to perform parameter control de- 

pite the computational overhead imposed on the search process. 

 big challenge related to the parameter control is the trade-off be- 

ween exploration and exploitation to select the current best con- 

guration(s) or search for new good ones. Once the configuration 

s changed during the search process, the new configuration should 

ork for a certain number of iterations so that its performance can 

e evaluated. An extra parameter should be then defined to control 

hen the configuration should be changed (i.e., the rate of config- 

ration change). The rate of configuration change itself is another 

arameter that needs to be tuned or controlled during the search 

rocess. Therefore, the parameter control itself introduces a set of 
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ther parameters (i.e., parameters of the parameter control mech- 

nism) that need to be tuned or controlled, which results in the 

ncrease of the complexity of the parameter control. 

Parameter control faces another challenge when dealing with 

ontinuous parameters, where an infinite number of values exist 

or each parameter. One way to deal with this challenge is con- 

idering the parameter setting as a separate optimization problem 

nd the parameter levels as decision variables to be optimized. The 

ther way is developing a self-adaptive parameter control mecha- 

ism. Another way studied in the literature is subdividing the lev- 

ls of parameters into feasible intervals ( Aleti, 2012 ). In this way, 

he interval borders are normally fixed and not manipulated by the 

earch process. As a result, the number and the size of the inter- 

als have to be determined by the user a priori that may jeopar- 

ize the accuracy of the interval as well as the efficiency of MHs. 

f the levels of a parameter are divided into several narrow inter- 

als, the accuracy of the intervals would be higher, while the com- 

utational effort of selecting among the intervals significantly in- 

reases. Accordingly, there is a risk to find good intervals late, or 

here might be some intervals that are not selected at all. If the 

ntervals are wide, different parameter values belonging to a single 

nterval may lead to different performance of the MH, as wide in- 

ervals may encompass smaller intervals that behave differently. As 

 result, no unique performance behavior can be attributed to such 

ide intervals. To cope with this issue, the adaptive range parame- 

er control method ( Aleti, Moser, & Mostaghim, 2012 ) adapts inter- 

als during the search process, and entropy-based adaptive range 

arameter control method ( Aleti & Moser, 2013 ) clusters parame- 

er values based on their performance. However, more research is 

ndeed required to understand the impact of small changes in the 

alues of continuous parameters on the performance of MHs. 

Considering Table 10 , one future research direction is applying 

arameter setting methods to other MHs such as single-solution 

ased MHs. A first try can be developing a parameter setting 

echanism to control the parameters of SA such as the cooling 

emperature, which is always a challenging problem for practition- 

rs. Additionally, further investigation could be done on controlling 

arameters that have received little attention so far. 

Another research direction that should be put in priority is im- 

lementing parameter setting on multi-objective COPs using ML 

echniques. It should be noted that one of the challenges of adap- 

ive parameter control in multi-objective optimization problems is 

ow to define the feedback as a single value such that it would 

e representative of the quality of a parameter value over multiple 

bjective functions. 

. Cooperation 

Different MHs with particular strengths and weaknesses work- 

ng on the same problem instance produce different results. In this 

ituation, using a framework enabling the use of different MHs in 

 cooperative way could result in an improved search process. The 

ain motivation of developing cooperative MHs is to take advan- 

age of the strengths of different MHs in one framework, to bal- 

nce exploration and exploitation, and to direct the search towards 

romising regions of the search space ( Martin, Ouelhadj, Beullens, 

 Ozcan, 2011 ). The interest in using such frameworks for solv- 

ng COPs has risen due to their successful results ( Martin et al., 

016; Talbi, 2002 ). The cooperation framework can be modeled as 

 multi-agent system in which the search process is performed by 

 set of agents that exchange information about states, models, en- 

ire sub-problems, solutions, or other search space characteristics 

 Blum & Roli, 2003 ). 

In multi-agent based cooperative MHs, each agent could be a 

H or a MH’s component such as an operator, a search strategy, 

 solution, etc. that tries to solve the problem, while communicat- 
22 
ng with other agents ( Silva, de Souza, Souza, & de Franca Filho, 

018 ). The cooperation could happen either at the algorithm level 

between several MHs), wherein different MHs with specific char- 

cteristics cooperate to solve a COP, or it can happen at the op- 

rator level (inside a MH), wherein different operators cooperate 

hen discovering different regions of the search space. The former 

elongs to the category of high-level integration of ML techniques 

nto MHs while the latter falls in the low-level category of integra- 

ion. 

ML techniques can help in designing intelligent cooperation 

rameworks by extracting the knowledge from the resolution of 

he problem instances by different agents (MHs). This knowledge 

s then incorporated into the framework that enables the frame- 

ork to continuously adapt itself to the search space. In this way, 

L techniques can improve the overall performance of the coop- 

ration framework. The integration of ML techniques into a coop- 

ration framework can happen in two learning levels: inter-agent 

nd intra-agent levels. The former is to adapt the behavior of the 

verall framework to the search space, while the latter is to adapt 

he behavior of each agent to the search space. 

Fig. 5 illustrates the process of cooperation between agents. 

gents can cooperate sequentially or in parallel ( Talbi, 2002 ). The 

ooperation between the agents can be synchronous , where the 

gents work in a parallel way and none of them waits for the re- 

ults from other agents, or asynchronous , otherwise ( Martin et al., 

016 ). As can be seen in Fig. 5 , the exchange of information be-

ween the agents is direct (many-to-many), where each agent is 

llowed to communicate with any other agent and indirect , where 

gents are only allowed to use the information provided in a com- 

on pool ( Martin et al., 2016 ). While cooperating, the agents can 

hare partial or complete solutions to proceed the search process. 

.1. Literature classification & analysis 

Table 11 classifies the papers studying cooperation for COPs 

ased on different characteristics such as cooperation level , paral- 

el/sequential mode of cooperation, learning level , the employed ML 

echnique , direct/indirect information sharing, solution sharing type 

etween the agents, the MH algorithms participated in the cooper- 

tion, and finally the COP under study. To the best of our knowl- 

dge, Table 11 reviews the most relevant papers, including the 

ost recent papers in the literature that study the cooperation be- 

ween MHs (or MHs’ components) to solve COPs with the help of 

L techniques. 
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Table 11 

Classification of papers studying cooperation. 

Ref. Coop. level Parl./ Seq. Learning ML tech. (In)Direct Sharing MH COP 

Le Bouthillier, Crainic, and Kropf (2005) Alg. Parl. Inter Apriori Ind. Part. TS VRP 

Meignan, Créput, and Koukam (2008, 2009) ; 

Meignan, Koukam, and Créput (2010) 

Alg. Parl. Intra RL Di. Comp. EA VRP, FLP 

Cadenas, Garrido, and Muñoz (2009) Alg. Parl. Inter DT Ind. Comp. GA , SA , TS KP 

Barbucha (2010a) Opr. Parl. Inter RL Ind. Comp. LS VRP 

Silva, de Souza, Souza, and de Oliveira (2015) Alg. Parl. Intra LA Ind. Comp. ILS VRP 

Lotfi and Acan (2016) Alg. Parl. Inter LA Ind. Comp. GA, DE, SA, ACO, GD, TS MSP 

Martin et al. (2016) Alg. Parl. Inter Apriori Di. Part. MHs FSP, VRP 

Sghir, Hao, Jaafar, and Ghédira (2015) ; Sghir, 

Jaafar, and Ghédira (2018) 

Opr. Seq. Inter RL Ind. Comp. GA, LS QAP, KP, GCP, WDP 

Wang and Tang (2017) Alg. Seq. Inter k -means Di. Comp. MA, LS FSP 

Silva, de Souza, Souza, and Bazzan (2019) Alg. Parl. Intra QL Ind. Comp. ILS VRP, PMSP 

Karimi-Mamaghan et al. (2020a) Alg. Seq. Inter k -means Di. Comp. DE, ILS IPP 

Karimi-Mamaghan et al. (2020b) Alg. Seq. Inter k -means Di. Comp. GA, ILS HLP 
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As can be seen in Table 11 , the majority of the studies applied

ooperation in a parallel manner. The main motivation has been 

n attempt to reduce the computational time of executing sev- 

ral MHs one after another (i.e., sequential cooperation). In Par- 

llelism, the MHs are executed simultaneously, and consequently, 

t results in the reduction of the search process time. Indeed, the 

ombination of cooperation and parallelism allows self-sufficient 

lgorithms to run simultaneously while exchanging information 

bout the search ( Silva et al., 2018 ). This combination has attracted 

ncreasing attention in optimization, especially for solving COPs, 

ince they have shown good results on different COPs ( Karimi- 

amaghan, Mohammadi, Jula, Pirayesh, & Ahmadi, 2020a; Martin 

t al., 2016 ). Moreover, as mentioned by Talbi (2002) and Cotta, 

albi, and Alba (2005) , the best results obtained for many opti- 

ization problems are achieved by the cooperative algorithms. In 

ddition, there is greater access to parallel computing resources, 

hich provides new possibilities for developing these techniques 

 Silva et al., 2018 ). 

Regarding synchronous or asynchronous cooperation, the major- 

ty of the studies focus on the asynchronous way of cooperation. 

ndeed, in most of the times when MHs have been executed 

n parallel, their cooperation has been asynchronous, wherein 

one of MHs wait for the results of the others. Asynchronous 

ooperation carries fewer operational challenges and gives the 

pportunity to modify the cooperation framework easily. Using 

synchronous cooperation, MHs can be added or dropped easily 

ithout any change to the overall framework. On the other hand, 

 synchronous cooperation faces more challenges. In synchronous 

ooperation, the agents must coordinate their actions in time. In 

ther words, the agents are activated only when all agents are 

eady to act ( Barbucha, 2010b ). Indeed, although the agents work 

ndependently, the activation times of the agents depend on each 

ther. Accordingly, there is a need to determine a synchronization 

oint at which the agents announce their readiness and start to 

ct. Hence, the time dependency of the agents may cause some 

gents to wait and consequently some processors stay idle for a 

eriod of time. 

According to Table 11 , the agents of a cooperative system could 

e MHs or MHs’ components. The cooperation could happen ei- 

her at an algorithm level or operator level . The difference between 

he cooperation at the operator level and AOS ( Section 7.1 ) relies 

n the fact that in AOS, operators are selected one after another 

ased on their history of performance, while in the cooperation 

ramework, the operators share information while searching for so- 

utions cooperatively. 

The main ML techniques used in cooperative MHs are RL and 

priori algorithms for ARs. RL has been used to help the system 

dapt its behavior based on the experience it gains throughout the 
r

23 
earch process. RL is used in two levels, within the agents (intra- 

gent level) to adapt their behavior to the characteristics of the 

earch space during the search process by modifying their compo- 

ents (selecting the operators) and/or in a higher level (inter-agent 

evel) to adapt the application of the agents based on their perfor- 

ance compared to other agents. On the other hand, ARs are used 

o identify the common characteristics of good solutions. Then, this 

nowledge is shared among the agents in the form of partial solu- 

ions, which allows each agent to generate new solutions based on 

he identified patterns and guide the search toward promising re- 

ions. 

.2. Discussion & future research directions 

This section aims at introducing the requirements and potential 

hallenges when designing a cooperation framework of MHs. Next, 

 set of future research directions are provided. 

The design and implementation of efficient cooperative MHs 

equire sufficient apriori knowledge about different MHs. To 

ake advantage of the strengths of different algorithms, which 

s the main motivation of developing cooperative algorithms, 

ne needs to be aware of a broad spectrum of algorithms and 

ave knowledge on their strengths and weaknesses. For instance, 

opulation-based MHs are powerful in exploration. On the other 

and, single-solution based MHs are strong in exploitation. As can 

e seen in Table 11 , studies with heterogeneous algorithms have 

ncorporated both population-based and single-solution based 

Hs into their cooperation framework to take advantage of both 

xploration and exploitation abilities. As discussed earlier, the 

nformation between the agents can be shared in the form of 

artial solutions, where ARs can be used to generate these partial 

olutions. In this regard, a set of challenges in front of ARs for par- 

ial solution generation, which were elaborated in Section 7.3 , also 

eeds to be addressed in the design of cooperation frameworks. 

Considering Table 11 , in most of the studies, the agents (MHs) 

ttempt to save and share good obtained solutions partially or 

ompletely. In this way, each MH would be aware of the promis- 

ng regions exploited by other MHs. As a future research direction, 

haring the bad solutions and their corresponding characteristics 

ould be also useful to prevent MHs to explore non-promising re- 

ions. Indeed, the non-promising regions already visited by a MH 

ould be prohibited to be explored and exploited again by other 

Hs. 

Most of the reviewed papers in this section have used cooper- 

tive MHs to solve single-objective COPs, and there are only few 

apers that study cooperation in multi-objective COPs ( Karimi- 

amaghan et al., 2020a; Karimi-Mamaghan, Mohammadi, Pi- 

ayesh, Karimi-Mamaghan, & Irani, 2020b ). These two papers have 
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sed k -means to link multi-objective population-based MHs with 

ingle-solution based MHs. Once the non-dominated solutions are 

btained via the population-based MHs, k -means is used to cluster 

hese solutions. Then, the representative of each cluster is given to 

he single-solution based MH to be more exploited. This cooper- 

tion has led to better non-dominated solutions in terms of both 

he quality and the computational time of the search process. In 

his regard, another future research direction could be extending 

he concept of cooperation to multi-objective COPs. 

0. Conclusion and perspectives 

In recent years, ML techniques have been extensively integrated 

nto MHs for solving COPs, and promising results have been ob- 

ained in terms of solution quality, convergence rate, and robust- 

ess. This paper provides a comprehensive and technical review 

n the integration of ML techniques in the design of different ele- 

ents of MHs for different purposes including algorithm selection, 

tness evaluation, initialization, evolution, parameter setting, and 

ooperation. Throughout the manuscript, particular challenges are 

laborated for each way of integrating. Regardless of the way of in- 

egration, there are also a set of common challenges in the use of 

L techniques in MHs as follows: 

– Whenever a ML technique is integrated into a MH, a set of ad- 

ditional parameters are introduced that need to be carefully 

tuned/controlled to obtain the highest performance. In almost 

all papers so far, these parameters are considered fixed dur- 

ing the search process. To cope with this challenge, we propose 

to dynamically adjust the additional parameters based on the 

characteristics of the integration. 

– Scaling to larger problem instances is a challenge when training 

ML techniques on problem instances up to a particular size. To 

overcome this issue, one may attempt to use larger instances 

for training, while this could be very time-consuming and be- 

come a computational issue, except for very simple ML tech- 

niques and optimization problems. 

– The higher the volume of data, the higher the performance of 

ML techniques. Data availability is another challenge when in- 

tegrating ML techniques into MHs. Indeed, collecting or even 

generating enough data is a hard task. If even enough histori- 

cal data is available, the way of sampling from historical data 

to appropriately mimic the behavior reflected in such data is 

another challenge ( Bengio et al., 2021 ). One way of tackling the 

data availability challenge could be using Few-Shot Learning to 

train a model with a very small amount of training data ( Wang, 

Yao, Kwok, & Ni, 2020b ). By using prior knowledge of similar 

problem instances, few-shot learning can be rapidly generalized 

to new tasks containing only a few problem instances with su- 

pervised information. 

– With the rapid development of new technologies, real-world 

problems are becoming increasingly complex, and with the new 

advances in digitalization, various real-time data are collected 

massively that cannot be processed by classical ML techniques. 

Such big data carries several issues that need to be taken into 

consideration ( Emrouznejad, 2016 ). To cope with such big data, 

more advanced ML techniques such as deep learning can be in- 

tegrated into MHs. 
24 
Apart from the above-mentioned ways to cope with common 

hallenges that can be considered as promising future works, a 

et of common future research directions for the integration of ML 

echniques into MHs are elaborated as follows: 

– Almost all the studies reviewed in this paper only deal with 

the integration of ML techniques into MHs with a single pur- 

pose, while the higher performance of MHs is expected to be 

achieved when ML techniques serve MHs for multiple pur- 

poses. Therefore, an interesting future research direction could 

be integrating ML techniques into MHs simultaneously for dif- 

ferent purposes. For instance, implementing parameter control 

and adaptive operator selection simultaneously in a MH may 

increase the overall performance of the MH throughout the 

search process. 

– With the development of supercomputers, it could be an inter- 

esting future research direction to explore the parallelism con- 

cept in the integration of ML techniques into MHs using GPU 

(Graphics Processing Units) and TPUs (Tensor Processing Units) 

accelerators ( Alba, 2005; Cahon, Melab, & Talbi, 2004; Van Lu- 

ong, Melab, & Talbi, 2011 ). 

– The majority of papers in the literature use conventional ML 

techniques such as k -NN, k -means, SVMs, LR, etc. With the re- 

cent rapid development of ML techniques, more advanced and 

modern ML techniques such as deep reinforcement learning or 

transfer learning can be employed as a promising research di- 

rection. In this regard, when various ML techniques are avail- 

able to be integrated into MHs for a particular purpose, the al- 

gorithm selection problem can be studied to select the most 

appropriate ML technique. 

– An important issue in real-world optimization problems is 

the uncertainty of input data and particularly where the in- 

put data statistically contains various distributions. In this re- 

gard, a promising research direction could be using ML tech- 

niques such as clustering methods (e.g., k -means, SOM) to clus- 

ter the input data with the aim of discriminating the data 

with different distributions. These classes of data can be then 

used/integrated to solve the optimization problem at hand. 

– The dynamicity of the input data is another issue that can be 

handled by ML techniques when solving dynamic optimiza- 

tion problems. Indeed, ML techniques can be used to moni- 

tor/predict the evolution of the input data, and once a new evo- 

lution is detected by ML techniques, the optimization variables 

are updated correspondingly. 

– Last but not least, another future research direction is us- 

ing the integration of ML techniques into MHs for either new 

COPs or other complex optimization problems such as multi- 

objective optimization, bi-level optimization, etc. This direction 

also opens other research questions that are worthy for further 

investigations. 

ppendix A. List of COPs 

In this section, a complete list of COPs that have been used 

hroughout this paper is provided. 
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Table A.1 

Exhaustive list and the abbreviation (Abv.) of the COPs studied by the articles reviewed in this paper. 

COP Abv. Description 

Assignment Problem AP Assigning a set of locations to a set of facilities such that the total assignment cost is minimized ( Degroote et al., 2018 ). 

Arc Routing Problem ARP Finding a set of tours with minimum cost in an undirected graph to serve the positive demand of edges by a set of available 

vehicles where each tour begins and ends at the depot ( Consoli & Yao, 2014 ). 

Assemble-To-Order Problem ATOP Determining an order based on which the parts and sub-assemblies are made but the final assembly is delayed until the 

customer orders are received such that the total production cost is minimized ( Horng et al., 2013 ). 

Berth Allocation Problem BAP Allocating the berthing position and berthing time to the incoming vessels to perform loading/unloading activities such that 

the total vessels’ waiting time or the early or delayed departures is minimized ( Wawrzyniak et al., 2020 ). 

Bin-Packing Problem BPP Placing N items in a number of capacitated knapsacks so that the total number of knapsacks used to pack all items is 

minimized ( Burke et al., 2011 ). 

Capacitated Lot Sizing 

Problem 

CLSP Planning the lot size of a set of different items over a planning horizon under production capacity constraints such that the 

total production, setup, and inventory cost is minimized ( Caserta & Rico, 2009 ). 

Facility Location Problem FLP Locating a number of facilities in a set of potential locations to serve a set of customers with predefined locations such that 

the total opening and transportation cost is minimized ( Meignan et al., 2010 ). 

Flowshop Scheduling 

Problem 

FSP Finding the order of processing N jobs on M machines with the same sequence such that the makespan, total tardiness, or 

total lag between the jobs is minimized ( Pavelski et al., 2018b ). 

Graph Coloring Problem GCP Finding the minimum number of colors for coloring the vertices of a graph such that no two adjacent vertices have the same 

color or finding the maximum sub-graph of a graph to be colored with k colors such that no two adjacent vertices have the 

same color ( Mostafaie, Khiyabani, & Navimipour, 2020; Zhou et al., 2016 ). 

Heat Exchanger Design 

Problem 

HEDP Designing the structure of tubes under technical and environmental constraints including the size of the exchanger and air 

temperature such that the heat transfer rate is maximized ( Domanski et al., 2004 ). 

Hub Location Problem HLP Locating a set of hubs and allocating a set of origin and destination nodes to the located hubs for transferring the 

origin-destination flows through the hubs such that the total hub opening and transportation costs is minimized ( Mohammadi 

et al., 2019 ). 

Inspection Planning Problem IPP Determining which quality characteristics of a product should be inspected at which stage of the production process such that 

the total inspection cost is minimized ( Karimi-Mamaghan et al., 2020a ). 

Job-Shop Scheduling JSP scheduling the processing of N jobs consists of a sequence of tasks that need to be performed in a given order on specific 

subsets of M machines such that the makespan or total tardiness is minimized ( Nasiri et al., 2019 ). 

Knapsack problem KP Placing a number of items with specific values and dimension in M capacitated knapsacks such that the total value of the 

knapsacks is maximized ( Cadenas et al., 2009 ). 

Location-Routing Problem LRP Locating a number of facilities in a set of potential locations, assigning customers with predefined demand to the located 

facilities, and finding the routes from located facilities to customers such that the total cost of opening facilities, cost of 

vehicles and transportation cost is minimized ( Zhalechian et al., 2016 ). 

Maximum Satisfiability 

Problem 

MAX-SAT Finding an assignment of the truth values to the variables of a Boolean formula such that the number of satisfied clauses is 

maximized ( Miranda et al., 2018 ). 

Mixed-model Assembly Line 

Sequencing Problem 

MASP Determining the optimal production planning of multiple products along a single assembly line while maintaining the least 

possible inventories ( Mosadegh et al., 2020 ). 

Multiprocessor Scheduling 

Problem 

MSP Given a directed graph representing a parallel program, where the vertices represent the tasks and the edges represent the 

communication cost and task dependencies, scheduling the tasks on a network of processors under task precedence 

constraints such that the makespan is minimized ( Lotfi & Acan, 2016 ). 

Nurse Rostering Problem NRP Assigning nurses to working shifts under a set of constraints including nurse preferences, time restrictions, labor legislation, 

and hospital standards such that the total cost of the hospital is minimized or the nurses’ preferences are maximized 

( Gretsista & Burke, 2017 ). 

Orienteering Problem OP Selecting a set of nodes from available nodes with specific score and determining the shortest path between the selected 

nodes such that the total score of the visited nodes is maximized ( Gunawan et al., 2018 ). 

Pickup and Delivery Problem PDP Designing a set of routes to collect commodities from specific origins and deliver them to their specific destinations using 

capacitated vehicles such that the total cost is minimized ( Liao & Ting, 2012 ). 

Parallel Machine Scheduling 

Problem 

PMSP Scheduling the processing of N jobs on M identical parallel machines such that the total makespan is minimized ( Silva et al., 

2019 ). 

Project Scheduling Problem PSP Assigning limited resources (employees) to activities with predefined duration and resource requirements under activity 

precedence relations such that the lateness or the total tardiness is minimized ( Pathak et al., 2008 ). 

Personnel Scheduling 

Problem 

PSSP Assigning personnel to working shifts under a set of constraints (e.g., shift time) such that the total cost is minimized ( Burke 

et al., 2011 ). 

Quadratic Assignment 

Problem 

QAP A special case of Assignment Problem with quadratic objective function ( Pitzer et al., 2013 ). 

Boolean Satisfiability Problem SAT Determining if the variables of a Boolean formula can be substituted by True and False values such that the Boolean formula 

turns out to be TRUE (Satisfiable) or not ( Maturana & Saubion, 2008 ). 

Single-Machine Scheduling 

Problem 

SMSP A special case of Flow-Shop scheduling problem where there is only a single machine ( Thevenin & Zufferey, 2019 ). 

Set Packing Problem SPP Determining/picking a subset of elements from a bigger set such that the total value of picking is maximized ( Ribeiro et al., 

2006 ). 

Job Sequencing and Tool 

Switching Problem 

SSP Sequencing N jobs, each of which requires a predefined set of tools, on a single flexible machine and assigning tools to a 

capacitated machine such that the number of tool switches is minimized ( Ahmadi et al., 2018 ). 

Transmission Expansion 

Planning Problem 

TEPP Planning new transmission facilities as an expansion to the existing transmission network to satisfy demand without load 

interruption under technical constraints such that the total investment and operational cost is minimized ( da Silva et al., 2016 ). 

Traveling Salesman Problem TSP Finding a tour in a complete weighted graph that goes through all vertices only once and returns to the starting vertex such 

that the tour cost is minimized ( Kanda et al., 2016 ). 

Timetabling Problem TTP Allocating predefined resources (teachers and rooms) to events (classes) such that there is no conflict between any two events 

and a set of objectives are satisfied ( de la Rosa-Rivera et al., 2021 ). 

Vehicle Routing Problem VRP Finding a set of undirected edges in a graph by which the demand of customers located in the vertices is satisfied by a set of 

vehicles that visit each customer exactly once. Vehicles start and end their route at the depot such that the total 

transportation cost is minimized ( Gutierrez-Rodríguez et al., 2019 ). 

Vertex Separator Problem VSP Partitioning the graph into three non-empty subsets A , B , and C such that there is no edge between A and B , and | C| is 
minimized subject to a bound on max {| A | , | B |} ( Benlic et al., 2017 ). 

Winner Determination 

Problem 

WDP Considering a set of bids in a combinatorial auction, assigning items to bidders such that the auctioneer’s revenue is 

maximized ( Sghir et al., 2018 ). 

Water Distribution System 

Design Problem 

WDSDP Determining the location, size, and capacity of water system components including pipes and pumps such that the system’s 

reliability (ability to supply adequate water with acceptable pressure and quality to customers) is maximized ( Lessmann et al., 

2011 ). 

Weighted Independent 

Domination Problem 

WIDP Determining a pairwise non-adjacent subset D of V of a graph G = (V, E) such that every vertex not in D is adjacent to at least 

one vertex in D ( Wang et al., 2020a ). 

Workforce Scheduling and 

Routing Problem 

WSRP Assigning workforce to the activities needed to be performed at different locations where the workforce need to travel 

between locations to perform the activities such that the employees travel time or hiring cost is minimized ( López-Santana 

et al., 2018 ). 

25 
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